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ABSTRACT

DEEP LEARNING APPROACHES FOR SEAGRASS DETECTION IN
MULTISPECTRAL IMAGERY

Kazi Aminul Islam
Old Dominion University, 2021

Director: Dr. Jiang Li

Seagrass forms the basis for critically important marine ecosystems. Seagrass is an

important factor to balance marine ecological systems, and it is of great interest to mon-

itor its distribution in different parts of the world. Remote sensing imagery is considered

as an effective data modality based on which seagrass monitoring and quantification can

be performed remotely. Traditionally, researchers utilized multispectral satellite images to

map seagrass manually. Automatic machine learning techniques, especially deep learning

algorithms, recently achieved state-of-the-art performances in many computer vision appli-

cations. This dissertation presents a set of deep learning models for seagrass detection in

multispectral satellite images. It also introduces novel domain adaptation approaches to

adapt the models for new locations and for temporal image series. In Chapter 3, I compare

a deep capsule network (DCN) with a deep convolutional neural network (DCNN) for sea-

grass detection in high-resolution multispectral satellite images. These methods are tested

on three satellite images in Florida coastal areas and obtain comparable performances. In

addition, I also propose a few-shot deep learning strategy to transfer knowledge learned

by DCN from one location to the others for seagrass detection. In Chapter 4, I develop a

semi-supervised domain adaptation method to generalize a trained DCNN model to multiple

locations for seagrass detection. First, the model utilizes a generative adversarial network

(GAN) to align marginal distribution of data in the source domain to that in the target

domain using unlabeled data from both domains. Second, it uses a few labeled samples

from the target domain to align class-specific data distributions between the two. The

model achieves the best results in 28 out of 36 scenarios as compared to other state-of-the-

art domain adaptation methods. In Chapter 5, I develop a semantic segmentation method

for seagrass detection in multispectral time-series images. First, I train a state-of-the-art

image segmentation method using an active learning approach where I use the DCNN clas-

sifier in the loop. Then, I develop an unsupervised domain adaptation (UDA) algorithm



to detect seagrass across temporal images. I also extend our unsupervised domain adap-

tation work for seagrass detection across locations. In Chapter 6, I present an automated

bathymetry estimation model based on multispectral satellite images. Bathymetry refers

to the depth of the ocean floor and contributes a predominant role in identifying marine

species in seawater. Accurate bathymetry information of coastal areas will facilitate seagrass

detection by reducing false positives because seagrass usually do not grow beyond a certain

depth. However, bathymetry information of most parts of the world is obsolete or missing.

Traditional bathymetry measurement systems require extensive labor efforts. I utilize an

ensemble machine learning-based approach to estimate bathymetry based on a few in-situ

sonar measurements and evaluate the proposed model in three coastal locations in Florida.
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CHAPTER 1

INTRODUCTION

1.1 Background

Seagrasses create critically important marine ecosystems by reducing atmospheric

carbon dioxide and mitigating climate change. Seagrasses also provide food and shelter for

fish and marine organisms, protect ecological systems, stabilize sea bottoms, maintain water

quality, and help the local economy [2–6]. Seagrasses can be found in coastal areas all over

the world [7]. Seagrasses live in sediments, intertidal and subtidal areas of coastal shallow

regions by forming a meadow [8]. There is a need to accurately identify seagrass due to its

salient role in keeping the ecosystem intact. This will help researchers better understand

the growth of seagrass all over the world [6, 9].

Coastal areas have been significantly impacted over the last several decades by activi-

ties (aquaculture, humans with propeller current) of nearby inhabitants and coastal visitors.

Due to the growth of the human population and industrial evolution, the release of waste

and polluted water have also increased significantly in coastal areas [2–5, 10]. These issues

are causing the deterioration of water quality and a decrease in seagrass distribution. Sea-

grass distribution is also damaged by natural calamities such as typhoons, strong wind,

rainfall, climate warming, sea level rise, and ocean acidification [2–5, 10]. Florida has lost

50% of its seagrass between the 1880s and the 1950s [4]. Therefore, improving water quality
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to restore seagrass has been a priority during the last few decades. Tampa Bay, Florida had

an increase of seagrass distribution between the 1980s to 2006 by 114.5 km2 [4].

Although seagrass monitoring is an important topic for marine researchers, the prefer-

able approach for seagrass detection is still a manual approach using in-situ measurement

data. With the advancement of technology, researchers came up with various approaches for

seagrass detection. Among them, remote sensing imagery is a cost-effective and efficient sys-

tem for seagrass detection [4,5]. Besides multi-spectral satellite images, researchers utilized

digital video and images, Lidar, sonar data to detect seagrass [8]. In most of the previous

assessments of seagrass distributions in the remotely sensed imagery, domain experts manu-

ally drew the seagrass maps [8]. Recently, researchers utilized machine learning algorithms

with multi-spectral images for seagrass detection in different parts of the world [11,12]. Deep

learning is a sub-group of machine learning algorithms which achieved state-of-the-art perfor-

mances in image classification [13], image segmentation [14–16], and object detection [17,18]

domains. In this dissertation, we propose deep learning-based seagrass monitoring models

based on multi-spectral satellite images.

To develop a deep learning-based seagrass detection system, we first consider the

scenario where we have enough labeled samples to train a deep learning model. Deep learning

models usually require a large number of labelled training data to achieve competitive

results. For seagrass detection, these labeled data are obtained by in situ observations that

are time-consuming and labor-intensive. We compare performances of deep capsule network

(DCN) and deep convolutional neural network (DCNN) for seagrass detection with the

labeled data in a cross-validation setting. We also compare the two methods with a baseline
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support vector machine (SVM) model. We found that DCNN and DCN models achieve

comparable performances whereas SVM performs poorly in the cross-validation setting.

A well trained deep learning model at one location may fail at others if seagrass

density distribution shifts from the source domain to the target domain. We explore the

scenario of adapting a trained model at one location to others using a few labeled samples

from a target location as guidance. For seagrass detection, we usually have abundant unla-

beled samples, and it is possible to obtain a few labeled samples from the target location.

We propose a semi-supervised method that uses both unlabeled and labeled samples to

adapt the trained models.

In this dissertation, we also explore the research of classifying seagrass without using

any labeled samples from a target location. We divide domain shift into two categories:

temporal shift and location shift. Temporal shift refers to change of seagrass distribution

due to seasonal variation in the same location while location shift refers to change of seagrass

distribution due to change of location. For temporal shift domain adaptation, our overall

objective is to train a classifier on the first time-point image with enough labeled samples and

then effectively classify all the future temporal images without using any labeled samples.

To solve this challenge, we propose to use a pixel-wise semantic segmentation approach,

which can learn the relationship among neighboring pixels. To adapt the classifier for future

temporal images, we propose to develop an unsupervised domain adaptation approach.

We propose to explore further the unsupervised seagrass detection task across lo-

cations without using any labeled samples from target domains. Seagrasses usually look

different across locations due to water quality, water depth, suspended sediments [19] and
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colored dissolved organic matter (CDOM) [20]. If we do not have any labeled samples from

a target location, the trained seagrass detection model may get fooled by the different in-

fluence factors. To adapt seagrass detection classifiers, we propose to use the generative

adversarial network (GAN) based domain adaptation approach to detect seagrass in target

domains.

Bathymetry represents sea depth of the ocean floor which is a popular way to detect

underwater marine objects. Seagrasses usually do not grow under a certain depth. Using

the bathymetry measurement, we can improve performances of seagrass detection models

by removing false positives. Normally, researchers utilize manual approaches, e.g.: sonar

(sound navigation ranging) and LIDAR to measure the depth of the ocean floor. In this

dissertation, we propose a machine learning-based bathymetry estimation model using multi-

spectral images. Our proposed approach uses sonar measurements and corresponding image

information to learn the underlying relationship. As we have limited sonar measurements,

we propose to use an ensemble machine learning-based regressor for bathymetry estimation.

1.2 Contribution

In this dissertation, we explore the research problem of detecting seagrass using deep

learning techniques in multi-spectral images. First, we try to find the best method for

detecting seagrass in selected regions using state-of-the-art deep learning models. Then, we

work on domain adaptation for seagrass detection. Contributions of this dissertation are

summarized below:

1.2.1 Seagrass Detection using Deep Capsule Network
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We compare a deep capsule network with deep convolutional neural network to detect

seagrass in Florida coastal areas based on multispectral satellite images. To generalize a

trained seagrass detection model to new locations, we utilize the capsule network as a data

augmentation method to generate new artificial data for fine-tuning the model. The main

contributions of this task are:

1. A capsule network is developed for seagrass detection in multispectral satellite images.

2. A few-shot deep learning strategy is implemented for seagrass detection. and it may

be applicable to other applications.

We published a conference paper using outcomes from this task [21,22]:

Islam, Kazi Aminul, Daniel Perez, Victoria Hill, Blake Schaeffer, Richard Zimmerman, and

Jiang Li. Seagrass detection in coastal water through deep capsule networks. In Chinese

Conference on Pattern Recognition and Computer Vision (PRCV), pp. 320-331. Springer,

Cham, 2018.

1.2.2 Semi-supervised Domain Adaptation for Seagrass Detection

For seagrass detection, we usually have large amount of unlabeled data for a given new

location and it is possible to obtain limited labeled data from domain experts. We propose a

novel domain adaptation approach that uses both unlabeled data and a few labeled samples

to learn an effective classifier for new locations. First, we utilize an unsupervised adversarial

domain adaptation approach to adapt target domain representation to mimic source domain

representation so that the classifier trained in the source domain may work in the target

domain. Second, we utilize a supervised approach with the contrastive semantic alignment
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loss to learn domain invariant representations between source and target domains. The first

step aligns marginal distribution between domains, and the second step aligns class specific

distributions using a few labeled samples from the target domain. The proposed domain

adaptation approach optimizes the target domain embedding function to create a simple

classifier that can work effectively in the target domain. Contributions of our proposed

approach are:

• A novel approach which uses both unlabeled and a few labeled samples in the target

domain to learn a domain invariant embedding for domain adaptation. It can utilize

a large amount of unlabeled data for efficient training.

• To the best of our knowledge, this is the first attempt and successful system that can

generalize deep CNN models for seagrass detection from one location to another.

We published one conference paper and one journal paper using the results of this

task [23,24].

• Islam, Kazi Aminul, Victoria Hill, Blake Schaeffer, Richard Zimmerman, and Jiang

Li. Semi-supervised Adversarial Domain Adaptation for Seagrass Detection in Multi-

spectral Images. In 2019 IEEE International Conference on Data Mining (ICDM), pp.

1120-1125. IEEE, 2019.

• Islam, Kazi Aminul, Victoria Hill, Blake Schaeffer, Richard Zimmerman, and Jiang

Li. Semiâsupervised Adversarial Domain Adaptation for Seagrass Detection Using

Multispectral Images in Coastal Areas. Data Science and Engineering(DSE) Springer,

2020
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1.2.3 Seagrass Detection using Unsupervised Domain Adaptation

To detect seagrass in an image with temporal-shift or location-shift, we propose to

use an unsupervised domain adaptation method. The proposed method will modify the

target domain representation in the embedding space using the unlabeled samples with a

GAN-based loss so that the source classifier can effectively classify the target domain images.

Our contributions are:

• We propose a pixel-wise image segmentation method for seagrass detection where we

use an active learning based approach to generate a pixel-wise label for multi-spectral

images.

• We propose an unsupervised domain adaptation approach to minimize domain shift in

temporal shift or location shift in multi-spectral images, where we adapt the trained

source segmentation model using a generative adversarial network (GAN) loss in the

target domain images without labeled samples.

1.2.4 Bathymetry Estimation using Machine learning Approaches

We propose an automated machine learning-based bathymetry estimation approach,

which uses a multi-spectral satellite image to accurately predict bathymetry information.

Our contributions are:

• We are the first to develop a bathymetry estimation model using a gradient boosting

machine learning regressor with multi-spectral satellite images.

• Our proposed bathymetry estimation model effectively measures bathymetry in three

coastal locations of Florida using a few sonar measurement data.
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1.3 Outline of the Dissertation

This dissertation is arranged in the following chapters:

1. Chapter 1: Introduction to the problem, existing work, and our contributions.

2. Chapter 2: We discuss some related work for seagrass detection and deep learning.

3. Chapter 3: We propose a deep capsule network for seagrass detection.

4. Chapter 4: We propose a semi-supervised domain adaptation approach for seagrass

detection.

5. Chapter 5: We propose an unsupervised domain adaptation approach for seagrass

detection.

6. Chapter 6: We proposed an ensemble model for bathymetry estimation.

7. Chapter 7: We provide concluding remarks about the research.
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CHAPTER 2

RELATED WORK

2.1 Seagrass Distributions Mapping

Many automated systems to map seagrass distribution in multispectral satellite im-

ages have been developed. Traganos et al. proposed a support vector machine (SVM)

approach to map the Mediterranean seagrass distribution in Greece utilizing Sentinel-2

satellite imagery [12, 25]. Lions et al. utilized field survey data and multi-spectral image

data from the QuickBird satellite with maximum likelihood supervised classification algo-

rithm for seagrass mapping in shallow coastal water [26]. WorldView-2 multispectral images

have been used for shallow-water Benthic identification using a maximum likelihood classi-

fier [27]. Pasqualinia et al. have found the overall accuracies to be between 73% and 96% for

identifying four classes: sand, photophilous algae on rock, patchy seagrass beds, and con-

tinuous seagrass beds, with two spatial resolutions of 2.5m and 10m [28]. Vela et al. used

fused image of SPOT-5 and IKONOS in southern Tunisia near the Libyan border to detect

four classes including low seagrass cover, high seagrass cover, superficial mobile sediments,

and deep mobile sediments [29]. For the lagoon environment mapping, they have obtained

83.25% accuracy over the entire area, 85.91% accuracy over the testing area with SPOT-5

images, and 73.41% accuracy over the testing area with IKONOS images [29]. Dahdough et

al. combined red, green and blue of visible bands with near infra-red band for seagrass and
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algae detection [30]. Oguslu et al. used a sparse coding method for sea-grass’s propeller

scar detection in WorldView-2 satellite images [31].

Different data sources including Landsat [32], IKONOS [33–35], Quickbird [36] and

WorldView-2 satellite image sensors [21, 22, 37–39], and different machine learning models

such as decision trees, naive Bayes, SVMs [32], and maximum likelihood [33,34,38,39] have

been utilized for effective seagrass distribution mapping. However, no model can be directly

applied to new locations successfully without adaptation and extensive local training.

2.2 Bathymetry estimation

2.2.1 Traditional Bathymetry estimation in multi-spectral Images

Recently, researchers widely utilized multi-spectral satellite images for bathymetry

estimation. Lafon et al. used SPOT satellite imagery and a set of field measurements to

develop bathymetry estimation models and found that water reflectance is directly linked to

depth [40]. Legleiter et al. empirically pointed out high similarity between field measured

reflectance values and depth values. They also observed that the optimal band ratio analysis

(OBRA) based bathymetry mapping values produce high agreement with real depth values

in Worldview-2, Landsat-7 (ETM+), MODIS, and ASTER sensors [41]. Doxani et al. used

Worldview-2 satellite imagery to compare competence of the Lyzenga linear bathymetry

model in dense and sparse seagrass regions [42]. Su et al. utilized IKONOS and Landsat

satellite images with a geographically adaptive inversion model [43]. The same group also

used the non-linear inversion model in 2008 [44]. Wei et al. utilized Landsat-8, Sentinel-3

and Suomi National Polar-orbiting Partnership (SNPP) sensor data to estimate bathymetry
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in corals, seagrass, and sand shallow water regions using a physics based approach: tem-

poral variation of water-column optical properties [45]. Ma et al. utilized new ICESat-2

bathymetric points and Sentinel-2 multispectral imagery to estimate bathymetry using a

linear model and a band ratio mode in South China Sea, Acklins Island and Bahama [46].

Pattanaik et al. estimated the bathymetry using radiative transfer equations for

the Indian ocean using IRS-1C/1D and LISS-III sensor satellite data [47]. Stumpf et al.

also proposed a ratio transfer algorithm using IKONOS satellite imagery for bathymetry

estimation [48]. Ratio transfer algorithm also estimated better bathymetry compared to the

Lidar [48]. Pushparaj et al. used the same ratio transfer algorithm to measure bathymetry

in Landsat-8 images [49]. In addition to multispectral images from CubeSat [50], Landsat-

8 [51], QuickBird [52], radar [53], Sentinel-2 [54] and Worldview-2 [38] sensors were utilized

for bathymetry measurement. Our proposed model utilizes multi-spectral satellite images

to estimate bathymetry in the shallow coastal area.

2.2.2 Optical bathymetry estimation using Lidar

Light detection and ranging (LIDAR) uses a pulsed-laser beam to estimate the depth

of shallow coastal water. LIDAR sends a green laser beam that penetrates through the water

and hits the water surface. The laser beam then is reflected back through water and finally

hits the LIDAR sensor [55,56]. The laser measures the distance once reflected from the water

surface [55, 56]. It can be used to estimate the bathymetry for up to 70m in clear water

although the LIDAR-based method has higher cost and coarser bathymetry estimation [57].

Kinzel et al. utilized LIDAR data to estimate bathymetry on the Trinity and Klamath River

in California, and the Colorado River in Colorado [58]. Saylam et al. quantified Airborne
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Lidar Bathymetry (ALB) in the Frio River in Texas [59]. LIDAR data were also used for

Bathymetry estimation in Germany [60] and Pielach River in Austria [61].

2.2.3 Bathymetry estimation using machine learning approach

Machine learning methods are effectively utilized in disease diagnosis [62,63], medical

imaging [64], cybersecurity [65], and border security [66] applications. Researchers are

also using the machine learning-based method to develop bathymetry estimation models.

Mishra et al. proposed a support vector machine (SVM) based approach for shallow water

bathymetry mapping utilizing remote sensing images. Their proposed method achieved

comparable or better results than the traditional methods: linear transform model and

ratio transform model [67]. Gayman et al. used multi-spectral optical imagery Rapid-Eye

to estimate the bathymetry on the Great Bahama Bank [68]. Gayman et al. proposed

a cluster-based regression (CBR) algorithm which provided better performance than the

traditional linear and ratio methods. The CBR based method also performed better than

the state-of-the-art machine learning model support vector machine (SVM) [68].

Mohammed et al. proposed an ensemble-based method for bathymetry estimation

utilizing high-resolution satellite imagery [69]. They also used ensemble regression algo-

rithms bagging (BAG), least squares boosting (LSB), support vector regression algorithm

(SVR), the neural network (NN) and the Lyzenga generalised linear model (GLM) [70]

in Landsat-8 and Spot-6 satellite sensors. Jalilzadeh et al. used artificial neural network

(ANN), adaptive neuro fuzzy inference system (ANFIS), and regression learner in Landsat-8

images [71]. Sagawa et al. used multi-temporal Landsat-8 satellite images and a random for-

est model to estimate the satellite-derived bathymetry (SDB) [72]. Tonion et al. empirically
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determined random forest was performing better than the SVM in the Landsat-8, Sentinel-2

and Planet-scope image sensors [73]. Ai et al. used convolutional neural network (CNN) in

three satellite sensors: Resources Satellite Three (ZY3), Gaofen-1 (GF1), and Worldview-2

(WV2) [74]. Dickens et al. utilized a segmentation based method U-Net [15] architecture in

Orbview-3 satellite sensor [75]. Besides the multi-spectral image, deep Learning method–

fully convolutional neural network (FCNN), principal component analysis (PCA)- deep neu-

ral network (DNN), deep autoencoder (AE), and deep variational autoencoder (VAE) – are

used to estimate bathymetry in the Celeris wave model [76] and flow velocity data [77].

2.3 Deep Learning

Deep learning models are a subset of machine learning methods which were inspired

to mimic mammals’ vision systems. A typical deep learning model consists of multiple layers

of feature extraction processing units called ”neurons”. During training, these neurons learn

to extract useful features from data to perform classification or regression. Deep learning has

been successfully applied in image classification [13,78], image segmentation [15,15], image

super-resolution [79–81], hyperspectral images [82], object detection [83], speech recognition

[84], audio classification [85], computer-aided medical diagnosis [62, 63], medical imaging

[64, 86] and cybersecurity [65, 87–89]. Deep learning models include feature extraction in

the optimization loop and achieve state-of-the-art performances in many applications [90].

However, one challenge of deep learning models is that they require a large amount of

training data to achieve competitive performances, making adaptation of deep learning

models between domains difficult.
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2.3.1 Deep Convolutional Neural Network (DCNN)

Among different deep learning classification models, deep CNN is the most popular

model, and more details are provided in a comprehensive survey by Alom et al. [90]. A

deep CNN model scans an input image using a set of trained filters to search for matched

patterns contained in the filters. Each layer in the deep CNN model contains a number

of trained filters. A layer close to input searches for simple patterns such as edges with

different orientations and layers adjacent to output try to match more class-specific patterns

to conduct classification. This hierarchy feature extraction mechanism is key to the success

of CNN. Popular deep vision CNN models include AlexNet [13], VGG-net [91], Resnet [78],

Dense-net [92] and inceptionV3 [93]. Deep CNN models use multiple processing layers

to learn new representations for better recognition and achieved state-of-the-art in many

applications including image classification [13, 94], medical imaging [64, 86, 95, 96], speech

recognition [84], cybersecurity [65,88], biomedical signal processing [97] and remote sensing

[66].

2.3.2 Generative Adversarial Network (GAN)

Goodfellow et al. developed the Generative Adversarial Network (GAN) model in

2014 [98]. The GAN model contains two networks: generator and discriminator. The GAN

network follows the Nash equilibrium theorem where the two networks compete against each

other to generate more realistic images. The generator network uses Gaussian noise as the

input and generates target images by learning a mapping between them. The discriminator

network classifies whether the generated images are real or fake. The discriminator uses the
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given target image to learn the relationship between real and fake images whereas the gen-

erator utilizes discriminator feedback to improve its performance. Over time both generator

and discriminator try to improve their performances. The generator gets good at generating

fake images, and the discriminator can better distinguish between real and fake samples.

After many iterations, when the discriminator network fails to identify whether the sample

is fake or real, the model converges. Then, the generator can be used to produce realistic

fake images. Due to its success, GAN has been used in a wide range of applications: super-

resolution [99], image to image translation [100], and domain adaptation [101]. Researchers

are also improving the GAN model performance through improving the architectures, e.g.:

progressive GAN [102] and Wasserstein GAN [103].

2.3.3 Transfer Learning

Transfer learning is a useful strategy to train a machine learning model if there is

not enough labeled data to train a model from scratch for a target task. Transfer learning

algorithms refer to the research area where we can re-use a source model to solve a new

related task. Transfer learning tries to train a predictive model through adaptation by

utilizing common knowledge between source and target data domains [104]. Oquab et al.

have used transfer learning with CNN for small data set visual recognition tasks [105].

Transfer learning has been explored also in computer-aided detection [106], post-traumatic

stress disorder diagnosis [63] and face representation [107]. We used a model parameter

sharing based transfer learning algorithm for seagrass detection. In the model parameter

sharing-based transfer learning algorithm, we first use the source model weight to learn

a representation for the target data. Then, we use this representation and corresponding



16

label to train a classifier for the target domain. Once trained, we use the target classifier to

classify the target samples.

2.3.4 Domain Adaptation

Domain adaptation (DA) utilizes a well-trained source domain model to perform

tasks in the target domain where we do not have enough labeled data to train a deep learn-

ing model. We usually have three types of scenarios for domain adaptation in case of data

availability: unsupervised, semi-supervised, and supervised. In the unsupervised domain

adaptation, we do not have any labeled samples in the target domain. The target domain

has fewer labeled samples and abundant unlabeled samples in the semi-supervised scenario

whereas in the supervised domain adaptation scenario, the target domain has labeled sam-

ples but not enough to train a deep learning model. With the rise of the deep learning

model, different approaches are utilized for domain adaptation.

Recent deep learning based domain adaptation methods can be divided into three

categories: divergence, adversarial, and reconstruction based. In divergence based domain

adaptation, source and target domains minimize a divergence measure such as maximum

mean discrepancy (MMD) [108], CORrelation ALignment (CORAL) [109], or contrastive

correlation based distances [110]. Reconstruction based domain adaptation methods use a

source domain classifier and modify unlabeled target domain images to look like the source

domain using GAN or cycle GAN [100] loss. In this approach, the source classifier can be

directly utilized in the target domain to classify the target domain images. In adversarial

based domain adaptation, distribution in the target domain is matched to source domain

distribution by the GAN loss [98].



17

Tzeng et al. proposed an adversarial discriminate domain adaptation method where

they used a GAN loss to perform domain adaptation. The discriminator classifies whether

the input samples are coming from the source domain or target domain. The target domain

changes its features so that the domain classifier can not correctly identify whether the input

samples are coming from the source domain or target domain [101]. The target domain

layers work as a generator which changes its representation to look like the source domain.

This method is converged when the discriminator gets too confused to correctly identify the

domains. At that point, we can use the classifier trained on the source domain to classify the

target domain samples. We will explore the adversarial and contrastive correlation-based

domain adaptation algorithms for seagrass detection.

2.3.5 Image Segmentation

Image segmentation is utilized in a wide range of applications, e.g.: biomedical imag-

ing, scene understanding, video surveillance, and autonomous vehicle driving [111]. Image

segmentation is a pixel-based classifier whereas image classification refers to patch-wise clas-

sification. A pixel-based classifier assigns a class label to each pixel whereas a patch-wise

classifier denotes the center pixel’s as the class label. This helps an image segmentation

model to learn the relationship between neighboring pixels whereas the image classification

algorithm treats neighboring pixels as the same label.

U-Net [15] is a pixel-based classifier which achieved the state-of-the-art performance

in 2015 for medical image segmentation. It is a fully convolutional neural network which

means it does not need any fully connected layers. This helps the segmentation model to keep

the spatial information of the input image. In contrast, image classification model converts
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an image into a vector and uses fully connected layers that lose the spatial relationships

between pixels. This approach performs well in image classification tasks. However, it

is usually difficult to get the original image back after converting it to vector due to loss

of spatial information. U-NET consists of encoder and decoder layers. In the encoder

layers, U-Net uses multiple convolutional layers to reduce the input dimension with increased

number of kernels. This helps preserve the image information. After encoder, it uses a

few convolutional layers where it does not change the image dimensions and works as a

bridge between encoder and decoder layers. The difference between U-Net as compared to

FCN [14] is that U-Net uses feature maps of encoding layers during up-sampling/decoder

layers. During encoding, the U-Net model encodes the image into a lower dimension and

learns the image features. Then, it uses the same learned features to get back to the original

image dimensions. As a result, U-Net learns the in-variance property, can separate the

touching objects, and performs detection from edge to edge of the object. In the final layer,

U-Net uses pixel-wise soft-max and binary cross-entropy loss to perform the classification.

The recently proposed High-Resolution Network (HR-Net) [16] has improved segmentation

performances where the model maintains high resolution throughout the network.

2.3.6 Active Learning

Active learning is a useful algorithm to generate enough labeled samples to train a

deep learning model. In an active learning algorithm, we utilize the available few labeled

samples to train an initial model. Then, the trained model is used to predict labels of the

available unlabeled samples. From the predicted samples, the algorithm selects a subset of

samples based on priority metrics which can be corrected by human operators. The new
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selected labeled samples are used to retrain the initial model. For seagrass detection, it is

almost impossible to correctly label each pixel at a location manually. To tackle this issue,

we first use the labeled regions from domain experts to train a DCNN classifier. Then,

we use the trained classifier to label available unlabeled samples from the same location.

After producing the classification maps, we verify the performance from the domain experts.

Then, we use the classification map from the DCNN model to train a new seagrass detection

model.

2.3.7 Data Augmentation

Deep learning has been popular for obtaining state-of-the-art performances in differ-

ent domains although it requires a lot of data to train. If the model is not fed with enough

labeled data, it memorizes training data, and this scenario is known as over-fitting. To solve

the over-fitting problem, we need to feed the deep learning model with more training data.

Data augmentation techniques are used generally to produce more training data. Traditional

data augmentation techniques include affine transformation, color space augmentation, ker-

nel filters, mixing images, random erasing, and feature space augmentation [112]. Recently,

deep learning-based data augmentation techniques such as GAN [98], adversarial training,

meta-learning, and style transfer have been very popular for data augmentation [112]. We

use a capsule network-based [113] data augmentation technique to increase the number

of data for seagrass detection. The capsule network uses a joint optimization of classifi-

cation/regression layers and auto-encoder layers. We use the auto-encoder layers of the

capsule network to perform data augmentation in the target domain.
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CHAPTER 3

SEAGRASS DETECTION USING CAPSULE NETWORK

3.1 Motivation

In this chapter, we compare the deep capsule network with the deep convolutional

neural network (DCNN) and support vector machine (SVM) [114] to detect seagrass in

multi spectral images. The deep convolutional neural network achieved state-of-the-art

performance in a large scale image dataset in 2012 [13] whereas SVM is considered as the

baseline model for the image classification.

Sabour et al. proposed the capsule network for image classification [113] in 2017. It

is more robust to affine transformation, and it has been considered a better method than

CNN for identifying overlapping digits in MNIST [113]. In 2018, the same group improved

the capsule network with matrix capsules, and the expectation maximization algorithm was

used for dynamic routing [115]. The improved model achieved state-of-the-art performance

on the smallNORB data set [115]. The capsule network has also been used in breast cancer

detection [116] and brain tumor type classification [117]. For highly complex data sets such

as CIFAR10, the capsule network has not achieved good performances [118].

First, we will compare the performance of these models in three multispectral images

of Florida coastal areas. We use a cross validation scheme to compare the performances in

the selected regions. We find comparable performance between the deep capsule network and

the deep convolutional network whereas support vector machine performance is much worse.
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Then, we propose a few shot learning approach to classify the seagrass in new locations.

We also propose a novel capsule network based data augmentation approach to improve

the performance. Using the data augmentation approach, we find comparable performance

between the deep convolutional neural network and the deep capsule network.

3.2 Capsule Network

3.2.1 Formulation

We develop a capsule network for seagrass detection in this study by following the

design in [113]. Let us assume that layer i output is ui, then the prediction vector output

for the next capsule j is [113]:

uj/i = Wijui. (1)

The weight matrix Wij is learned through back propagation. The coupling coefficient cij

between layers is learned through the following equation:

cij =
exp(bij)∫
k
exp(bik)

. (2)

Here, bij represents the probability of connection between layer i and j. All of the connections

are initially set to equal probability of zero. Then, with an iterative process some of the

connections are magnified more than others. The input vector to next layer j is:

sj =

∫
k

cijūj/i. (3)

Then a squashing function is used to make the probability between 1 and 0.
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vj =

∥∥sj∥∥2
1 +
∥∥sj∥∥2 sj∥∥sj∥∥ (4)

The loss function for the capsule network is as follows:

lk = Tkmax(0,m+ −|vk|)2 + λ(1− Tk)max(0,|vk| −m−)2. (5)

If a particular class is present, then Tk is 1 and 0 otherwise.

(a) Capsule Network Classification.

(b) Capsule Network Reconstruction.

Fig. 1: Capsule Network.
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3.2.2 Architecture

The capsule network’s model has two convolutional layers of 2x2 convolutional ker-

nels with 32 filters each for extracting high level features. The features extracted by the

convolutional layers are then fed to the capsule layers, in which a weight matrix of 8 by 16

is used to find the corresponding class representations. The last capsule layer, Feature-caps,

stores a capsule per class, each capsule having a total of 16 features. The length of each

capsule represents the probability for each class. Additionally, the features in each capsule

of the feature-caps are used to reconstruct the original image class. The reconstruction

architecture has 3 fully connected layers with a linear activation and a size of 256, 512 and

200 hidden units. The output of the decoder corresponds to the size of the input patches

(5x5x8).

3.3 Experimental Setup

3.3.1 WorldView-2 Atmospheric Correction

We performed atmospheric correction in the three WorldView-2 satellite multispec-

tral images by matching the images with in situ measurements collected at 22 stations across

the images on the same day by a survey boat. At each station, the following measurements

were obtained by two spectroradiometer systems in tandem:

• [Es(0
+)]: downwelling spectral irradiance above the sea surface (395 to 795 nm, 2.5

nm bandwidth),
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• Lµ(0.65, λ): upwelling spectral radiance 0.65 m beneath the sea surface where λ rep-

resents wavelength [HTSRB, Satlantic Instr.],

• Eµ(0.21) and Lµ(0.21): upwelling irradiance and radiance 0.21 m beneath the sea

surface [HyperPro, Satlantic Instr.].

With these measurements, we calculated the following attributes:

• Spectral upwelling diffuse attenuation coefficient,

KLµ = −1

z
ln
Lµ(0.65)

Lµ(0.21)
(6)

where z was the difference in depth between the sensors placed at 0.65 m and 0.21 m.

• Upwelling radiance just beneath the air-water interface Lµ(0−, λ) was calculated using

KLµ(λ) to propagate Lµ(0.21, λ) to the surface using Beers Law [119].

• Remote sensing reflectance [Rrs(λ)] was computed as Lw(0+, l)/Es(0+, λ).

We then reduced the spectral resolution of the field measurements to match the spec-

tral bands of the WorldView-2 image based on the published spectral response functions

(www.digitalglobe.com). Finally, we performed a linear regression between the 22 in situ

measurements to their corresponding WorldView-2 spectra at the same location and created

the gain and offset for each band to effectively remove atmospheric signals from the image.

3.3.2 Datasets

We collected three multispectral satellite images captured by the WorldView-2 (WV-

2) satellite. These images have a wavelength between 400-1100 nm and spatial resolution of
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TABLE 1: Band and wavelength information for WV-2 multi-spectral images.

Bands Wavelength (Nanometre)

Coastal Blue 400 - 450

Blue 450 - 510

Green 510 - 580

Yellow 585 - 625

Red 630 -690

Red Edge 705 - 745

Near-IR1 770 - 895

Near-IR2 860 - 1040

2m shown in Table 1. In this study, an experienced operator [1] selected several regions in

each of the three images with highest confidence of the labeling. These regions have been

identified as blue, cyan, green and yellow boxes, corresponding to sea, sand, seagrass and

land respectively (Fig. 2). At Saint Joseph Bay, an intertidal class was added, and it is

represented as white in Fig. 2(a).

3.3.3 Capsule Network

We develop a capsule network for seagrass detection by following the design in [113].

The model has two convolutional layers and 32 convolutional kernels with a size of 2x2x8 for

extracting high level features. The extracted features are then fed into the capsule layers, in

which a weight matrix of 8x16 is used to find the most similar capsule in the next layer. The



26

(a) (b) (c)

Fig. 2: Satellite images taken from Saint Joseph Bay(a), Keaton Beach(b) and Saint George

Sound(c). The blue, cyan, green, yellow and white boxes correspond to the selected regions

belonging to sea, sand, seagrass, land and intertide classes.

last capsule layer, Feature-caps, stores a capsule per class, and each capsule has a total of 16

features. The length of each capsule represents posterior probability for a class. Additionally,

the features in Feature-caps are used to reconstruct original images. The reconstruction

architecture has 3 fully connected layers with a sigmoid activation function, and the sizes

of the layers are 256, 512 and 200, respectively. Output size of the reconstruction structure

is the same as that of the input patch (5x5x8).

3.3.4 Transfer Learning

The ultimate goal of this study is to develop a deep learning model that is able to

detect seagrass at any location in the world. However, there exists a significant amount of

variations in seagrass representation from different satellite images. To resolve this issue, we

propose a transfer learning approach such that only a small number of samples are needed
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to adapt a trained deep model for predicting seagrass at a new location:

1. Train a capsule network using all the selected data from Saint Joseph Bay.

2. Feed the trained model with few labeled samples from Keaton Beach and extract

features from the Feature-caps as new representations for the data.

3. Utilize the new representations to classify the entire Keaton Beach image based on

the 1 -nearest neighbor (1 -NN) rule.

4. Repeat the procedures for the image from Saint George Sound.

3.3.5 Capsule Network as a Generative Model for Data Augmentation

The capsule network has the capability of reconstructing input data from features

in Feature-caps. We generate artificial labeled data at new locations to improve model

adaptation as follows:

1. Train a capsule network with the selected patches at Saint Joseph Bay and fine-tune

the model with a limited number of samples from Keaton Beach.

2. For each of the patches used for fine-tuning the model, extract the 16 corresponding

features in the Feature-caps and compute mean (µC) and standard deviation (σC) for

each of the 16 features.

3. For each patch from Keaton Beach, generate a total of 176 new artificial patches by

varying each of the features 11 times within the range of [µC − 2σC , µC + 2σC ].

4. Fine-tune the trained capsule network with these artificial and original patches.
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5. Repeat this procedure for 20 iterations, and repeat the same procedure for Saint

George Sound.

For comparison purposes, we add random noise within the range of [µC − 2σC , µC +

2σC ] directly to the patches that are fed to the capsule network, and then we extract their

features to classify all the patches from Keaton Beach and Saint George Sound using the

1 -NN rule.

3.3.6 Convolutional Neural Network

A similar method is implemented on CNN for comparison purposes. The CNN

model has two convolutional layers with a ReLU activation function and 16 2x2x8 and 64

4x4x16 convolutional kernels, respectively. The convolutional layers are followed by one

fully connected layer with 16 hidden units and a soft-max layer to perform classification.

We utilize the dropout technique with a probability of 0.1 to reduce over-fitting [120].

Fig. 3: Deep Convolutional Neural Network.



29

3.4 Results

3.4.1 Model Structure Determination

We select Saint Joseph Bay as the primary location to train deep models with the

selected regions. To have a fair comparison of the performances between capsule network

and CNN, we keep the same number of parameters, 9k, in convolutional layers for both

models. In the capsule network, there are 46k parameters for routing and 254k parameters

for reconstruction. We train 10 epochs for CNN and 50 epochs for the capsule network to

roughly keep the same amount of training for both models.

3.4.2 Cross-validation Results in Selected Regions

To validate our model, we perform 3 -fold cross-validation (CV) in the selected regions

for the three locations separately. In 3-fold CV, we divide all the extracted training patches

into three parts. Then, we use two parts for training and one part for testing. We repeat

this process until all three parts are tested once. Table 2 shows the classification accuracies

for each satellite image using SVM, CNN and capsule network. Additionally, each model is

trained with all the patches from the selected regions and then applied to the corresponding

whole image as shown in Fig. 4.

3.4.3 Transfer Learning

Table 3 shows the classification accuracies in the selected regions by transfer learning

with a different number of labeled samples (shots) from new locations. Zero shot transfer

learning means applying the deep learning model trained at Saint Joseph Bay directly to
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(a)

(b)

(c)

Fig. 4: Three-fold CV results. From left to right, the classification map by the physics

model [1], SVM, CNN and capsule network on Saint Joseph Bay (a), Keaton Beach (b) and

Saint George Sound (c). The colors blue, cyan, green, yellow and magenta represent sea,

sand, seagrass, land and intertide, respectively.
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TABLE 2: Three-fold CV results of Saint (St) Joseph Bay, Keaton Beach and Saint (St)

George Sound.

Location SVM CNN Capsule Network

St Joseph Bay 90.20% 99.99% 99.94%

Keaton Beach 81.13% 97.20% 99.97%

St George Sound 76.27% 80.20% 99.40%

Mean 82.53% 92.46% 99.77%

Keaton Beach and Saint George Sound. It is observed that CNN has better performances

in transfer learning.

3.4.4 Capsule Network as a Generative Model for Data Augmentation

We use the capsule network as a generative model to obtain new training data for

model adaptation as described in Section 3.3.5. For comparison purposes, we have identified

the following cases:

• Regular fine-tuning: We fine-tune the capsule network with a small number of labeled

samples (shots) from the new locations. After fine-tuning, we use the transfer learning

procedures to classify the rest of the patches.

• Random noise: We add some random noises into the labeled patches to generate

artificial patches for transfer learning.

• Generative fine-tuning: We fine-tune the capsule network with a small number of
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TABLE 3: Transfer Learning using CNN and capsule network ( capsule net) for Keaton

Beach and Saint George Sound.

Method Location 0 Shot 1 Shot 10 Shots 50 Shots 100 Shots

CNN
Keaton Beach 47.23% 56.90% 99.56% 99.63% 99.75%

St George Sound 22.08% 75.26% 95.92% 98.66% 98.76%

Capsule Net
Keaton Beach 38.74% 54.85% 94.45% 96.13% 97.27%

St George Sound 21.88% 47.58% 89.36% 94.00% 92.96%

labeled samples (shots) from the new locations. After fine-tuning, we generated arti-

ficial patches as described in Section 3.3.5 and use the transfer learning procedures to

classify the rest of the patches.

Table 4 shows the classification accuracies in the selected regions for each of these

cases with a different number of fine-tuning shots. It can be observed that the best accuracies

are obtained using generative fine-tuning for most of the cases.

The results displayed in Table 4 show the accuracies for only one iteration in gen-

erative fine-tuning. To investigate the effect of the number of iterations on performances,

we run the generative fine-tuning method with a different number of iterations in 100 shots

deep learning and show the results in Table 5, where the accuracies are obtained in Keaton

Beach and Saint George Sound either with generated data only or combined with the orig-

inal patches. Additionally, we show the classification maps of each method in Fig. 5. The

figure shows classification maps of one shot and 100 shots by each of the methods previously
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discussed. In the case of generative fine-tuning, we show the results after 20 iterations with

the combination of generated and original data.

TABLE 4: Transfer Learning results with regular fine-tuning (FT), random noise and

generative fine-tuning (FT) for Keaton Beach and Saint (St) George Sound locations.

iter=iteration

Method Location 1 Shot 10 Shots 50 Shots 100 Shots

Regular fine-tuning
Keaton Beach 69.66% 94.00% 96.79% 98.35%

St George Sound 77.58% 87.39% 99.32% 99.37%

Random Noise
Keaton Beach 54.88% 94.52% 96.10% 97.22%

St George Sound 47.58% 89.36% 94.00% 92.96%

Generative FT (1-iter)
Keaton Beach 53.11% 89.43% 98.70% 98.85%

St George Sound 78.20% 95.13% 99.15% 99.42%

3.4.5 Changes in Feature Orientation

We investigated the feature orientation changes in the Feature-caps layer of the cap-

sule network while using each of the fine tuning methods. Figure 6 shows the average values

of the features in Feature-caps after each fine-tuning method. The plots in Figure 6 are

generated through the following steps:

1. For each class in the data set, collect all image patches and extract the feature matrix

computed by the Feature-caps layer in the capsule network, which contains 5 capsules

(where 5 is the number of classes), each of them with a size of 16 features.
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TABLE 5: Classification results with different number of iterations by the generative fine-

tuning method in 100 shots learning. iter=iteration

iter Keaton Beach Saint George Sound

Generated data only
Generated and

original data

Generated data only
Generated and

original data

5 87.15% 98.82% 86.56% 99.47%

10 85.69% 98.86% 93.34% 99.73%

15 91.88% 99.09% 78.00% 98.20%

20 93.00% 99.16% 89.57% 99.67%

2. Reshape each feature matrix into a 1-dimensional vector in which the first 16 numbers

are the features corresponding to the first class, the next 16 are the ones corresponding

to the second class and so on. This feature vector has a total size of 5 ∗ 16.

3. Average all the feature vectors belonging to each class and plot them in a 2D graph.

Since the probability of an entity belonging to a class is measured by the length of its

instantiation parameters (or features), the absolute value of the features belonging to

a class should be significantly larger than the rest of the features.

3.5 Discussion

For cross validation results in Table 2, SVM, CNN and the capsule network perform

better at Saint Joseph Bay location than at Keaton Beach and Saint George Sound. We
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(a) Orientations produced by the model trained at Saint Joseph Bay

(b) Orientations after fine-tuning the model trained at Saint Joseph Bay with 100 shots from Saint

George Sound

(c) Orientations after using Capsule Network as a Generative Model (for 20 iterations)

Fig. 6: Features orientation in Feature-caps at Saint George Sound.

select the Saint Joseph Bay as the source location in the experiment of transfer learning

and Keaton Beach and Saint George Sound as the target locations. The capsule network

outperforms SVM at all the three locations. The capsule network performs slightly better

than CNN for two locations whereas in other locations CNN was better. In Fig. 4, the sea

class is misclassified as sand in Keaton Beach and ST George Sound by SVM as compared

to the physics based approach.
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CNN and the capsule network have lower accuracies at Keaton Beach and St George

Sound in zero shot and one shot learning. The model trained at Saint Joseph Bay performed

poorly at the other two locations because of the variations of class orientation as shown in

Fig. 6. One shot transfer learning is not enough to represent the entire orientation changes

at different locations. However, with the increase of the number of samples/shots, the

classification accuracies were significantly improved (Table 3). In Table 4 and Fig. 5, we

have compared the generative fine-tuning approach with regular fine-tuning and random

noise approaches. Random noises may not be related to original data and its performances

were worse than the generative fine-tuning approach.

In Fig. 6, we have evaluated how the capsule’s features are changing in different

steps. In an ideal situation if one of the classes is used as input, the capsule representing

that class should have higher feature values. In Fig. 6a, we show feature orientations of

target location images (Saint George Sound) produced by the model trained with images

from the source location (Saint Joseph Bay). For the sea class’s capsule features in Fig 6a,

the first 16 features should be large because sea patches were used as input. However, the

second 16 features are larger because of the location variations between Saint Joseph Bay

and Saint George Sound as shown in Fig. 6a. The source model predicted Saint George

Sound’s sea samples as sand class (the second 16 features) due to location change. Likewise,

the source model predicted seagrass and land classes at Saint George Sound as sand and

inter-tide classes, respectively. The source model predicted sand class samples correctly as

they appears the same at both locations. The capsule feature’s orientations also explain the

poor zero shot results using capsule-network. After fine-tuning the network with generative
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fine-tuning approach for 20 iterations, we can see that capsule features are representing

correct classes (Fig. 6c).

We have achieved the best accuracy of 99.16% and 99.67% in Keaton Beach and

Saint George Sound locations after 20 iterations in generative fine-tuning. Comparing Table

5 with Table 3, the accuracy is either comparable (99.16% vs. 99.75%) or better (99.67% vs.

98.76%) at both locations in transfer learning by CNN. Using generated data only for the 1-

NN rule, the best accuracies we have achieved are 93.00% and 93.34% in Keaton Beach and

Saint George Sound, respectively. If we compare the end to end classification map in Fig.s 4

and 5, the generative fine-tuning approach has produced the best results for both locations.

In our companion paper [121], we studied seagrass quantification after identification.
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CHAPTER 4

SEMI-SUPERVISED DOMAIN ADAPTATION FOR

SEAGRASS DETECTION

4.1 Motivation

In this chapter, we propose a semi-supervised domain adaptation for seagrass detec-

tion. Our previous models degraded if directly applied to different locations for seagrass

detection. A deep learning-based seagrass classifier properly trained on a location usually

fails to classify if we feed a new scene to the model. Using a domain expert, it is possible

to get a few labeled samples and many unlabeled samples from a new location. Here, we

propose to use labeled and unlabeled samples from the target location to adapt the seagrass

detection model using a novel semi-supervised domain adaptation method.

Domain adaptation techniques can be applied if there are not enough labeled data

available to train a deep learning model from scratch in a new domain. In domain adapta-

tion, a model in the source domain is first trained using an available large training dataset.

A domain adaptation method is then applied to adapt the trained model to a new do-

main (target domain) without a few labeled samples from the target domain. Tzeng et.

al proposed an unsupervised domain adaptation method that used the adversarial loss to

match source and target domain distributions [101]. Motiian et. al proposed a supervised

approach for domain adaptation which used the Siamese architecture with a few labeled for

domain adaptation [110]. This model learned an embedding function for source and target
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data where the two domains were semantically aligned and different classes were maxi-

mally separated using a contrastive semantic alignment loss. In this chapter, we propose

a semi-supervised domain adaptation method that uses unlabeled samples from the target

domain with a GAN loss and few-labeled samples from the target domain with a contrastive

semantic alignment loss to detect seagrass in new locations.

4.2 Semi-Supervised Domain Adaptation

4.2.1 System Diagram

The diagram of the proposed domain adaptation method for seagrass detection is

shown in Fig. 7. There are enough labelled data in the source domain to train a deep CNN

model for seagrass detection while there are only a few labelled samples in the target domain

as shown in Fig. 7a. The trained CNN model contains multiple convolutional layers for

feature extraction and a fully connected layer for classification. These convolutional layers

essentially learn an embedding function, and the fully connected layer takes its outputs for

classification. Our proposed system uses two steps to adapt the embedding function trained

in the source domain to the target domain as shown in Fig. 7b. In the first step, the

proposed model uses unlabeled samples from both domains to modify the target embedding

function while keeping the source embedding fixed so that the outputs from both embedding

functions have a similar distribution. In the second step, the proposed model pairs labelled

samples from the source domain, and a few labelled samples from target domain were used to

align class specific distributions among both domains. Once the target embedding function

is adapted, a simple classifier can be trained using the few labelled samples from the target
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(a) Source dataset and target

dataset.

(b) Two-step domain adaptation.

(c) Testing.

Fig. 7: Diagram of the proposed domain adaptation model for seagrass detection. (a)

Datasets from both domains where colored samples are labelled while gray samples are

unlabelled (b) Unsupervised adversarial adaptation and supervised contrastive semantic

alignment between target and source domains (c) The adapted model used for seagrass

detection in target domain.

domain to perform seagrass detection on the remaining target domain (Fig. 7c).

4.2.2 Model Architecture
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(a) Deep CNN model supervised training in source domain

(b) Unsupervised adversarial domain adaptation to learn embedding function in target domain

(c) Supervised joint domain adaptation based on CCSA loss

(d) CCSA loss training and testing steps

Fig. 8: Proposed semi-supervised domain adaption procedure. (a) Deep CNN model super-

vised training in source domain (b) Unsupervised adversarial domain adaptation to learn

embedding function in target domain (c) Supervised joint domain adaptation based on

CCSA loss and (d) CCSA loss training and testing procedures.
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Fig. 8 shows the domain adaptation procedures of the proposed method. We first

train a deep CNN model in the source domain with labeled data (Fig. 8a), where the CNN

model learns an embedding function, Gs, called the source embedding function, and a simple

classifier, Cs, for seagrass detection. In the target domain (Fig. 8b), we first use unlabeled

data samples from both domains to adapt the target embedding function with a gener-

ative adversarial network (GAN) loss such that the discriminator cannot tell from which

domain an embedding comes. This step will align marginal data distributions p(Gs(x
s))

and p(Gt(x
t)) of the source and target domains. In Fig. 8c, we utilize a few labeled samples

from the target domain with a classification and a contrastive semantic alignment loss to

further adapt the target embedding function such that the class specific data distributions

p(Gs(x
s)|y) and p(Gt(x

t)|y) from the two domains are aligned after embedding. Fig. 8d

illustrates the training and testing steps for class specific alignment. We will detail each of

the steps in the following subsections.

4.2.3 Deep CNN Model Training in Source Domain

Let Ds = {Xs,Y s} and Dt = {X t,Y t} denote source and target domain datasets,

and we assume that there is a limited amount of labeled samples available in the target

domain. A source domain deep CNN model is trained with the following classification loss

(Fig. 8a),

Lc(fs) = E[l(fs(X
s), Y s)] (7)

where fs is a classifier to be trained, E denotes the expectation function and l denotes any

related loss functions.
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A classifier, f , can be modeled as two functions as f = G ◦ C, where G is the

embedding function from the input image x to the embedding space and C is the function

for predicting the class label from the embedding space. Thus, fs = Gs ◦Cs and ft = Gt ◦Ct

denote the deep CNN model in the source domain and the target domain, respectively.

4.2.4 Adversarial Discriminative Domain Adaptation

By following the idea in Tzeng et al. [101], we utilize the GAN loss to adapt the

embedding function Gs in the source domain to the target domain. It is assumed that we

have source image xs with label ys from source domain distribution ps(x, y), and image xt

from the target domain where we do not have any label information. This unsupervised

domain adaptation step tries to learn a target embedding function Gt based on Gs and

unlabeled data from both domains. Gt andD in Fig. 8b are trained by MinMax optimization

with the GAN loss LadvD(Xs, X t, Gs, Gt),

LadvD(Xs, X t, Gs, Gt) = Exs∼Xs [logD(Gs(x
s))]−

Ext∼Xt [log(1−D(Gt(x
t)))] (8)

where D is the discriminator used in the GAN model [98] and works as a classifier trained

by the cross-entropy loss. The source domain samples are labeled as ’1’ and target domain

samples are labeled as ’0’. The discriminator, D, determines whether a sample belongs

to the source domain or target domain. The target embedding function Gt modifies its

parameters using the following generator loss,

MinGtLadvG(Xs, X t, D) = −Ext∼Xt [logD(Gt(x
t))] (9)
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This is similar to the standard GAN loss where Gt modifies its weights to mimic source

domain sample embeddings to fool the discriminator, D. During training, we keep Gs fixed

while changing Gt.

4.2.5 Classification and Contrastive Semantic Alignment

If there is a distribution shift between source and target domains, the source deep

CNN model will not perform well in the target domain. We utilize a few labeled samples

in the target domain and some labeled samples in the source domain to jointly adapt Gs

and Gt using the classification loss and the contrastive semantic alignment (CCSA) loss

proposed by Motiian et at. [110] as shown in Fig. 8c).

4.2.5.1 Classification Loss

We define the classification loss as,

LC(G ◦ C) = E[l(f(X), Y )] (10)

This loss function is minimized in the source domain and target domain, respectively, with

the selected labeled samples from the corresponding domain. This step will separate samples

from different classes in both source and target domains, respectively.

4.2.5.2 Contrastive Semantic Alignment (CSA) Loss

To align class specific embedding between source and target domains, we use the

CSA loss to jointly adapt Gt and Gs. The CSA loss in the target domain contains two
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components and can be described as,

LCSA(Gt) = LSA(Gt) + LCS(Gt) (11)

where LSA(Gt) is the semantic alignment loss and LCS(Gt) is a class separation loss. LSA(Gt)

is computed as,

LSA(Gt) =
Nc∑
a=1

d(p(Gs(x
s
a)), p(Gt(x

t
a))) (12)

where Nc is the number of class labels, and xsa = Xs/{Y = a} and xta = X t/{Y = a} are

conditional random variables. d is a distance metric between the distribution of Xs
a and X t

a.

This semantic alignment loss tries to map source domain and target domain data samples

as closely as possible if they carry the same class label. However, there is no guarantee

that samples from different domains with different labels will be mapped as far as possible

in the embedding space. To overcome this challenge, the class separation loss LCS(Gt) is

computed as,

LCS(Gt) =
∑
a,b|a6=b

k(p(Gs(x
s
a)), p(Gt(x

t
b))) (13)

where k is a similarity matrix which adds a penalty when the distribution of xsa and xtb are

close to each other. This encourages samples with different labels from different domains to

be mapped as far as possible in the embedding space. Fig. 8d shows the working mechanism

of the CSA loss.

During training, the semantic alignment loss (orange arrows) keeps the same class

samples from different domains as close as possible. The class separation loss (red dashed

line) tries to embed different class samples from different domains as far as possible. The

classification loss (blue solid line) ensures high classification accuracy in the embedding

space. During testing, we use the trained target mapping function to put the unseen target
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samples into domain invariant space. The overall classification and contrastive semantic

alignment loss becomes,

LCCSA(Gt) = LC(Gt ◦ Ct) + LSA(Gt) + LCS(Gt) (14)

Equations (11) to (14) are used to optimize Gt. A similar set of equations are used

to optimize Gs such that both embedding functions are jointly adapted.

We paired each labeled sample in the target domain with randomly selected labeled

samples in the source domain to compute the loss in Equ. (14), where d(, ) in Equ. (12)

is Euclidean distance in the embedded space and k(, ) in Equ. (13) is a similarity measure

defined between samples.

4.2.6 Loss Function Computation

The semantic alignment loss and class separation loss are defined as distance or

similarity between distributions. It is not easy to estimate conditional distribution for each

class given just a few labelled samples in the target domain. Following the method described

in [110], we compute the semantic alignment loss as,

d(p(Gs(x
s
a)), p(Gt(x

t
a))) =

∑
i,j

d(Gs(x
s
i ), Gt(x

t
j))) (15)

where (xsi , x
t
j) are all paired labelled samples in the source and target domains. Each labelled

sample in the target domain is paired with many selected labelled samples of the same class

in the source domain such that ytj = ysi = a. It helps a single labeled target sample to be

paired with many source labelled samples and force target labelled samples to be mapped

as close as possible to the same class samples in the source domain. The class separation
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loss is calculated as,

k(p(Gs(x
s
a)), p(Gt(x

t
b))) =

∑
i,j

k(Gs(x
s
i ), Gt(x

t
j))) (16)

where a and b denote class labels and a 6= b. Each labelled sample in the target domain is

paired with many labelled samples from different classes in the source domain. The distance

measure, d(, ), is defined as Euclidean distance in the embedded space,

d(Gs(x
s
i ), Gt(x

t
j)) =

1

2

∥∥∥Gs(x
s
i )−Gt(x

t
j)
∥∥∥ (17)

The similarity measure, k(, ), is calculated as,

k(Gs(x
s
i ), Gt(x

t
j)) =

1

2
max(0,m−∥∥Gs(x

s
i )−Gt(x

t
i)
∥∥)2 (18)

Here we use the Frobenius norm, and m is the margin that specifies the separability in the

embedding space. The combination of LSA(G) and LCS(G) is also known as contrastive loss

as defined in [110]. Note that we use the CCSA loss to jointly optimize Gt and Gs.

4.3 Experimental Setup

4.3.1 Dataset

We validated the proposed model on three multispectral images captured by the

WorldView-2 satellite at three locations in the Florida coastal area: Saint Joseph’s Bay

(SJB), Keaton Beach (KB) and Saint George Sound (SGS). Each image has eight bands

(Coastal Blue, Blue, Green, Yellow, Red, Red Edge, NIR-1 and NIR-2) with spatial reso-

lution of 2 meters. An experienced domain expert labelled some regions for five classes in
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(a) (b) (c)

(d) (e) (f)

Fig. 9: World-View2 multispectral images collected in Florida at (a) SJB (b) KB and (c)

SGS. Labelled region colormap: seagrass→ green, sea→ blue, sand→ cyan, land→ yellow

and intertidal → magenta. Physics model [1] classification results are shown in (d) SJB (e)

KB and (f) SGS.

each image: seagrass, sea, sand, land, and inter tidal as shown as green, blue, cyan, yellow

and magenta in Fig. 9. Figs. 9 (d)-(f) show classification results by a physics model [1]. In

this study, we trained a deep CNN model at one location and utilize the proposed domain

adaptation model to generalize the model to other locations for seagrass detection.

4.3.2 Data Analysis
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We compared the spectral signatures of each class in the multispectral WorldView-

2 images taken at different locations. To better visualize the high-dimensional spectral

information, we utilized the t-distributed stochastic neighbor embedding (t-SNE) algorithm

[122] to compress high-dimensional data to 2 dimensions.

4.3.3 k-fold Cross-validation (CV) for Seagrass Detection

At each of the three locations, we performed cross-validation for seagrass detection in

the labeled regions. The experimental results gave us performance upper limits for domain

adaptation. In k-fold CV, we split data into k parts and kept one part for testing and the

remaining parts for training. We repeated this experiment k times such that each part was

tested once.

4.3.4 Domain Adaptation between Different Locations

In the domain adaptation experiments, each image was used as source image to train

a deep CNN model, and it was then adapted to the other two locations guided by a few

labeled samples from the new locations.

4.3.5 Models for Comparison

4.3.5.1 Source-Only

The source-only model used source domain samples to train a deep CNN model, and

the model was then directly applied to new locations for seagrass detection.
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4.3.5.2 ADDA

Adversarial discriminative domain adaptation (ADDA) [101] adapts the embedding

function in the source domain to the target domain based on the GAN loss (Section 4.2.4)

with all unlabeled samples in new locations, which was then combined with the classifier

trained in the source domain to detect seagrass at the new locations.

4.3.5.3 Source+Target

We trained a deep CNN model in the source domain and used a few labeled data

samples from the target domain to fine-tune the model. This is a baseline model for transfer

learning.

4.3.5.4 CCSA

This model used the contrastive semantic alignment loss and classification loss to

learn the embedding function and classification layers [110]. We used two separate em-

bedding functions that were jointly optimized for the source and target domains (Section

4.2.5).

4.3.5.5 Proposed Model

We first used the GAN loss to adapt the embedding function trained in the source

domain. Then the CCSA loss together with a few labeled samples from the target domain

were utilized to further adapt the model to new locations as detailed in Section 4.2.5.

4.4 Results
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Fig. 10: Atmospherically corrected spectral signature, means and standard deviations in

mutlispectral WorldView-2 images for different classes shown at (a) SJB (b) KB and (c)

SGS. X-axis represents different bands and Y-axis represents spectral intensity mean and

standard deviation. (d) t-SNE plotting of all three locations for different classes. Green,

blue, cyan, yellow and magenta are used to represent seagrass, sea, sand, land and intertidal

classes. For the t-SNE plotting, the bright shade, dark shade and shade between these two

are used to represent SJB, SGS and KB samples, respectively. For seagrass class, we used

three different green shades to represent three different locations, e.g.: green, dark green

and bright green. Similarly, three shades of yellow, blue, and cyan were used to represent

land, sea, and sand classes.
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4.4.1 Data Analysis

(a) (b)

(c) (d)

Fig. 11: Mutlispectral eight bands WorldView2 image intensity displayed using mean and

standard deviation for Saint Joseph Bay, Keaton Beach and Saint George Sound location

into separate classes, (a) sea, (b)sand, (c) seagrass, (d) land. X-axis represents different

bands and Y-axis represents spectral intensity values.

Fig. 10 shows atmospherically corrected means and standard deviations of the eight

WorldView-2 multispectral bands in the labelled regions at the three locations. Land had

the highest mean spectral magnitude as it is located above water. The intertidal class is

located between sand and land on spectral magnitude. These classes were followed by sand,
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seagrass and sea in spectral magnitude.

It is also observed that spectral signatures of the same class at different locations

have different shapes, indicating that there are distribution shifts among locations. In Fig.

10d, we show t-SNE representations for samples from all three locations. We use green,

blue, cyan, yellow and magenta to represent seagrass, sea, sand, land and intertidal classes.

We use three shades to represent three different locations: the most bright shade, most dark

shade and shade between these two to represent SJB, SGS and KB samples, respectively

(Fig.10d). Note that there are significant distribution shifts among different locations in

different classes.

4.4.2 Hyper-parameter Determination

Deep CNN models take a patch from the multispectral image to predict a class label

for the central pixel of the patch. A large patch may cause over-smoothing and requires

higher computation power whereas a too small patch may degrade the performance. After

some trial and error, we found that a 5x5x8 patch size produced the best results in the

three-fold CV experiment. Other parameters were determined in the same way and are

listed below.

4.4.2.1 Embedding functions Gs and Gt, in CNN models

Both contain two convolutional layers followed by a flatten layer. The first layer had

20 filters with a size of 2*2*8, and the second layer had 100 filters with a size of 4*4*20. All

layers used a ReLu activation function.
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4.4.2.2 Classifiers Cs and Ct, in CNN models

Both contained a fully connected layer with 84 hidden units, and the output layer

had 5 units with a SoftMax activation function for classification.

4.4.2.3 Source and target data pairing

400 labeled samples from each class in the source domain were randomly selected

to pair with the few labeled samples in the target domain to compute the loss function

described in Section 4.2.5.

4.4.2.4 Training parameter settings

We trained the source CNN models 50 epochs with a batch size of 128. We trained

the unsupervised adversarial domain adaptation step 300 epochs and the CCSA step 240

epochs in all experimentals.

4.4.2.5 Learning rate

We used 0.0002 as the learning rate in all experiments. No dropout layer was used.

4.4.3 Cross-validation (CV)

Table 6 shows 3-fold CV results at the three locations to find upper limits of do-

main adaption. We achieved 99.99% accuracy at SJB, 99.98% at KB and 99.71% at SGS,

respectively. The low variances indicate that the results are very reliable. DCNN performs
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similarly and is computationally more efficient as compared to the deep capsule network de-

scribed in Chapter 3. Therefore, we decide to use DCNN as the backbone for the proposed

semi-supervised approach.

TABLE 6: Three-fold cross validation results at SJB, KB and SGS.

Fold no. SJB (%) KB (%) SGS (%)

1st Fold 99.99 99.98 99.83

2nd Fold 99.99 99.98 99.66

3rd Fold 99.99 99.97 99.64

Mean 99.99±0.00 99.98±0.01 99.71±0.10

4.4.4 Domain Adaptation

We conducted six domain adaptation experiments for the three WorldView-2 satellite

images as KB → SJB, SJB → KB, SGS → SJB, SJB → SGS, SGS → KB and KB →

SGS. Comparison of our proposed model with previous models and results in the selected

regions are shown in Table 7 and Table 8. For each domain adaptation experiment, we

implemented 6 scenarios including 1 to 5-shot and 10-shot cases (n-shot stands for having

n labeled samples from each class). One ”shot” means one labeled sample per class in

the target domain is used to adapt the model. Each scenario was performed three times

with randomly selected labelled samples from the target domain and means, and standard

deviations are shown in Table 7 and Table 8. The proposed method achieved the best results

in 28 out of 36 scenarios in Table 7 and Table 8. In the 10-shot domain adaptation scenario,
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the proposed method approached model upper limits (3-fold CV performances). The second

best model is the Source+Target (f.t.) that achieved the best results in 4 out of 36 scenarios

in Table 7 and Table 8.

4.4.5 t-SNE Plotting

We demonstrate how the proposed model maps samples from different domains to

the embedding space by utilizing the t-SNE algorithm with the following procedure:

1. Compress the original samples from source and target domains (200 = 5*5*8 dimen-

sions) to 2 dimensions using the t-SNE algorithm (before adaptation),

2. Feed original samples from the source and target domains to the embedding functions,

Gs and Gt, respectively, to obtain new representations in the embedding space,

3. Compress the new representations to 2 dimensions using the t-SNE algorithm (after

adaptation),

4. Plot the compressed data samples on the 2D plane using different colors for different

classes. Use blue, cyan, green, yellow and magenta colors to represent sea, sand,

seagrass, land and intertidal class. Utilize two different shades of the same color to

denote target and source samples.

t-SNE results are shown in Fig. 12 for three domain adaptation scenarios: SJB →

KB, KB→ SGS and SGS → KB. We used 400 samples in each class, respectively, from

source and target domains. The proposed model achieved better embedding for sea and

seagrass classes as compared to the CCSA model in the scenario of SJB → KB as shown in
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Before Adaptation ADDA CCSA Proposed Model

(a) Saint Joseph Bay → Keaton Beach.

(b) Keaton Beach → Saint George Sound.

(c) Saint George Sound→ Keaton Beach .

Fig. 12: t-SNE plots in embedding space after 1-shot domain adaptation in target domain.

(a) SJB → KB (b) KB → SGS and (c) SGS → KB. Green, blue, cyan, yellow and magenta

are used to represent seagrass, sea, sand, land and intertidal, respectively. The most bright

shade and the most dark shade are used to represent the source and target domain samples,

respectively.

Figure 12a. In Fig. 12b and Fig. 12c, similar trends are observed for KB → SGS and SGS

→ KB cases. The CCSA model incorrectly mapped seagrass samples closer to sea samples

and sand samples in the embedding space. The unsupervised domain adaptation method
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performed poorly in all the cases as shown in Fig. 12.

4.4.6 Ablation Study

TABLE 9: Ablation study of the proposed method.

Shots Methods KB → SGS (%)

ADDA 78.69

1-shot CCSA 72.49±1.77

Proposed Model w/o Joint Optimization 84.77±6.61

Proposed Model 93.32±1.75

2-shot CCSA 84.84±3.65

Proposed Model w/o Joint Optimization 91.23±8.87

Proposed Model 91.55±6.98

3-shot CCSA 89.26±6.91

Proposed Model w/o Joint Optimization 91.41±7.89

Proposed Model 95.20±1.23

4-shot CCSA 91.19±7.72

Proposed Model w/o Joint Optimization 90.58 ±5.21

Proposed Model 92.38±6.83

5-shot CCSA 91.38±7.99

Proposed Model w/o Joint Optimization 82.17 ±16.75

Proposed Model 93.93±4.67
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Our proposed model contained two loss functions: semantic contrastive alignment

loss and GAN loss. If we remove the GAN loss from the proposed model and just use

semantic contrastive alignment loss for domain adaptation, the model would be equivalent

to the CCSA model. If we remove the contrastive semantic alignment loss from the proposed

model then it will be equivalent to the unsupervised ADDA model. Our proposed model also

used joint optimization for the source embedding function, Gs, and the target embedding

function, Gt, in the supervised domain adaption step. We investigated the three components

in the ablation study for KB→ SGS, and results are shown in Table 9. Note that ADDA does

not require labelled samples from the target domain, so only one scenario was performed.

The proposed model with all three components achieved the best results.

4.4.7 Classification Maps

The classification maps produced by our proposed model, CCSA approach, and base-

line model are shown in Fig. 13. The first row of Fig. 13 represents the base line classification

maps where we directly applied classification models trained in source domains to classify

target domain images without performing any adaptation. The baseline model performed

poorly as compared to the physics model as shown in Fig. 9. The second and fourth rows

of Fig. 13 represent classification maps produced by the CCSA model with 1-shot (Fig.

13b) and 5-shot (Fig. 13d), respectively. In this step, we used only contrastive semantic

alignment loss to perform the domain adaptation task. The third and the last rows in Fig.

13 represents classification results by the proposed model with 5-shot. We used both the

GAN loss and the contrastive semantic alignment loss for domain adaptation. The proposed

model with 5-shot produced good classification results as compared to the physics model as
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KB →

SJB

SGS →

SJB

SJB →

KB

SGS →

KB

SJB → SGS KB → SGS

(a) Source-Only Model

(b) CCSA with 1-shot

(c) PM with 1-shot

(d) CCSA with 5-shot

(e) PM with 5-shot

Fig. 13: End to end classification maps produced by domain adaptation based on (a) source

model (b) CCSA model with 1-shot (c) proposed model (PM) with 1-shot (d) CCSA model

with 5-shot and (e) proposed model (PM) with 5-shot.



64

shown in Fig. 9. Note that the classification maps shown here are for visualization purposes

only as the physics model has 10% error [1].

4.5 Discussion

Our proposed approach produced the best results for 28 out of 36 domain adaptation

experimental scenarios as shown in Table 7 and Table 8. For KB → SGS and SGS → KB,

our proposed method won all the scenarios. For SJB → KB, our model achieved 98.84%

accuracy using just one labelled sample from the target domain, and it is much better

than CCSA (71.26%), ADDA (35.76%) and Source+Target (f.t.) (84.78%). For KB →

SGS, our proposed model with one labelled sample from the target domain achieved an

accuracy of 93.32% as compared to CCSA (72.49%), ADDA (78.69%) and Source+Target

(f.t.) (63.39%). Similar trends can also be found in SGS → KB in all the 1-shot domain

adaptation cases except SJB → SGS, where all the methods achieved similar results. On

average, our proposed method won by a large margin.

As we utilize more labeled samples from the target domain, the proposed method

can still provide better domain adaptation, winning four or five out of the six experimental

scenarios with 2-shot up to 10-shot cases. On average, however, the winning margin de-

creased as more labeled samples were used for adaptation. For the 10-shot scenario, CCSA

and the proposed method achieved similar results, and the results were close to the 3-fold

CV results, indicating that adding more labeled samples from the target domain did not

provide more benefits.

For most of the scenarios, standard deviations of the proposed method were much
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smaller than those of other methods. Our method first utilized a large number of unla-

beled samples in both domains to perform domain adaptation. We then used a few labeled

samples from the target domain to semantically align class specific distribution in the em-

bedding space. The first step of the method aligned marginal distribution based upon a

large number of unlabeled data and worked as a regularizer for the subsequent semantic

alignment. Therefore, the proposed method can provide more stable performances.

Fig. 12 shows t-SNE plots for data samples or embeddings in source and target

domains before and after domain adaptation. Before adaptation, we can see that data

distributions in the source domain and target domain are not aligned. ADDA aligned

distributions between the source and target domains, but there is no guarantee that the

same class samples from different domains will be mapped closer in the embedding space.

With the guidance of labelled samples, CCSA and the proposed model can do a better

semantic alignment: the same class samples from different domains can be mapped closer,

and the proposed method can do a better job as compared to CCSA.

We only performed the KB → SGS case study for ablation as shown in Table 9.

All three components in the proposed model are important. With joint optimization, the

proposed model became much more stable and achieved much smaller standard deviation

in performances for all the scenarios. With more labeled samples from the target domain,

CCSA can perform much better than ADDA.

As compared to the physics model classification maps in Figs. 9d, 38c and 9f, the

classification maps produced by the proposed model with 5-shots were much better than

those from the direct source domain model as shown in Fig. 13a. Classification maps
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produced by CCSA with 5-shot (Fig. 13d) are good. However, those produced by CCSA

with 1-shot (Fig. 13b) are much worse. Note that the physics model results have 10%

error [1], and the classification maps are shown for visualization purposes only. For accurate

quantitative assessment of these models, please see results in Table 7 and Table 8 where the

accuracy was computed in the labeled regions.
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CHAPTER 5

SEAGRASS DETECTION USING UNSUPERVISED DOMAIN

ADAPTATION

5.1 Background

To monitor the seagrass growth/decline over time, multi-spectral time-series imagery

could be a cheap, effective, and automated approach. To train a monitoring model, we

typically need to label each temporal image and constantly update the monitoring model,

which is time-consuming, and potentially causes delay. In this chapter, we propose an

unsupervised domain adaptation technique that will effectively classify time-series images

without updating the monitoring model with labeled samples from new images. We first use

a human expert’s labeled samples from the first time-point image to train a deep learning

model. Then, we use the proposed unsupervised domain adaptation technique to classify

all future temporal images without new labeled samples. Our proposed model will adjust

the seagrass detection model autonomously using unlabeled samples from future images.

Previously, researchers used both the manual mapping approach [123] and machine

learning-based approach [124] for seagrass detection in time-series images. Long et al. uti-

lized Landsat imagery with the manual approach for seagrass mapping for 28 years between

1972 to 2000 in Australia [123]. They validated the performance using aerial imagery and in

situ measurement data. Knudby et al. also utilized a series of Landsat images around Bawe

and Chumbe islands in Zanzibar from 1984 to 2009 to detect seagrass [124]. They utilized a
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supervised classification approach for seagrass detection [124]. Gullstrom et al. utilized the

Landsat satellite images between 1986 to 2003 to detect seagrass in an area of Chwaka Bay,

Zanzibar (Tanzania) [125]. They used a dark pixel subtraction atmospheric correction algo-

rithm to remove the atmospheric effect in imagery. They utilized a supervised classification

algorithm maximum likelihood to produce the seagrass maps [125]. Dekker et. al utilized

the Landsat imagery between 1988 to 2002 in an Australian lake to detect seagrass using a

radiative transfer model [126]. They found that their classification maps are consistent with

past surveys and maps [126]. To the best of our knowledge, none of the previous approaches

utilized any deep learning approach to detect seagrass in temporal images.

We further evaluate and extend our unsupervised domain adaptation method to

address the issue of classifying seagrass in a new location without using any labeled samples

from the target image. Domain shift due to the change of the location will be larger compared

to the temporal shift because seagrass distribution changes from location to location due to

change in water quality, seagrass species, water depth, suspended sediments [19], and colored

dissolved organic matter (CDOM) [20]. In our previous experiments of the patch-based

deep learning algorithm, we trained a deep learning model with enough labeled samples

to effectively classify the same image. When we apply the model in a new location, the

well-trained deep learning model usually fails to detect seagrass. In Chapter 4, we utilized a

patch-based unsupervised domain adaptation (UDA) approach [101] to classify seagrass in

the target location. However, the patch-based UDA method was not able to detect seagrass

efficiently at new locations. In this chapter, we propose a pixel-based seagrass detection

model in the source domain. The pixel-based classifier learns the relationship between
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(a)

(b)

Fig. 14: Proposed Active Learning Approach (a) Pixel-wise mapping using active learning

approach (b) Pixel-wise segmentation model training for seagrass detection.

neighboring pixels compared to the patch-based method. Then, we use a GAN-based loss

to adapt the source segmentation model to the target domain.

5.2 Methods

5.2.1 Active Learning
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We propose an active learning approach to train a pixel-wise seagrass detection

method shown in Fig. 14. We first label a smaller percentage of a scene with the help

of a domain expert for seagrass detection shown in Fig. 9. To generate the pixel-wise labels

of the scene, we use the deep convolutional neural network (DCNN) classifier (Fig. 14a) in

the loop. Detailed steps are as follows:

• First, we train a DCNN classifier using the extracted patches from the domain expert’s

labeled regions of seagrass, sand, deep-sea, intertidal, and land classes. In Fig. 14a,

we use the green, cyan, blue, magenta, and yellow colors, respectively, to represent

the labeled ROIs. The DCNN model uses a specific patch-size for the Landsat-8

and Worldview-2 images to extract image patches from the domain expert’s labeled

regions.

• After training, we predict the pixel-wise class label for the whole image using the

trained DCNN model to generate a pixel-wise classification map shown in Fig. 14a,

which is visually evaluated by the domain expert.

• If the result is satisfactory, we set the classification map as the new ground-truth to

train an image segmentation model for seagrass detection as shown in Fig. 14b.

5.2.2 U-NET

Our proposed image segmentation network, U-Net, [15] for seagrass detection is

shown in Fig. 15. U-Net learns multiple levels of features of the input image during

encoding. During decoding, U-Net uses these learned features to up-sample the embed-

ded representation back into the original image dimension. The U-Net model preserves the
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Fig. 15: U-NET architecture for seagrass detection

structural integrity of the input image through skip connections and concatenations of en-

coder and decoder layers. The U-Net model uses a cross-entropy loss at the last layer for

the classification task, or linear loss at the last layer for regression.

Given the multi-spectral image dataset, D = {xis, yis}ni=1, where xs ∈ RH∗W∗b is the

image data and ys ∈ RH∗W is the corresponding pixel-based label, we train a segmentation

model as shown in Fig. 15. The segmentation model takes an image as input and outputs

its pixel-wise label. U-Net has two parts: Encoder, Es and Decoder, Fs. The last layer of

the decoder performs classification. The U-Net model can be defined as,

UNet = Es ∗ Fs (19)

The final layer of U-Net uses a soft-max cross-entropy loss to perform classification
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defined as,

Pk(x) =
exp(aK(x))∑K

k′=1(exp(ak′ (x)))
(20)

where k is the number of class label, ak(x) denotes activation output on the last layer of

the feature map for class label and Pk(x) is the approximated probability at pixel x. The

probability Pk(x) shows close to 1 for the correct class and close to 0 for all other classes.

We define the segmentation cross-entropy loss as follows,

ζseg(xs, ys) = −
∑
h,w

∑
c∈C

Y h,w,c
s log(P h,w,c

s ) (21)

where Ys and Ps are the ground-truth and the model predicted output at each pixel.

5.2.3 HR-Net

High-resolution network (HR-Net) is a convolutional neural network that maintains

high resolution information through the whole process. HR-Net achieved state-of-the-art

performance in a human pose recognition competition in 2019 [16]. Since then HR-Net [16]

has been utilized in many applications such as image classification, segmentation, and object

detection. HR-Net is a pixel-based fully convolutional network where it assigns each pixel

a class label. Previous pixel-based approaches including FCN [14] and U-Net [15] encode

an input image into lower dimension embedding through convolutional and pooling layers.

Then, the models use dilated convolution or the up-sampling layer to get back to the original

image dimension. These encoding and decoding processes lose spatial information in the

pooling layers. To tackle this problem, HR-Net keeps multi-scale resolution information

through several parallel convolution layers with different numbers of pooling operations.

The HR-Net diagram is shown in Fig. 16.
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Fig. 16: High-resolution network (HR-Net) architecture for seagrass detection

The HR-Net model starts with a high-resolution image as input and applies multiple

convolutional layers without reducing the image dimension as shown in Fig. 16. Then, the

HR-Net model adds a high to low-resolution path using a strided convolution. From the

second stage, each stage consists of layers from the previous stage in the same path and

layers from an added lower resolution path. The parallel paths share information through

a fusion mechanism. To perform a fusion, the lower resolution layers are up-sampled using

a bi-linear interpolation operation followed by a 1-by-1 convolution. At the last stage in

HR-Net, it fuses all paths by re-sampling with bi-linear interpolation followed by the 1-by-1

convolution. As a result, the HR-Net model can combine/concatenate all the four resolution

representations of the input image as shown in Fig. 16.

5.2.4 UDA in the soft-max layer
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(a) UDA for the U-Net model.

(b) UDA for the temporal images using HRNet model

Fig. 17: Unsupervised domain adaptation method in the soft-max layers for (a) U-Net (b)

HR-Net

We also propose to use an unsupervised domain adaptation approach in the soft-

max layer to adapt the segmentation network in the target domain shown in Fig. 17a. The

segmentation network G is first trained on the source domain images xs and its labels ys
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with a cross-entropy loss ζseg in equation 21. The segmentation soft-max output from the

model for the source image is Ps = G(xs) ∈ RH∗W∗C , where c is the number of classes. For

target images, we feed the samples to the segmentation model G and get the soft-max output

Pt = G(xt). The overall objective is to make the segmentation prediction performance in

both the source domain and target domain the same using the GAN loss. We feed the soft-

max output of the source image Ps into a discriminator network D using a cross-entropy

loss. We use the following loss to train the discriminator ζd(P ),

ζd(P ) = −
∑
h,w

(1− z)log(D(Pt)
h,w,0) + zlog(D(Ps)

h,w,1) (22)

where z = 1 if the sample is from the source domain and z = 0 if from the target domain.

To make the distribution of Pt closer to Ps, we use the following adversarial loss,

ζadv(xt) = −
∑
h,w

log(D(Pt)
h,w,1) (23)

Using this loss ζadv(xt), the segmentation network G modifies its parameters to fool

the discriminator D by maximizing the probability of target prediction Pt considered to be

the source prediction. We learn the mapping function for the target domain to match the

source domain features using a GAN loss, but we still want these layers to maintain the

segmentation properties. Thus, we jointly optimize both segmentation loss and adversarial

loss for the target domain. The overall loss for the UDA in the soft-max layer will be,

ζ = ζseg(xs, ys) + λadvζadv(xt) (24)

where λadv is the weight to balance the segmentation loss ζseg and adversarial loss ζadv.

5.3 Experiment Setup
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(a) 10Oct13 (b) 26Oct13 (c) 14Nov14 (d) 30NOV14 (e) 16Oct15

(f) 02Oct16 (g) 06Nov17 (h) 14Mar18 (i) 25Sep19 (j) 28Nov19

Fig. 18: Landsat-8 times-series images for Saint Joseph Bay displayed using red, green, and

blue bands: (a) 10Oct13 (b) 26Oct13 (c) 14Nov14 (d) 30Nov14 (e) 16Oct15 (f) 02Oct16 (g)

06Nov17 (h) 14Mar18 (i) 25Sep19 (j) 28Nov19. Where we use a date-month-year format

in the sub-caption and Mar, Sep, Oct, Nov to represent the March, September, October,

November months, respectively.

5.3.1 Temporal Landsat-8 Images

We develop an unsupervised domain adaptation-based seagrass detection method in

time-series Landsat-8 images with a spatial resolution of 30m. These images have coastal

aerosol, blue, green, red, near infrared (NIR), short-wave infrared (SWIR)-1 and short-wave

infrared (SWIR)-2 bands shown in Table 10, and were captured between 2013 and 2019
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TABLE 10: Band and wavelength information for Landsat-8 multi-spectral images.

Bands Wavelength(Micrometre)

Coastal aerosol 0.43-0.45

Blue 0.45-0.51

Green 0.53-0.59

Red 0.64-0.67

Near Infrared (NIR) 0.85-0.88

SWIR-1 1.57-1.65

SWIR-2 2.11-2.29

from Saint Joseph’s Bay (SJB) location shown in Fig. 18. These images were processed with

operational land imager (OLI) and collection-1 level-1 terrain and precision data (L1TP). To

avoid seasonal variability, images collected in the autumn between September and November

are considered. We utilize ten scenes between 2013 and 2019 from the Landsat-8 satellite.

For the years 2018 and 2019, we use scenes from other times of the year due to cloud

contamination in the autumn period. We use a date-month-year format and Mar, Sep,

Oct, and Nov short forms to represent the March, September, October, and November

months, respectively, in Fig. 18. These images were downloaded from the United States

Geological Survey (USGS) Earth Explorer website. We utilize a dark object subtraction

algorithm described in [127] to perform the atmospheric correction. The dark object pixels

are retrieved using the NIR band. An expert operator labeled five classes in these images:

seagrass, sand, deep-sea, intertidal and land shown in Fig. 19.
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Fig. 19: ROIs defined in the 10 October 2013 Landsat-8 image by domain experts. ROI

color-map: seagrass → green, sea → blue, sand → cyan, land → yellow and intertidal →

magenta.

5.4 Temporal Image Results

We develop a seagrass detection method in the time-series images with temporal

shift using the unsupervised domain adaptation (UDA) method described in Section 5.2.4.

We first train a high resolution network (HR-Net) using an active learning approach in the

source domain. Then, we utilize the unsupervised domain adaptation method for seagrass

detection in all future temporal-shift images of the same location.

5.4.1 Active learning and segmentation model for source domain

In the source domain, we use the regions selected by domain experts to train a

deep convolutional neural network (DCNN) for five classes. We use a 3 ∗ 3 ∗ 7 input patch

size to extract patches from the selected regions. The DCNN model has six layers: two
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(a) 10Oct13 (b) DCNN (c) HRNet (d) difference

Fig. 20: Source image classification results using high-resolution network (HR-Net): (a)

Source multispectral (MS) image 10 October 2013 (b) DCNN classification map (C) HR-

Net classification map (d) seagrass difference map between DCNN and HR-Net (color map:

green=agreement, red= false positive, white=false negative)

convolutional layers with a ReLU activation function, two dropout layers, one flatten layer

and a softmax layer. The first convolutional layer uses 32 convolutional kernels of a size of

1-by-1 followed by a dropout layer with 0.01 dropout probability. The second convolutional

layer uses 16 convolutional kernels of a size of 3-by-3 followed by a dropout layer with a

probability of 0.01. Then, we use a flatten layer to convert it to vector features. At the

last layer, we use a fully connected layer to perform classification for the five classes. We

train the DCNN model for 500 epochs. The trained DCNN model is used to classify all the

available unlabeled samples from the same image.

We use the trained DCNN to generate the pixel-wise classification map for the 10

October 2013 image using the active learning approach described in Section 5.2.1. Then,

we use the active learning generated pixel-wise map to train the segmentation model in the

source domain. We train a HR-Net model as the source segmentation model. We use an
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MS Image DCNN WA UDA Difference

(a) 26Oct13

(b) 14Nov14

(c) 30NOV14

Fig. 21: Unsupervised domain adaptation (UDA) results at SJB for target time-series

images : (a) 26 October 2013, (b) 14 November 2014, (c) 30 November 2014. Column

list: MS imagery, DCNN classification maps, without adaptation classification map (WA),

UDA classification map, seagrass difference map between DCNN and UDA (color map:

green=agreement, red= false positive, white=false negative) chronologically.
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MS Imagery DCNN WA UDA Difference

(a) 16Oct15

(b) 02Oct16

(c) 06Nov17

Fig. 22: UDA results for target images : (a) 16 October 2015, (b) 02 October 16, (c) 06

November 2017. Column list: MS imagery, DCNN classification maps, without adaptation

classification map (WA), UDA classification map, seagrass difference map between DCNN

and UDA (color map: green=agreement, red= false positive, white=false negative) chrono-

logically.
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MS Imagery DCNN WA UDA Difference

(a) 14Mar18

(b) 25Sep19

(c) 28Nov19

Fig. 23: UDA results for target images : (a) 14 March 2018, (b) 25 September 2019, (c) 28

November 2019. Column list: MS imagery, DCNN classification map, Without Adaptation

classification map (WA), UDA classification map, seagrass difference map between DCNN

and UDA (color map: green=matched, red= FP, white=FN) chronologically
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TABLE 11: HR-Net training results in 10 October 2013 Landsat-8 images. We compare

HR-Net with DCNN based on overall accuracy (OA), mean F-1 score for five classes and

recall, precision, F-1 score and seagrass area in pixels for seagrass class.

Location 10 October 2013

Overall Accuracy 99.89

Overall mean F-1score 0.9965

Precision seagrass 0.9981

Recall Seagrass 0.9972

F1-score seagrass 0.9976

Total seagrass area DCNN 39266

Total seagrass area HRNet 39301

input size of 256 by 256, batch size of 4, epochs of 110 and 1000 samples per class hyper-

parameters to train the HR-Net model in the source domain. The training performance

in the source model is shown in Fig. 20. We compare the HR-Net model with the DCNN

model as shown in Table 11. We evaluate overall accuracy (OA), F-1 score metrics across five

classes, and precision, recall, F-1 score, total seagrass area (TSP) for the seagrass regions in

Table 11. We use a baseline model for the target domain where we directly use the trained

source model to classify the target domain images (future temporal images) and label them

as model without adaptation (WA) in Fig. 21, Fig. 22 and Fig. 23.

5.4.2 UDA in Target Domains
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TABLE 12: UDA results in SJB’s 2013 to 2019 Landsat-8 times-series images. We compare

HR-Net with DCNN based on overall accuracy (OA), mean F-1 score for five classes and

recall, precision, F-1 score and seagrass area in pixels for seagrass class. TSP: total seagrass

pixels, OMF: Overall mean F-1 score, OA: Overall Accuracy, M: March, S: September, O:

October, and N: November.

Location 26O13 14N14 30N14 16O15 02O16 06N17 14M18 25S19 28N19

OA 96.87 92.65 96.77 94.58 88.68 94.31 84.88 91.76 93.45

OM F-1 0.9450 0.8915 0.9291 0.9057 0.8407 0.9111 0.8311 0.7829 0.8983

Precision 0.9771 0.9309 0.9721 0.8906 0.8923 0.9585 0.8585 0.9108 0.9511

Recall 0.9114 0.8344 0.8816 0.9550 0.8052 0.8325 0.8228 0.8004 0.7719

F-1 0.9431 0.8800 0.9246 0.9217 0.8465 0.8910 0.8403 0.8520 0.8522

TSP DCNN 33295 32021 29375 31839 40315 30645 23788 41561 26584

TSP UDA 35697 35725 32392 29692 44675 35282 24820 47298 32756

We separately apply the UDA method for seagrass detection in each target temporal

image. The proposed UDA approach for temporal images is shown in Fig. 35. We first

initialize the target model with the learned source model weights. Then, we perform the

proposed unsupervised domain adaptation method in the layer before the softmax layer

mentioned in Section 5.2.4. We use a GAN-based loss to modify the target model’s weight

so that distribution of source and distribution of target data matches in the layer before the

softmax layer. Then, we can utilize the source seagrass detection model in the target domain.

The domain discriminator classifies whether the samples are coming from the source domain
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or the target domain. The target model tries to fool the discriminator by changing its weights

using the feedback/loss given by the discriminator. The discriminator tries to improve its

performance so that it can correctly discriminate between the source and the target domain

samples. The segmentation model and discriminator compete with each other to improve

their performances. We also fine-tune the parameters of the target model’s weights with the

source image and corresponding label to maintain the classification capability. We repeat

these steps for each temporal image from 2013 to 2019 to detect seagrass as shown in Fig. 21,

Fig. 22 and Fig. 23.

In Fig. 21, Fig. 22 and Fig. 23, we represent the first column as multi-spectral (MS)

images in red, green and blue bands after Gaussian stretching, the second column as the

DCNN classification maps, the third column as the without adaptation (WA) classification

maps for the source trained model (HR-Net), the fourth column as the UDA classification

maps, and 5th column as the difference maps between DCNN and UDA. In the without

adaptation scenario, we directly apply the source HR-Net model to classify target time-

series imagery. In the fifth column, we use the green color to display points where DCNN

and UDA models both agree that a pixel is seagrass. The red color represents false positive

(FP) points where UDA predicts seagrass while DCNN disagrees. The white color represents

false negative (FN) where DCNN predicts seagrass while UDA disagrees. We utilize OA,

mean F-1 score metrics for five classes and recall, precision, F-1 score and seagrass area

pixels for the seagrass class to compare UDA with DCNN as shown in Table 12.

5.5 Discussion

We propose an active learning-based approach to train an image segmentation model
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in the source domain. The active learning-based approach uses a DCNN model in the loop to

label all pixels in a scene because it is impossible for humans to manually label all pixels. To

evaluate the seagrass mapping performance of the DCNN model, expert operators visually

assess the DCNN model performance. Once the expert operators are satisfied with the

results, we use the classified maps as ground truth to train the image segmentation model.

In Fig. 19, we show the initial selected regions used in the 10 October 13 image to train the

DCNN model versus the model predicted pixel-wise classification map as shown in Fig. 20b.

The DCNN model was able to produce accurate mapping along boundaries among different

classes which is impossible for a human operator. This proves the DCNN model can perform

better than an expert human operator. We also achieve a similar performance in the WV-2

imagery.

We train a HR-Net model using the 10 October 2013 Landsat-8 image of SJB and

corresponding pixel-wise ground truth as shown in Fig. 19 and Fig. 20b respectively. We

train the HR-Net model for 100 epochs and evaluate the training performance as shown in

Fig. 20c, Fig. 20d and Table 11. We achieve an overall accuracy of 99.89% and overall mean

F-1 score of 0.9965 across five classes as listed in Table 11 as compared against the DCNN

predicted map. We achieve a precision value of 0.9981 , recall value of 0.9972 , and F1-score

of 0.9976 in seagrass regions, and high agreement between HR-Net and DCNN results. We

also visualize the difference in detected seagrass regions by DCNN and by the HRNet model

using a color map where we use green to show agreement between DCNN and HR-Net, red

to represent regions indicated by HR-Net as seagrass but not by DCNN, white to represent

regions indicated as non-seagrass by HR-Net but seagrass by DCNN. The HR-Net model
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shows a good training performance by reproducing the map generated by the DCNN model.

We perform UDA in the temporal images as shown in Fig. 21, Fig. 22 and Fig. 23.

Our proposed model uses the learned weights from the source domain to perform adaptation

in each individual future temporal image. We compare the performances of the UDA method

in each temporal image with the DCNN model. For each individual temporal image, we

compare the performance between UDA and DCNN using overall accuracy (OA), overall

mean F-1 score (OM F-1), seagrass region’s precision, recall, F-1 score and number of pixels

detected as the seagrass area, and results are shown in Table 12. We also visualize the

difference in seagrass regions between the DCNN and the UDA models using the similar

color map described in the previous paragraph. We find that the UDA method performs

the best in 26 October 13 with high agreement with the DCNN model. The UDA model

achieves OA of 96.87%, OM F-1 0.9450, precision of 0.9771, recall of 0.9114, and F-1 score

of 0.9431 in the seagrass regions compared with DCNN in the 26 October 2013 image. The

UDA model achieves superb performance on the target 26 October 2013 image as shown in

Fig. 21a because the domain difference between the source and target is small. The model

trained in the source domain (10 October 2013) without adaptation (WA) also performs

comparably in the target domain 26 October 2013 image due to the small domain difference

between them. In contrast, when we directly apply the source model to the target image of

14 November 2014 in Fig. 21b, it fails to identify classes correctly as the domain difference

becomes larger, but the proposed UDA approach achieves superb performance on the 14

November 2014 image without using any labeled samples. We achieve similar performances

with all other temporal images using the proposed UDA model. If the without adaptation
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(WA) model fails, the proposed UDA model achieves superb performances as shown in

Fig. 21, Fig. 22, and Fig. 23. The performance metrics in Table 12 confirm the superb

seagrass detection performance using the proposed UDA model for the temporal images.

We achieve good overall accuracy and precision, recall, F-1 score for the seagrass class in

Table 12 if the domain difference is small. The performance degrades over time due to the

changes of properties in the image because of the seasonal variation shown in Table 12.

We achieve the worst performance for the 14 March 2018 SJB image in Table 12 where the

domain difference is largest. We also compared the proposed model using U-Net architecture

as a backbone. The U-Net architecture performs similarly as HR-Net on the source image

in the supervised learning, but it performs worse in the unsupervised domain adaptation

learning as compared to HR-Net architecture.

In summary, we achieve superb results in time-series Landsat-8 images at Saint

Joseph’s Bay location using the proposed unsupervised domain adaptation (UDA) approach

for seagrass detection. In the future, we plan to apply this approach to more locations and

satellite sensors, e.g. WV-2, Rapid Eye.
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CHAPTER 6

BATHYMETRY ESTIMATION USING MULTI-SPECTRAL

SATELLITE IMAGE

6.1 Motivation

Aquatic bathymetry information abets an important part in marine, oceanographical

research, and shipping vehicle routes. The word ”bathymetry” represents the depth informa-

tion in the underwater sea. Marine researchers use bathymetry metrics to identify/classify

marine objects in shallow water, such as seagrass, and algae [1]. Bathymetry information

is used in a wide range of applications ranging from fossil trace [128], benthic habitat map-

ping [129, 130], to foraging ecology of a southern elephant [131]. Bathymetry information

is also required for sustainable management [57], hydrological modeling [69], monitoring

sea-level rise due to climate change, flooding estimation, and sediment removal applica-

tions [132, 133]. For determining these objects, researchers need up-to-date bathymetry

information of the seafloor.

Bathymetry maps look like topographic maps, but they represent the depth of water

in ocean, river, or lakes [134]. Like a topographic map, it connects nearer depth points

together and can represent a different region of the ocean, e.g.: ocean trench, seamount,

or underwater mountain. In ancient times, bathymetry was measured using a heavy rope,

which was thrown from the ship’s surface. The rope’s length was recorded after reaching

the sea surface [134]. The old bathymetry measurement method acquires a single-point
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measurement at a time. Getting a clear idea of the underwater bathymetry, requires a

lot of manpower, time, and many assessments [134]. Inaccurate and obsolete bathymetry

estimation created a lot of danger to ship vehicles and crews in the past [134].

In recent years, sonar (sound navigation ranging) methods replaced the ancient rope

bathymetry estimation system. An echo sounder sends out a sound pulse from the ship’s

surface which is bounced back from the sea bottom to the ship. The time it takes to

travel to the sea bottom and back gives the estimate of bathymetry. Because the sonar

method estimates bathymetry from a moving ship and records from a different point, when

the sonar is bounced back, estimation is inaccurate. The estimated bathymetry may also

contain faulty information due to underwater animals such as whales, sharks, and water

quality. To remove these drawbacks, researchers used multi-beam echo sounders [135, 136]

for performance improvement. This approach sends hundreds of very narrow beams with

very high angular resolution. This gives bathymetry information from different points of

view. It also removes the error of moving vehicles [134, 137]. In summary, most of the

traditional approaches require in situ data measurement and result in a huge time delay to

estimate bathymetry with a large labor cost.

To solve the inefficiency and time-consuming issues associated with the previous

approaches, we propose an automated machine learning-based bathymetry estimation ap-

proach in this dissertation. The proposed bathymetry estimation model uses a multi-spectral

satellite image to accurately predict bathymetry information. Our proposed bathymetry

estimation model does not require visiting the site for data collection and can instantly

estimate bathymetry without any human resource and time delay. Multi-spectral satellite
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(a) Training

(b) Testing

Fig. 24: Proposed bathymetry estimation model using machine learning regressor: (a) Train-

ing phase (b) Testing phase. The collected sonar measurement tracks are shown in the SJB

images in cyan color.

images have been used for bathymetry estimation in recent studies [67,69].

6.2 Methods
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6.2.1 Proposed Bathymetry Estimation Model

Our proposed bathymetry estimation model is shown in Fig. 24. The bathymetry es-

timation model learns the non-linear relationship between multi-spectral image data Xtrain

with the corresponding sonar bathymetry value Ytrain using a machine learning-based regres-

sion model during the training phase as shown in Fig. 24a. We select gradient-boosting as

the regression model for bathymetry estimation after comparing with wide ranges of machine

learning models, e.g: linear regression, random forest, gradient-boosting, ada-boost, support

vector machine (SVM), deep convolutional neural network (DCNN), and deep transfer learn-

ing. We apply the trained bathymetry regression model to multi-spectral image data Xtest

in shallow regions to estimate the bathymetry information Ypredicted as shown in Fig. 24b.

6.2.2 Linear Regression (LR)

The linear regression algorithm finds a linear relationship between two variables. The

linear regression model tries to predict values of a dependent bathymetry variable Y based

on independent multi-spectral reflectance data X. For the dataset D = {xitrain, yitrain}Ni=1,

where i = 1, 2...N , we can define a linear regression model to fit the data as,

yipredicted = c+m ∗ xitrain (25)

This is a straight line equation where c is the intercept point and m is the slope. The

linear regression method tries to find the optimal values for m and c that best defines the

relationship between bathymetry and image data. It finds the best fit line by minimizing

the cost:

S =
1

2N

N∑
i=1

(yipredicted − yitrain)2 (26)
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We use the scikit-learn [138] library to implement this model.

6.2.3 Support Vector Machines (SVM)

Support vector machine (SVM) was first presented by Vapnik et al. [139], which tries

to find an optimal hyper-plane between two classes so that it can separate them with the

largest margin. The SVM model uses linear, polynomial, Gaussian, Gaussian radial basis

function (RBF) and sigmoid kernels to find the optimal hyper-plane. SVM is typically used

for classification, but it also has been extended to handle regression problems.

We use two implementations for SVM in our study for performance comparison. The

first one is a fast implementation named as Linear − SVM from Scikit-learn library [138],

and the second one is a popular SVM implementation known as Lib − SVM [140]. In

Lib − SVM , we use a radial basis function (RBF) kernel with C = 1.0 and ε = 0.2. This

model is relatively slower than the Linear−SVM model. We also use the Scikit-learn [138]

implementation for the Lib− SVM model.

6.2.4 Random Forest (RF)

Random forest is an ensemble machine learning method which consists of many

simple decision trees [141]. Decision trees separate data in feature space to identify different

classes. Random forest uses the large number of decision trees in an ensemble manner.

Each individual decision tree gives its prediction of the data, and random forest considers

the decision from all the decision trees using the majority voting scheme. If one of the

decision trees predicts an incorrect output then other decision trees can compensate for it.

As a result, this method gives better performance with a lower variance. We utilized 100
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trees with a maximum depth of 2 in the RF model for bathymetry estimation. We also

utilized the mean square error (MSE) as performance metric. Random forest calculates the

importance of features using the gini impurity/index. A large gini-index indicates that the

feature is important. We used the scikit-learn [138] library to implement this model.

6.2.5 Ada-boost

Ada-boost is an adaptive ensemble machine learning method. It improves the perfor-

mance iteratively by changing importance weights of training data points based on previous

steps, with incorrectly classified data points in previous steps receiving larger weights. Ada-

boost algorithm was introduced in 1997 by Freund et al. [142]. Ada-boost methods consist

of a set of weak learners, and each of them performs slightly better than random guessing.

The model combines these ’weak’ predictions to form a strong final prediction. Initially, the

combining weights are randomly initialized. After a few iterations, the model changes the

weights adaptively to improve overall performance. If the model performs poorly on any

training samples, it then gives larger weights to those samples in the next step. The final

model is the combination of all previous models which produces a superb overall perfor-

mance. We used 50 estimators, learning rate as 1.0, and linear loss hyper-parameters in the

Ada-boost model [138] .

Dataset D = {xi, yi}ni=1 initialized with a same weights wi = 1
N

. For iteration

t = 1, 2...T , we repeat the following steps:

1. Train the weak classifier with weights wi

2. Get weak hypothesis ht with error εt =
∑

i:ht 6=yiWt(xi)
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3. Choose αt = 1
2
log 1−εt

εt

4. Update: wt+1(i) = Wt(i)
Zt

= { e−αt
eαt

if instance i is correctly classified
if instance i is not correctly classified

, where Zt is a nor-

malized factor (chosen so that
∑m

i=1Dt+1 = 1,)

Output the final model: H(x) = sign(
∑T

t=1 αtht(x))

6.2.6 Gradient Boosting

We also used the gradient boosting (GB) method for bathymetry estimation which

uses an ensemble of prediction models. This method trains many models in a gradual and

sequential manner. It uses the loss function to evaluate the training performance of the

learner with current coefficients. It identifies the initial weaker model based on the loss.

The initial model may perform poorly on the training data. It uses an additive function in

each iteration to reduce the residual error and improves performance. The final model uses

an ensemble of previous models with a weight to predict the output. This model can be

used for both classification and regression tasks.

Given a training data set D = {xi, yi}ni=1, a differentiable loss function L(y, F (x))

and a number of iterations of M , the GB algorithm can be described as,

1. initialize the model with constant weight value,

Fo(x) = argminλ

n∑
i=1

L(yi, λ) (27)

2. From m=1 to M:

(a) Compute pseudo residual

rim = −[
δL(yi, F (xi)

δF (xi)
]F (x)=Fm−1(x)for, i = 1, .., n (28)
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(b) Fit a base learner hm(x) to pseudo residual. Then, train it using the training

dataset (xi, rim)ni=1,

(c) Compute multiplier λm by solving the following equations

λm = argminλ

n∑
i=1

L(yi, Fm−1(xi) + λhm(xi)) (29)

(d) Update the model

Fm(x) = Fm−1(x) + λmhm(x) (30)

3. Output, ensemble models FM(x)

We used the sklearn library to implement the GB model with a learning rate as

0.1, number of estimators as 100, Friedman mean-square error, and a validation fraction of

0.1 [143].

6.2.7 Deep Convolutional Neural Network

Deep convolutional neural network (DCNN) is a popular machine learning method

for computer vision tasks. DCNN-based models achieved state-of-the-art results in image

classification [78], image segmentation [15], and object detection. Previously, we used a

DCNN model for seagrass detection [21, 23]. We use a similar architecture for bathymetry

quantification as shown in Fig. 25. The proposed DCNN regression model contains six

layers: two convolutional layers, two dropout layers, one flatten layer, and one regression

layer as shown in Fig. 25. The first and second convolutional layers have 32 convolutional

kernels with a size of 1-by-1 and 16 convolutional kernels with a size of 1-by-1, respectively.

After each convolutional layer, we utilize the dropout technique with a probability of 0.01
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Fig. 25: Bathymetry model using deep convolutional neural network (DCNN).

to reduce over-fitting. We use a flatten layer to convert feature map into 16 hidden vector

features. In the last layer, we use a fully connected layer to predict the bathymetry values.

We use 1 ∗ 1 ∗ 8 image patches as inputs for DCNN to predict bathymetry information.

6.2.8 Deep Model with Transfer Learning

It is possible to collect a small number of sonar data from these locations whereas a

deep learning model requires many labeled data for training. Transfer learning algorithms

can be used when we do not have enough labeled data to train a deep learning model from

scratch. We use a model parameter sharing-based transfer learning approach for bathymetry

estimation. We first train a DCNN model for the seagrass detection as a source model. Then,

we utilized the learned weights from the source model to perform transfer learning in the

target model.
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(a) Source Model (b) Target Model

Fig. 26: Proposed transfer learning model for bathymetry estimation: (a) Source Model

(b)Target Model.

6.2.8.1 Source Model

Our source DCNN model contains two convolutional layers with 32 and 16 1 ∗ 1

convolutional kernels, respectively. Each convolutional layer is followed by a dropout layer

with 0.01 dropout probability. The flatten layer converts features into a 16 dimension

feature vector for classification as shown in Figure 26a. We utilize the same defined regions

described in [21,23] to train the DCNN model for seagrass detection. There are five classes

in the image: seagrass, deepsea, sand, land and intertidal. We use a 1 ∗ 1 ∗ 8 patch size to

extract training samples for these five classes. We train three separate source models for

three locations: SJB, KB and SGS.

6.2.8.2 Target Model

To perform transfer learning, we use the learned source model weights as the feature

extractor. First, we freeze all layers before the softmax layer in the source model as shown

in Figure 26a. Then, we extract features from the flatten layer and use the extracted features
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to train a linear regression model as described in Section 6.2.2. We repeat the same steps

by replacing linear regression with random forest, gradient-boosting methods described in

Section 6.2.4 and 6.2.6, respectively. We compare performances of these three methods

through a 3-fold cross-validation (CV) evaluation method. We also repeat the same transfer

learning procedure for the three methods (LR, RF, GB) using features extracted from the

first and the second convolutional layers in the source model.

6.2.9 Log-Linear algorithm

As a baseline model, we use the log-linear algorithm between the multi-spectral image

data and depth/bathymetry data [26, 48, 68, 144]. This algorithm assumes that there is a

log-linear relationship between multi-spectral reflectance data and the bathymetry values.

Geyman et. al used a multiple linear regression method to predict bathymetry value Y

using reflectance values X. We define the log-linear model as follows:

Y =
N∑
i=1

mi ∗ log(Xi) + ci (31)

The multi-spectral reflectance value X has N bands. After taking logarithm of

image reflectance, we estimate the linear relationship using the linear regression package of

the scikit-learn toolbox [138].

6.2.10 Log-Ratio algorithm

The log-linear model usually does not consider the properties of sea bottom type:

whether image reflectances are from grass or sand region. The log-ratio-based model can

better estimate bathymetry values irrespective of bottom reflectances [48,68]. We define Xi
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and Xj as reflectance values of band i and band j, respectively. We define a multiple linear

regression method with the bathymetry value Y using the following equation:

Y =
N∑
i=1

N∑
j=1

mij ∗
log(Xi)

log(Xj)
+ cij (32)

where i 6= j and N is the number of band of multi-spectral image X. For eight-band multi-

spectral images, we extracted 56 features in total. Then we use the scikit-learn [138] toolbox

based linear regression algorithm to evaluate the performance.

6.2.11 Evaluation Metrics

We utilized root mean square error (RMSE), mean absolute error (MAE), and co-

efficient of determination R2 metrics to evaluate the performances of different regression

approaches. The R2 metric can explain how much an independent variable depends on the

dependent variables. The perfect value for the R2 metrics is 1.0 while the RMSE and MAE

are non-negative and the smaller the better.

RMSE =

√∑N
i=1(Ytrue − Ypred)2

N
(33)

MAE =

∑N
i=1 |Ytrue − Ypred|

N
(34)

R2 = 1−
∑N

i=1(Ytrue − Ypred)2∑N
i=1(Ytrue − Y

−
pred)

2
(35)

where Ytrue is a labeled sonar measurement, Ypred is model predicted bathymetry value, Y −pred

is average predicted bathymetry value and N represents number of data sample.
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6.3 Experiment Setup

6.3.1 Multi-spectral WorldView-2 Images

We utilized three multi-spectral satellite images captured by the Worldview-2 optical

sensor in the coastal areas of Florida: Saint Joseph Bay (SJB), Keaton Beach (KB), and

Saint George Sound (SGS). These images have eight bands: coastal-blue, blue, green, yellow,

red, red-edge, near infrared (NIR)-1, and NIR-2 bands with a spatial resolution of 2m. The

wavelengths of Worldview-2 satellite sensor are between 400nm to 1040nm. We performed

atmospheric correction for these three images using in-situ data collected from 22 stations

as mentioned in Section 3.3.1.

6.3.2 Sonar Bathymetry Measurement

We utilized in-situ multi-beam sonar bathymetry data and their corresponding multi-

spectral images to train the bathymetry estimation models. We collected 1, 635 sonar

bathymetry measurements from Saint Joseph Bay as shown in Fig. 24a and trained and

evaluated these machine learning models using the collected measurements through 3-fold

CV. Similarly, we collected 13, 096 and 9, 189 sonar bathymetry measurements from Keaton

Beach and Saint George Sound locations, respectively. We applied 2.2m and 0.37m tidal

correction to the measurements from Keaton Beach and Saint George Sound, respectively, to

match the tidal hide of the multi-spectral images. These models were trained and validated

similarly as for Saint Joseph Bay.

6.4 Results
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6.4.1 Patch size determination

To find a suitable patch size for bathymetry estimation, we compared cross validation

(CV) results at Saint Joseph Bay (SJB) with different numbers of patch size of 1∗1∗8, 3∗3∗8

and 5 ∗ 5 ∗ 8, and results are listed in Table 13. If we increase the patch size from 1 ∗ 1 ∗ 8

to 3 ∗ 3 ∗ 8 and 5 ∗ 5 ∗ 8, the performance does not improve by a large margin. Therefore,

we select 1 ∗ 1 ∗ 8 patch size to design bathymetry regressor models.

TABLE 13: Performance Comparison for different patch sizes at Saint Joseph Bay using

RF, ada-boost, GB and linear SVM based on MAE.

patch size RF Ada-boost GB Linear svm

1x1x8 0.4171 0.3771 0.2636 0.6970

3x3x8 0.3911 0.3618 0.2534 0.6940

5x5x8 0.3928 0.3634 0.2501 0.6838

6.4.2 Cross Validation (CV) Results

To identify the best regression model for bathymetry estimation, the 3-fold CV results

of MAE, RMSE, and R2 are listed in Table 14. We used the following procedure to perform

the 3-fold CV:

• Extract sonar bathymetry data and the corresponding multi-spectral image data. La-

bel image information as independent variable X and sonar bathymetry data as de-

pendent variable Y .

• Divide image data X and Y into 3 parts and perform 3-fold CV.
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• Compute RMSE, MAE and R2 for LR, linear-SVM, lib-SVM, RF, ada-boost, and

DCNN.

• Repeat the same procedure for KB and SGS locations.

TABLE 14: Three-fold CV results at SJB, KB, and SGS by GB, RF, ada-boost, Lib-SVM,

linear SVM, LR and DCNN models.

Location Metric GB RF Adaboost LibSVM Linear SVM LR DCNN

SJB MAE 0.26 0.42 0.37 0.45 0.69 0.65 1.02

SJB RMSE 0.41 0.60 0.50 0.92 1.35 1.03 1.67

SJB R2 0.90 0.79 0.85 0.62 0.02 0.40 0.00

KB MAE 0.22 0.32 0.30 0.25 0.54 0.32 0.27

KB RMSE 0.34 0.45 0.41 0.38 0.72 0.44 0.41

KB R2 0.76 0.58 0.67 0.69 0.45 0.59 0.66

SGS MAE 0.29 0.54 0.51 0.39 0.71 0.59 0.45

SGS RMSE 0.43 0.68 0.61 0.55 0.94 0.78 0.69

SGS R2 0.79 0.48 0.65 0.66 0.10 0.31 0.53

The 3-fold CV results at SJB, KB and SGS locations by GB, RF, ada-boost, Lib-

SVM, linear-SVM, LR, and DCNN are listed in Table 14. The GB method performs best

as compared with other methods. We evaluated performances of log-linear based-method

with baseline LR and other approaches including GB, adboost, lib-SVM, linear-SVM, RF

and DCNN and results are listed in Table 15. We repeated the same procedure using the

log-ratio based method, and results are listed in Table 16.
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TABLE 15: Log-linear model CV results at SJB, KB, and SGS by GB, RF, ada-boost,

Lib-SVM , linear-SVM, LR (baseline) and DCNN.

Location Metric GB RF Adaboost LibSVM Linear SVM LR DCNN

SJB MAE 0.27 0.43 0.37 0.44 0.67 0.64 1.06

SJB RMSE 0.41 0.62 0.50 0.89 1.32 0.99 1.68

SJB R2 0.90 0.79 0.87 0.66 0.25 0.44 0.00

KB MAE 0.23 0.33 0.30 0.26 0.48 0.32 0.56

KB RMSE 0.34 0.45 0.41 0.39 0.65 0.44 0.76

KB R2 0.76 0.59 0.67 0.71 0.59 0.61 0.01

SGS MAE 0.29 0.53 0.51 0.39 0.64 0.57 0.63

SGS RMSE 0.43 0.68 0.62 0.55 0.86 0.75 0.90

SGS R2 0.79 0.48 0.64 0.67 0.24 0.37 0.35

We also use a scatter plot to compare performances by different methods visually

as shown in Fig. 27. The scatter plot of the gradient-boosting regression method at KB

and SGS locations is shown in Fig. 28. To avoid dense scatter-plotting, we use an average

value-based scatter plotting as shown in Fig. 29. We divide all available sonar bathymetry

data into bins with a range of 0.01m. Then, we group all the sonar bathymetry and model

predicted bathymetry belonging to a particular bin and calculate the average values for the

grouped sonar bathymetry and model predicted bathymetry. We repeat this procedure to

estimate the average sonar bathymetry and model predicted bathymetry values for all bins.

We show scatter plotting of the average values of sonar and model predicted bathymetry at
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TABLE 16: Log-Ratio model (56 features) CV results at SJB, KB, and SGS by GB, RF,

ada-boost, Lib-SVM, linear-SVM, LR (baseline) and DCNN.

Location Metric GB RF Adaboost LibSVM Linear SVM LR DCNN

SJB MAE 0.25 0.40 0.32 0.44 0.59 0.40 1.09

SJB RMSE 0.38 0.55 0.45 0.90 1.24 0.62 1.70

SJB R2 0.92 0.82 0.88 0.64 0.26 0.77 0.00

KB MAE 0.22 0.30 0.30 0.26 0.34 0.26 0.47

KB RMSE 0.34 0.42 0.40 0.39 0.50 0.59 0.67

KB R2 0.77 0.64 0.69 0.71 0.59 0.45 0.22

SGS MAE 0.28 0.45 0.51 0.39 0.58 0.40 0.69

SGS RMSE 0.41 0.60 0.61 0.56 0.83 0.59 0.99

SGS R2 0.81 0.59 0.69 0.66 0.25 0.62 0.24

the three locations as shown in Fig. 29.

6.4.3 Transfer Learning Results

In transfer learning, we extract features in the first convolution layer, the second

convolution layer, and flatten layer of source model, and use GB, RF and LR regression

models with the extracted features to predict bathymetry information. The 3-fold CV

results are shown in Table 17.

6.4.4 Regression Performance
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TABLE 17: CV results of Transfer learning (TL) at SJB, KB, and SGS by GB, RF and LR.

Loc: Location, C1: the 1st convolution layer, C2: the 2nd convolution layer, f: flatten

Loc Metric GB-f GB-C2 GB-C1 RF-f RF-C2 RF-C1 LR-f LR-C2 LR-C1

SJB MAE 0.27 0.26 0.25 0.39 0.40 0.39 0.47 0.47 0.44

SJB RMSE 0.46 0.43 0.40 0.57 0.59 0.54 0.75 0.77 0.68

SJB R2 0.87 0.88 0.90 0.81 0.79 0.83 0.67 0.66 0.72

KB MAE 0.26 0.26 0.25 0.31 0.30 0.31 0.31 0.31 0.32

KB RMSE 0.38 0.38 0.37 0.42 0.42 0.42 0.44 0.42 0.43

KB R2 0.69 0.69 0.71 0.62 0.62 0.62 0.59 0.62 0.61

SGS MAE 0.32 0.32 0.29 0.52 0.53 0.47 0.45 0.45 0.42

SGS RMSE 0.45 0.45 0.42 0.69 0.69 0.61 0.59 0.60 0.56

SGS R2 0.76 0.76 0.79 0.46 0.45 0.56 0.59 0.59 0.62

After selecting the regression model based on 3-fold CV performance, we estimate

bathymetry on three locations using the following procedure:

• Train the selected regression model using all available sonar bathymetry data and

corresponding multi-spectral image data at SJB.

• Apply the trained model to predict bathymetry at SJB. Compare the predicted bathymetry

to historical National Oceanic and Atmospheric Administration (NOAA) bathymetry

values.

• Repeat the same procedure at KB and SGS.
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(a) Gradient Boosting (b) AdaBoost (c) Random forest

(d) LIB SVM (e) Linear regression (f) DCNN

Fig. 27: Scatter plotting of 3-fold CV results at Saint Joseph Bay location :(a) Gradient-

Boosting (b) AdaBoost (c) Random Forest (d) Lib-SVM (e) Linear Regression and (f)

DCNN. X-axis represents sonar bathymetry depth and Y-axis represents machine learning

model predicted bathymetry.

The predicted bathymetry maps for SJB, KB, and SGS are shown in Fig. 30, Fig. 31,

and Fig. 32, respectively. We use the Matlab color-map ’jet’ to show the model predicted

bathymetry values and NOAA bathymetry value clipped between 0 to 5. We use the blue

to represent 0 bathymetry or lower and red to represent 5 bathymetry value or higher. We
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(a) Keaton Beach (b) Saint George Sound

Fig. 28: Scatter plotting of 3-fold CV results by Gradient Boosting at: (a) Keaton Beach

and (b) Saint George Sound. X-axis represents the sonar bathymetry depth and Y-axis

represents the machine learning model predicted bathymetry.

follow the same procedure for KB and SGS locations, and results are shown in Fig. 31 and

Fig. 32, respectively.

To evaluate the bathymetry estimation performance visually, we show the difference

between the model-predicted bathymetry and NOAA bathymetry using the ’jet’ color-map

with values between −1 to 1. Differences of −1 or lower are represented by the blue whereas

differences of 1 or higher are represented by the red. We plot the histogram of difference

values in Fig. 30d. We separate the bathymetry prediction performance in the seagrass

region at SJB in Fig. 30e and corresponding histogram of difference values in Fig. 30f.

The satellite imagery usually fails to get the correct bottom reflectance in the areas where

seagrasses grow. Therefore, we add a 0.3m correction value to the seagrass region at this

location. The histogram and difference values at KB and SGS are shown in Fig. 31e, f and

Fig. 32d, e. The RMSE values between NOAA and model predicted bathymetry are shown



109

(a) SJB Average Values (b) KB Average Values (c) SGS Average Values

Fig. 29: Scatter plotting of 3-fold CV results by Gradient Boosting regression at (a) SJB

(b) KB and (c) SGS. X-axis represents the sonar bathymetry depth and Y-axis represents

the machine learning model predicted bathymetry.

in Table 18 for the three locations.

6.5 Discussion

To find the best method for bathymetry estimation, we compare the 3-fold CV perfor-

mances of different regression methods as shown in Table 14. We find that the GB method

achieved the best performance at all three locations. Linear SVM and DCNN performed

worst relative to all other methods at these locations. At Saint Joseph Bay, GB achieved

the best RMSE, MAE and R2 with values of 0.26, 0.40 and 0.90, respectively. Similar

performances can be observed at both KB and SGS locations. The DCNN method failed

to estimate bathymetry due to lack of training samples for the SJB location. Typically,

the deep learning model requires large datasets for training. Scatter plots of bathymetry
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(a) (b) (c)

(d) (e) (f)

Fig. 30: Bathymetry estimation at SJB: (a) NOAA bathymetry, (b) Model predicted

bathymetry, (c) Difference values between model predicted bathymetry and NOAA

bathymetry, (d) Histogram of the difference values between model predicted bathymetry

and NOAA bathymetry, (e) Difference values between the model predicted bathymetry and

NOAA bathymetry in the seagrass regions, and (f) Histogram of the difference values be-

tween model predicted bathymetry and NOAA bathymetry in the seagrass regions
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(a) (b) (c)

(d) (e) (f)

Fig. 31: Bathymetry estimation results at Keaton Beach (a) NOAA bathymetry, (b) Model

predicted bathymetry, (c) difference between predicted bathymetry and NOAA bathymetry,

(d) Histogram difference between predicted bathymetry and NOAA bathymetry, (e) dif-

ference between predicted bathymetry with seagrass correction and NOAA bathymetry,

(f) histogram of difference between predicted bathymetry (seagrass corrected) and NOAA

bathymetry
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TABLE 18: RMSE between NOAA bathymetry and model prediction at SJB, KB, and SGS

by GB.

Location
RMSE between NOAA and model predicted bathymetry

Without correction With Seagrass correction

Saint Joseph Bay (SJB) 0.6205 0.6566

Keaton Beach (KB) 0.7107 0.5965

Saint George Sound (SGS) 0.8745 0.9045

estimation at the SJB location by different methods are shown in Fig. 27, which also proved

that GB is the best method. Similar performance is found at KB and SGS locations as

shown in Fig. 28. Therefore, we conclude that the GB method is the best approach for

bathymetry estimation at the three locations under study, because The GB usually per-

forms superbly with minimal feature selection effort and can scale the performance relative

to other methods.

We compared baseline log-linear and log-ratio methods with the original multi-

spectral (MS) reflectance based approach, and results are listed in Tables 14, 15 and 16.

The original MS reflectance algorithm assumes a linear relationship between MS bands and

bathymetry values whereas the other two methods assume log/log-ratio relationship. The

performances by the log-ratio (MAE 0.40, RMSE 0.62, R2 0.77) based linear regression

method improved by a large margin as compared to log-linear (MAE 0.64, RMSE 0.99,

R2 0.44) and the original method (MAE 0.65, RMSE 1.03, R2 0.40) at the SJB location.

Similar performance improvements at KB and SGS locations are listed in Tables 14, 15 and
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16. Larger performance improvements are observed by the Adaboost, linear-SVM methods

whereas RF and lib-SVM have minimal performance improvements, and the performance

by DCNN decreased for both log-linear and log-ratio based approaches. GB performed sim-

ilarly with original reflectance, log-linear and log-ratio based approaches at SJB, KB and

SGS locations, proving that GB is a robust model and requires minimal feature engineering.

Both log-linear and log-ratio methods use a logarithm value of the MS reflectance whereas

our GB-based proposed approach uses the original MS reflectance value and achieves superb

performance.

Performances by the deep transfer learning method are shown in Table 17. The first

convolution layer’s features combined with the GB regression model is the best method.

Because there might be domain shift between the source and target tasks that can be

reflected by higher layer features, the initial layers learned low-level features more related to

the target domain. The TL-based bathymetry estimation model achieved similar or slightly

better results than the original multi-spectral based approach as shown in Table 14; however,

it requires more computation resource, and the significance of transfer learning is trivial.

Since the GB method is the best model, we apply it to SJB, KB and SGS lo-

cations, and results are shown in Fig.s 30, 31, and 32 respectively. To assess the pre-

dicted bathymetry, we use the National Oceanic and Atmospheric Administration (NOAA)

bathymetry as the reference values. It is worth noting that the NOAA bathymetry can not

be considered as a ground truth since it is not updated regularly, and the sea depth has

changed over the years. The GB achieved the smallest error in seagrass areas but large

errors appeared in deep sand areas in Fig. 30 because NOAA bathymetry may contain more
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incorrect measurements in those areas. Also, the sonar measurements are collected mostly

from the shallow coastal areas. As a result, the model fails to estimate the deeper regions. In

addition, the spectral attenuation is larger in the deep sea, and spectral reflectance may not

correctly represent the actual depth. If we compare the histogram of the difference values

between NOAA data and the model predicted bathymetry, most of the differences are close

to 0, proving that the model estimated bathymetry is highly correlated with NOAA data

for the SJB location. As an additional experiment, we add 0.3m correction to the seagrass

region identified by a trained DCNN model [21], and it does not improve the bathymetry

measurement results at the SJB location.

We repeat the same experiment at the KB location, and results are shown in Fig. 31.

The difference values (between NOAA data and model-predicted bathymetry) and histogram

of the difference values are shown in Fig. 31c and Fig. 31d, respectively. Similarly, we apply

a 0.3m bathymetry correction to image pixels identified as the seagrass region by the trained

DCNN classifier [21]. After the correction, RMSE is reduced and the difference value and its

histogram are shown in Fig. 31e and Fig. 31f, respectively. The model predicted bathymetry

at the SGS location shows a similar trend as that at the SJB location as shown in Fig. 32.

We show RMSE between NOAA bathymetry and model-predicted bathymetry in

Table 18. We add a correction of 0.3m to the predicted bathymetry depth in the seagrass

areas to correct sea bottom reflectance error. Due to the correction, the RMSE error at

the KB location decreases. However, models perform better at SJB and SGS without the

correction. We obtain the best RMSE values of 0.6205 and 0.8745 without the seagrass

correction at SJB and KB, respectively, as listed in Table 18. We achieve the best RMSE
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of 0.5965 at KB with the seagrass area correction as listed in Table 18.

In summary, the proposed GB-based bathymetry estimation model performs su-

perbly at the three locations in Florida. The estimated bathymetry aligns with the NOAA

bathymetry in the shallow seagrass regions relative to the sand regions. In the future, we

plan to apply this model to more locations to further validate the proposed approach.
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(a) (b)

(c) (d)

(e)

Fig. 32: Bathymetry estimation results at Saint George Sound, (a) NOAA bathymetry,

(b) Model predicted bathymetry, (c) Difference between Model predicted bathymetry

and NOAA bathymetry, (d) Difference between the model Predicted bathymetry (sea-

grass corrected) and NOAA bathymetry, (e) Histogram difference between model predicted

bathymetry and NOAA bathymetry after correction.
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CHAPTER 7

CONCLUSION

Automatic seagrass detection systems in multispectral images are important tools

for seagrass monitoring. This dissertation discusses different aspects of deep learning-based

seagrass systems using multi-spectral satellite images. First, I develop a deep learning-

based supervised approach using adequate labeled training data. Then, I develop a set of

deep learning algorithms to handle the domain shift due to location or temporal change

in different settings including few-shot, semi-supervised and unsupervised learnings. I also

develop a bathymetry estimation model that will contribute towards the accurate seagrass

monitoring system. In this section, I summarize and conclude each chapter based on the

results and also develop future work strategies.

Capsule network for seagrass detection: In Chapter 3, I develop a deep capsule

network for seagrass detection. To the best of our knowledge, this study represents the first

work of designing a capsule network for seagrass detection. The proposed capsule network

achieved better classification accuracy than the baseline models (SVM) and comparable

results with the deep convolutional neural network (DCNN) in 3 -fold CV. Transfer learning

proved to be a good technique to address the problem of model adaptation. In addition,

the developed generative model is able to increase the classifier performance by iteratively

generating new data from the capsule’s features. It obtained accuracies of 99.16% and

99.67% at Keaton Beach and Saint George Sound, respectively. When I only used the

generated data, I achieved accuracies of 93.00% and 93.34% at the two new locations,
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respectively, proving the similarity between the original samples and generated samples.

This dissertation also demonstrated the effectiveness of my developed method through a set

of 2D plots that are able to display the capsule features. Since magnitudes of the capsule

features determine probabilities of classes, the plots are able to visually assess performance

of a trained capsule network in a significantly simple manner. To the best of my knowledge,

this study is the first to offer this visualization tool for the evaluation of a capsule network’s

performance.

Semi-supervised learning for seagrass detection: Labelling atmospherically corrected

multispectral images is labor intensive and time consuming. In Chapter 4, I developed a

semi-supervised domain adaptation method for deep CNN models for seagrass detection.

The proposed model first used unlabelled samples in both domains to adapt the source

domain model to the target domain based on the GAN loss. Then it utilized contrastive

semantic loss with a few labelled samples from the target domain to further adapt the

model. In addition, the source model and target model were jointly optimized in the second

step. The proposed model was evaluated in three atmospherically corrected WorldView-

2 multispectral images taken in Florida and achieved the best results among 28 out of

36 experimental scenarios. The semi-supervised domain adaptation approach utilized one-

tenth labeled samples to achieve the same performance as the transfer learning approach

mentioned in the previous paragraph. Future work will evaluate the proposed model across

broader regional areas such as the southeastern United States. In future, I plan to further

improve the performance to detect seagrass across location using the unsupervised domain

adaptation algorithm.
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Unsupervised seagrass detection in time-series images: Time-series multi-spectral

images are considered an effective data modality for monitoring seagrass over the years which

typically requires data labeling by human experts. In Chapter 5, I propose an unsupervised

domain adaptation approach (UDA) to remove this constraint. In the source domain, I

use a pixel-wise image segmentation method to detect seagrass pixels so that it learns

the relationship among neighboring pixels. The proposed unsupervised domain adaptation

algorithm achieved superb results in the Landsat-8 multi-spectral time-series images. I plan

to further improve the model to tackle location-shift.

Bathymetry estimation: Bathymetry plays an important role in detecting marine

species in the underwater environment. However, bathymetry measurements are obsolete or

absent in many regions. In Chapter 6, I propose a gradient boosting model for bathymetry

estimation from multi-spectral images. The proposed model automatically learns the non-

linear relationship between sonar measurement and its corresponding multi-spectral satellite

image information. The gradient boosting model performs best compared with other com-

peting machine learning model and is able to effectively quantify bathymetry information

with RMSE of 0.6205, 0.5965 and 0.8745 against the NOAA bathymetry at Saint Joseph’s

bay, Keaton beach and Saint George Sound locations, respectively.

Although the developed deep learning algorithms are specifically designed for seagrass

detection, they can easily be applied to other domains. We usually need several thousand

to millions of labeled samples from a domain to train a deep learning model. In reality,

it is not always possible to label such a large amount of data for every new domain. My

developed seagrass detection model re-uses a well trained deep learning model from one
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domain to detect seagrass in the target domain. I developed these algorithms based on the

target data availability. Researchers can choose few-shot learning, semi-supervised learning,

or an unsupervised learning approach based on the labeled or unlabeled data availability for

their target domain. The proposed algorithms achieved superb results in the target location

or temporal images with minimal human supervision.

In this dissertation, I developed a set of deep learning methods while developing

algorithms for seagrass detection. In Chapter 3, I developed a novel data-augmentation

method from the capsule’s features and offered a new visualization tool for the evaluation

of the capsule network’s performance. In Chapter 4, I developed a semi-supervised domain

adaptation method where I utilized GAN-based loss to match marginal distribution using

the unlabeled samples and classification contrastive semantic alignment loss to match class-

specific distribution using the labeled samples. This semi-supervised domain adaptation

method achieved superb results as compared with traditional transfer learning approaches.

In the unsupervised domain adaptation (UDA) method described in Chapter 5, I developed

a semantic segmentation based UDA approach where we did not use any labeled samples.

These developed algorithms can be used to handle domain shift in similar settings for deep

learning-based applications.
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APPENDIX A

UNSUPERVISED DOMAIN ADAPTATION (UDA) ACROSS

LOCATION

A.1 Method

A.1.1 UDA in the Encoding layers

We propose an unsupervised domain adaptation method for seagrass detection where

we adapt the encoding layers of the target segmentation model using generative adversarial

network (GAN) based loss. We modify the target embedding layer using the GAN loss so

that the domain classifier gets confused when determining whether the samples are coming

from the source domain or target domain. Given the source domain samples and labels

are xs and ys, the target domain has only unlabeled sample xt. First, we train the U-Net

segmentation model using the source dataset (xs and ys). Then, we use the target domain

unlabeled dataset to adapt the seagrass detection model in the target domain as shown in

Fig. 34.

We use the GAN loss [98] to adapt the source domain U-Net’s encoder layers, Es to

the target domain. This unsupervised domain adaptation step tries to learn a target encoder,

Et based on Es using the unlabeled samples from target domains shown in Fig. 33a. First,

the target encoder Et is initialized with the source encoder weights, Es. Then, Et and
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(a) Unsupervised domain adaptation in the encoder layer.

(b) Predicting the label on the target domain.

Fig. 33: Proposed unsupervised domain adaptation (UDA) architecture in the Encoder layer

(a) Unsupervised domain adaptation in the encoder layer, (b) Predicting the label on the

target domain.

the discriminator D in Fig. 33a are trained by MinMax optimization with the GAN loss

LadvD(Xs, X t, Es, Et),
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LadvD(Xs, X t, Es, Et) = Exs∼Xs [logD(Es(x
s))]−

Ext∼Xt [log(1−D(Et(x
t)))] (36)

The target embedding function Et modifies its parameters using the following generator

loss,

MinEtLadvE(Xs, X t, D) = −Ext∼Xt [logD(Et(x
t))] (37)

This is the same as the standard GAN loss where Et modifies its weights to mimic source

domain sample embedding. During training, we keep Es fixed while changing Et. Once the

model converges, the proposed model utilizes the trained target encoder Et to encode the

image and the source decoder Fs to classify the target images as shown in Fig. 33b.

A.1.2 UDA in the soft-max layer with an Image-to-image translation algorithm

A.1.2.1 Cycle-GAN

After comparing the image spectral reflectance signatures for the SJB, KB, and SGS

locations in Fig. 10, we find that seagrass’s spectral signature varies a lot from location to

location. Source location may contain deep tea-sediment or CDOM in the water whereas

the target location may contain a different property. As a result, the classifier trained at

source location may perform poorly at the target location. In the proposed approach, we use

an image-to-image translation algorithm to add target domain properties to source domain

images. Then, we further fine-tune the source classifier with the transformed source images.
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(a) Source Cycle. (b) Target Cycle.

Fig. 34: Image to Image translation for seagrass detection using Cycle-GAN based approach

(a) Source domain cycle (b) Target domain cycle.

Fig. 35: Unsupervised domain adaptation across location images. Cycle-GAN model is

applied to the source images to translate into target domain before applying the UDA.

The source and target images are unpaired, and we use the Cycle-GAN model to perform

the image-to-image translation.
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Let X and Y denote source and target domains, and have n and m numbers of

training samples, {xi}ni=1, where xiεX and {yi}mj=1, where yjεY , respectively. The Cycle-

GAN model uses two mapping functions, MY : X → Y for source to target mapping,

and MX : Y → X for target to source mapping. Cycle-GAN model uses two adversarial

discriminators Dx and Dy. Discriminator Dx tries to distinguish original images {x} from

translated images {MX(y)}. Similarly, discriminator Dy aims to discriminate original images

{y} from translated images {MY (x)}.

Adversarial loss: We apply the following adversarial losses to MY : X → Y and DY ,

LGAN(MY , DY , X, Y ) = Ey∼Pdata(x)[logDY (y)]− Ex∼Pdata(x)[log(1−DY (MY (x))))] (38)

where MY tries to generate images MY (x) that look similar to images from domain Y . Here,

MY (x) and Dy compete with each other and improve each other’s performances. A similar

objective function for MX and Dx is defined as follows:

LGAN(MX , Dx, X, Y ) = Ex∼Pdata(y)[logDX(x)]− Ey∼Pdata(y)[log(1−DX(MX(y))))] (39)

Cycle-consistency Loss: The adversarial loss can not ensure that the learned mapping

function will map source images to target images. To reduce the space of mapping function

miss-alignment, we use a cycle-consistency loss between source and target domain images.

For each image x from domain X, the cycle-consistency loss should bring the translated

image back to original domain as X → MY (x) → MX(MY (x)) ≈ x. We define the cycle-

consistency loss as follows:

Lcyc(MY ,MX) = Ex∼Pdata(x)[||MX(MY (x))− x||1] + Ey∼Pdata(y)[||MY (MX(y))− y||1] (40)



149

The overall objective function will be,

L(MY ,MX , DX , DY ) = LGAN(MY , DY , X, Y ) + LGAN(MX , Dx, X, Y ) + λ ∗ Lcyc(MY ,MX)

(41)

where λ controls the relative importance of the two objectives. We aim to solve following:

M∗
Y ,M

∗
X = arg minMY ,MX

maxDXDY L(MY ,MX , DX , DY ) (42)

A.1.2.2 Unsupervised Domain Adaptation(UDA)

The Cycle-consistence GAN model may fail to map source domain images to the

target domain effectively. To ensure the classifier can learn target domain image properties,

we further adapt the source segmentation model to the target domain using a GAN-based

UDA method. After mapping the source images x to the target domain Xstransformed =

MY (xs), we apply a GAN based loss to modify the last layer of source segmentation model

G to fit in the target domain.

We finetune the segmentation network G with the transformed images from source

domain Xstransformed with their original labels ys using the cross-entropy loss ζseg(xs) defined

in Equ. 21. We feed target images to the segmentation model G and get the soft-max output

Pt = G(Xt). Similarly, we feed Xstransformed to the segmentation model G and get the soft-

max output Pstransformed = G(Xstransformed). The proposed approach’s overall objective is

to make the segmentation model’s features before the soft-max layer Pstransformed and Pt

similar to each other using the GAN loss. We feed the soft-max output of the source images

Pstransformed into a discriminator network D using a cross-entropy loss. We train the cross-

entropy loss for two classes: source domain and target domain. We use the following loss to
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train the discriminator ζd(P ),

ζd(P ) = −
∑
h,w

(1− z)log(D(Pt)
h,w,0) + zlog(D(Pstransformed)

h,w,1) (43)

where z = 1 if the samples are from the source domain, and z = 0 if the samples are from

the target domain. To make the distribution of Pt closer to that of Pstransformed , we use the

following adversarial loss to train the classifier D,

ζadv(xt) = −
∑
h,w

log(D(Pt)
h,w,1) (44)

Using this loss, the segmentation network G improves its performance to fool the

discriminator by maximizing the probability of target predictions considered as being the

source prediction. The overall loss for the domain adaptation contains both segmentation

loss and GAN loss as,

ζ(xstransformed , ys, xt) = ζseg(xstransformed , ys) + λadvζadv(xt) (45)

where λadv is the weight to balance between the segmentation loss ζseg(xstransformed , ys) and

the GAN loss ζadv(xt).

A.2 Experimental Setup

A.2.1 Worldview-2 Multi-spectral Images

To develop an unsupervised domain adaptation (UDA) approach across location im-

ages, we use the worldview-2 multi-spectral satellite images from three locations of Florida:

Saint Joseph Bay (SJB), Keaton Beach (KB), and Saint George Sound (SGS). These images
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 36: UDA results using U-Net and GAN based domain adaptation methods in encoder

layers: (a) and (b) MS imagery, (c) and (d) physics based ground truth (e) and (f) source

model (g) and (h) UDA results after matching all encoder layers.
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have eight spectral bands: coastal blue, blue, green, yellow, red, red edge, NIR-1, and NIR-2

with a spatial resolution of 2m. We use selected regions by domain experts for five classes

from these images. The classes seagrass, sand, deep-sea, intertidal, and land are shown

using green, cyan, blue, magenta, and yellow colors in Fig 9, respectively. We pre-processed

these images with an atmospheric correction method described in Section 3.3.1. We train

a source seagrass detection model at one of the locations. We then adapt the model to the

other locations using the proposed UDA approaches.

A.2.2 U-Net multiple Layers

To classify the target domain images, we use a UDA method (Section A.1.1) without

using any labeled data from the target domain. In the last step, we trained a U-Net model

for the source domain using the labeled data from the active learning algorithm. We first

initialize the target model using the source model weights. Then, we modify the target

encoder layers using a GAN-based loss so that it can use the source decoder model to

classify the target imagery. We jointly optimize all four encoding layers using a GAN-based

loss and unlabelled target domain data. The discriminator classifies whether the samples are

from the source domain or target domain. The target model’s encoding layers jointly modify

its parameters to fool the domain discriminator. When the source feature distribution and

target feature distribution align, we use the source decoder layers to classify the target

domain images. We use the SJB location trained U-Net model as the source model and

the proposed UDA to detect seagrass in the target KB and SGS locations as shown in

Fig. 36g 36h, respectively.



153

A.3 Across Location Results

The source and target domains have larger domain divergence across locations as

compared to that in the time-series images. We compare two UDA methods described in

Section A.1.1 and Section A.1.2. First, we use a U-Net based domain adaptation approach

to handle the domain-shift where we perform adaptation in each encoding layer of the U-

Net model. In another approach, we use a HR-Net based UDA approach where we use a

cycle-GAN to add the target domain features in the source classification layer as well as

the GAN-based encoding layer’s feature adaptation. Both approaches achieve better results

than the base-line algorithm.

A.3.1 Active Learning and Source Segmentation model

In the active learning procedure of the WorldView-2 image, we first train the DCNN

classification model using the domain expert operator’s defined regions. We use a 5 ∗ 5 ∗ 8

input patch-size to extract patches for seagrass, deepsea, sand, land and intertide classes.

WorldView-2 MS images achieve better performance using a 5 ∗ 5 ∗ 8 patch size because it

has 2m spatial resolution as compared to Landsat-8 image’s 30m spatial resolution. The

DCNN model has six layers: two convolutional layers with a ReLU activation function, two

dropout layers, one flatten layer and a softmax layer. The 1st and 2nd convolutional layers

have the 16 convolutional kernels of a size of 2-by-2 and 64 convolutional kernels of a size of

4-by-4 respectively. After each convolutional layer, we utilize the dropout technique with a

dropout probability of 0.1 to reduce over-fitting. Then, we use a flatten layer to convert it

into 64 hidden vector features. At the last layer, we use a fully connected layer to perform

classification for the five classes. We train the model for 500 epochs for training. Once
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trained, we use the model to classify all the available samples from the same location. Then

we evaluate the performance of the DCNN model by the domain expert operator. If the

performance of the DCNN shows high agreement with the expert operator evaluation, we

use the DCNN predicted map as the ground truth for the segmentation model.

We train both U-Net and HR-Net segmentation models in the source domain using

the pixel-wise label mapping from the active learning approach described in Section 5.2.1.

For the U-Net model training, we use an input image size of 256 ∗ 256, batch size of 8,

and samples per class of 1000 to train the model. We use four encoding layers to encode

the image into a lower dimension vector. Then, we use four decoding layers to decode it

back to the original image. Once U-Net is trained on the source domain, we directly apply

the trained source U-Net model to the target location without adaptation, and results are

shown in Fig. 36e, 36f. We also use an input image size of 256 ∗ 256, batch size of 8, and

1000 samples per class to train the HR-Net model at SJB as the source model. We directly

apply the source model to locations KB and SGS, and results are shown in Fig. 38e, 38f,

respectively.

A.3.2 UDA in the last layer with Cycle-GAN

A.3.2.1 Cycle-GAN

The target image may not have the same properties as the source image. As a

result, the trained source classifier fails to classify target images. We proposed to use an

unpaired image-to-image translation algorithm to add the target domain properties to the

source images and then update the seagrass detection model. The proposed model maps the



155

(a) SJB (b) SJB transformed as KB (c) SJB transformed as SGS

Fig. 37: Cycle-GAN transforms source domain image to target domain. (a) source image

at SJB (b) SJB image transformed to KB (c) SJB image transformed to SGS.

source image in the target domain using the image-to-image translation algorithm. First,

we initialize the target model with the source HR-Net model. We then fine-tune the model

with transformed images from the source and with their original labels. The transformed

images by cycle-GAN are shown in Fig. 37.

We perform two sets of image-to-image translation experiments from the source to

the target domain: SJB ↔ KB and SJB ↔ SGS. After training the cycle-GAN model for

these two pairs, we use the trained generator model to transform the SJB image → KB

domain in Fig. 37b and SJB image→ SGS domain in Fig. 37c, respectively. We also use the

Cycada model [145] and Cycle-GAN model with VGG loss to repeat the same experiments.

In the Cycle-GAN model with VGG loss, we replace the L1 loss with VGG-based loss. After

comparison, we found that the Cycle-GAN model performs than the other two approaches.

A.3.2.2 GAN-based feature adaptation

If we just fine-tune the target model with transformed images from the source domain,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 38: UDA results with a cycle-GAN model with HRNet backbone. (a) and (b) MS

imagery, (c) and (d) Physics based ground truth (e) and (f) without adaptation (g) and (h)

UDA results.
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it may not give us good performance. We also use a GAN-based loss to adapt the target

model’s features in the layer before the soft-max layer to match the source domain features.

We first initialize the target domain model with the well trained source model weights. We

then modify the target model using a joint optimization of the two losses: segmentation

loss and GAN-based feature adaptation loss. In the GAN-based feature adaptation model,

the discriminator classifies whether the input samples are from the source domain or target

domain. The target model modifies its weights so that it can fool the discriminator. We use

the joint optimization mechanism to ensure that the target model learns the target domain

features and performs the seagrass detection in the target domain simultaneously. We use

the proposed model to perform domain adaptation at KB and SGS, and results are shown

in Fig. 38g 38h respectively.

A.4 Discussion

We align multiple encoder layers of the U-Net model between the source and the

target domains to detect seagrasses in the target domain as described in Section A.1.1. The

UDA model predicts classification maps for target domains at KB and SGS locations, and

results are shown in Fig. 36g and Fig. 36h. The baseline results are shown in Fig. 36e and

Fig. 36f for the KB and SGS locations, respectively. The baseline model fails to detect

seagrass correctly in both locations and predicts intertidal as seagrass at KB location. We

improve the seagrass detection performance using the encoder layers-based UDA approach,

and results are shown in Fig. 36g, and Fig. 36h, but it still fails to correctly identify the

seagrass classes at KB location. The model under-predicted the seagrass class area at the

KB location by a large margin due to a large domain shift. Besides modifying all the



158

encoder layers jointly, we also tried other variations of the proposed approach. We find that

modifying all encoder layers is a better approach.

We use the cycle-GAN model to transform the source SJB image to the target domain

as shown in Fig 37. The Cycle-GAN based translated images are SJB→ KB in Fig. 37b and

SJB → SGS in Fig. 37c. Instead of Cycle-GAN, we also apply cycada and cycle-GAN with

VGG loss to translate SJB → KB and SJB → SGS. However, these algorithms performed

worse than the Cycle-GAN model in unpaired multispectral image translation.

We directly apply the trained HR-Net model at source SJB location to target loca-

tions at KB and SGS, and label it as baseline model. The baseline model’s performance in

scenario SJB → KB is shown in Fig. 38e and scenario of SJB → SGS is shown in Fig. 38f.

The baseline model fails to detect seagrass at the target locations due to high domain di-

vergence between the source and target domains. It is also impossible for the model to

learn the difference without any adaptation. We perform UDA at the target locations using

segmentation loss and GAN based feature adaptation loss in the layer before softmax layer

described in Section A.1.2. We train the target model by fine-tuning with the transformed

source images and align the target features with the source features using the GAN based

loss. The proposed UDA based classification maps for SJB → KB are shown in Fig. 38g

and for SJB→ SGS are shown in Fig. 38h. With joint optimization, the proposed approach

detected seagrass superbly as compared with the baseline model at the location of SGS. This

approach performed better than the baseline model at KB; however, the detected seagrass

areas is less than that detected by the reference physics based approach.

If we compare the UDA performances presented in Section A.1.1 and Section A.1.2,
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the performances shown in Section A.1.2 are better. If we compare the UDA based classifi-

cation maps for SJB → SGS in Fig. 36h and Fig. 38h, the UDA of Section A.1.2 performed

much better as compared with the UDA of Section A.1.1. The UDA performances in SJB→

KB as shown in Fig. 36g and Fig. 38g are similar where both approaches performed poorly

due to high domain-shift, which is the planned task in our future work.
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