820 research outputs found

    Segmentation of Medical Images with Adaptable Multifunctional Discretization Bayesian Neural Networks and Gaussian Operations

    Get PDF
    Bayesian statistics is incorporated into a neural network to create a Bayesian neural network (BNN) that adds posterior inference aims at preventing overfitting. BNNs are frequently used in medical image segmentation because they provide a stochastic viewpoint of segmentation approaches by producing a posterior probability with conventional limitations and allowing the depiction of uncertainty over following distributions. However, the actual efficacy of BNNs is constrained by the difficulty in selecting expressive discretization and accepting suitable following disseminations in a higher-order domain. Functional discretization BNN using Gaussian processes (GPs) that analyze medical image segmentation is proposed in this paper. Here, a discretization inference has been assumed in the functional domain by considering the former and dynamic consequent distributions to be GPs. An upsampling operator that utilizes a content-based feature extraction has been proposed. This is an adaptive method for extracting features after feature mapping is used in conjunction with the functional evidence lower bound and weights. This results in a loss-aware segmentation network that achieves an F1-score of 91.54%, accuracy of 90.24%, specificity of 88.54%, and precision of 80.24%

    Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    Get PDF
    In standard clinical within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian modeling. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to approximate the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows fine automatic tuning of spatial regularisation parameters. It follows a new algorithm that exhibits interesting properties compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery

    Deep Learning with Limited Labels for Medical Imaging

    Get PDF
    Recent advancements in deep learning-based AI technologies provide an automatic tool to revolutionise medical image computing. Training a deep learning model requires a large amount of labelled data. Acquiring labels for medical images is extremely challenging due to the high cost in terms of both money and time, especially for the pixel-wise segmentation task of volumetric medical scans. However, obtaining unlabelled medical scans is relatively easier compared to acquiring labels for those images. This work addresses the pervasive issue of limited labels in training deep learning models for medical imaging. It begins by exploring different strategies of entropy regularisation in the joint training of labelled and unlabelled data to reduce the time and cost associated with manual labelling for medical image segmentation. Of particular interest are consistency regularisation and pseudo labelling. Specifically, this work proposes a well-calibrated semi-supervised segmentation framework that utilises consistency regularisation on different morphological feature perturbations, representing a significant step towards safer AI in medical imaging. Furthermore, it reformulates pseudo labelling in semi-supervised learning as an Expectation-Maximisation framework. Building upon this new formulation, the work explains the empirical successes of pseudo labelling and introduces a generalisation of the technique, accompanied by variational inference to learn its true posterior distribution. The applications of pseudo labelling in segmentation tasks are also presented. Lastly, this work explores unsupervised deep learning for parameter estimation of diffusion MRI signals, employing a hierarchical variational clustering framework and representation learning

    Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis

    Get PDF
    This paper presents a new Bayesian model and algorithm for nonlinear unmixing of hyperspectral images. The model proposed represents the pixel reflectances as linear combinations of the endmembers, corrupted by nonlinear (with respect to the endmembers) terms and additive Gaussian noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field is used to model the joint distribution of the nonlinear terms, which are expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimisation adaptation mechanism that automatically adjusts the parameters of the gamma Markov random field by maximum marginal likelihood estimation. Finally, the proposed methodology is demonstrated through a series of experiments with comparisons using synthetic and real data and with competing state-of-the-art approaches

    Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets

    Get PDF
    In the field of neuroimaging, Bayesian modelling techniques have been largely adopted and recognised as powerful tools for the purpose of extracting quantitative anatomical and functional information from medical scans. Nevertheless the potential of Bayesian inference has not yet been fully exploited, as many available tools rely on point estimation techniques, such as maximum likelihood estimation, rather than on full Bayesian inference. The aim of this thesis is to explore the value of approximate learning schemes, for instance variational Bayes, to perform inference from brain and spinal cord MRI data. The applications that will be explored in this work mainly concern image segmentation and atlas construction, with a particular emphasis on the problem of shape and intensity prior learning, from large training data sets of structural MR scans. The resulting computational tools are intended to enable integrated brain and spinal cord morphometric analyses, as opposed to the approach that is most commonly adopted in neuroimaging, which consists in optimising separate tools for brain and spine morphometrics
    corecore