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Bayesian Nonlinear Hyperspectral Unmixing With
Spatial Residual Component Analysis

Yoann Altmann, Member, IEEE, Marcelo Pereyra, Member, IEEE, and Stephen McLaughlin, Fellow, IEEE

Abstract—This paper presents a new Bayesian model and
algorithm for nonlinear unmixing of hyperspectral images. The
proposed model represents the pixel reflectances as linear combi-
nations of the endmembers, corrupted by nonlinear (with respect
to the endmembers) terms and additive Gaussian noise. Prior
knowledge about the problem is embedded in a hierarchical
model that describes the dependence structure between the model
parameters and their constraints. In particular, a gamma Markov
random field is used to model the joint distribution of the non-
linear terms, which are expected to exhibit significant spatial
correlations. An adaptive Markov chain Monte Carlo algorithm is
then proposed to compute the Bayesian estimates of interest and
perform Bayesian inference. This algorithm is equipped with a
stochastic optimisation adaptation mechanism that automatically
adjusts the parameters of the gamma Markov random field by
maximum marginal likelihood estimation. Finally, the proposed
methodology is demonstrated through a series of experiments with
comparisons using synthetic and real data and with competing
state-of-the-art approaches.

Index Terms—Hyperspectral imagery, nonlinear spectral
unmixing, residual component analysis, Gamma Markov random
field, Bayesian estimation.

I. INTRODUCTION

S PECTRAL unmixing (SU) is a key problem in the anal-
ysis of hyperspectral images. This is a source separation

problem consisting of recovering the spectral signatures (end-
members) of the materials present in the scene, and quantifying
their proportions within each hyperspectral image pixel. The
SU problem has been widely studied for images where pixel
reflectances are linear combinations of pure component spectra
[1], [2]. However, it is now widely accepted that the linear mix-
ing model (LMM) can be inappropriate for some hyperspectral
images, particularly those containing sand-like materials or
relief. Several nonlinear mixing models (NLMM) have been
recently proposed to address the limitations of the LMM. There
are two main approaches to dealing with NLMM. The first
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seeks to model the physics of the image formation model (e.g.,
intimate mixtures [3] for short-range multiple light scattering,
and polynomial models for long-range multiple light scattering
[4]–[7]). The second seeks to construct flexible models that can
represent a wide range of nonlinearities. This is can be achieved
using neural networks, kernel functions [8], or post-nonlinear
transformations [9], [10] for instance.

While the consideration of nonlinear effects can be very rel-
evant in some specific regions of the scene, most hyperspectral
image pixels are well described by the LMM. Therefore, mod-
els for nonlinear unmixing should include the LMM as a special
case. Here we use a variation of the Bayesian NLMM pro-
posed recently in Altmann et al. [11], which is inspired by
residual component analysis (RCA) [12]. In that model the
nonlinear effects in hyperspectral images are represented as
additive perturbations (of the LMM) that are modelled as a col-
lection of Gaussian processes (GPs) combined with a hidden
Potts-Markov random field (MRF) partitioning the image into
regions sharing the same GP. The model of [11] has two draw-
backs that we address in this paper. First, the Potts model leads
to a piecewise constant representation that constrains nonlin-
earities to take a finite number of possible energy states (the
so-called nonlinearity levels); this number is difficult to specify
a priori unless there is very accurate knowledge about the non-
linearities present in the scene. Second, in [11] nonlinearities
are allowed to take negative values, as this allows marginalising
them analytically (i.e., integrating them out of the model) and
thus simplifies the statistical inference procedure;. However,
our experiments suggest that taking into account the assumption
that the nonlinearities are positive can improve the estimation
results significantly when the nonlinear terms are positive (see
[7] for more details about this positivity assumption). Here
we address these drawbacks by replacing the Potts MRF by a
gamma MRF model [13]. This model has the key advantages of
1) promoting spatial regularity in the nonlinearity terms with-
out enforcing a piecewise constant representation with a finite
number of levels, and 2) it can easily incorporate a positivity
constraint for the nonlinearities.

The remainder of the paper is organised as follows. Section II
recalls the RCA model for hyperspectral image unmixing.
The Bayesian NLMM proposed in this paper is presented in
Section III. In Section IV we propose a Markov chain Monte
Carlo Bayesian algorithm to perform statistical inference in this
model and we define Bayesian estimators for nonlinear unmix-
ing and nonlinearity detection. Sections V and VI demonstrate
the proposed methodology through a series of experiments with
synthetic and real hyperspectral images and comparisons with
methods from the state of the art. Conclusions and perspectives
for future work are finally reported in Section VII.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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II. PROBLEM FORMULATION

Let yi,j ∈ RL be the pixel at location (i, j) of an hyperspec-
tral image Y of size Nrow ×Ncol and observed at L spectral
bands. We model each image pixel as a linear combination
of R known spectra or endmembers mr, plus an additive
perturbation φi,j embedding nonlinearities and additive noise

yi,j =

R∑
r=1

ar,i,jmr + φi,j + ei,j

= Mai,j + φi,j + ei,j , ∀(i, j) (1)

where mr = [mr,1, . . . ,mr,L]
T is the spectral response of the

rth material present in the scene, ar,i,j is its abundance within
pixel (i, j) and en ∼ N (0L,Σ0) is Gaussian noise with diag-
onal covariance matrix Σ0 = diag

(
σ2

)
with elements σ2 =

[σ2
1 , . . . , σ

2
L]

T (note that matrix and vector notations M =
[m1, . . . ,mR] and ai,j = [a1,i,j , . . . , aR,i,j ]

T have been used
in the second row of (1)). Due to physical considerations
we model the abundances as non-negative quantities and set
ar,i,j ∈ R+ (notice that because we consider non-linear mix-
ing we do not use the sum-to-one constraint that is commonly
enforced in linear mixing models). Moreover, for the nonlinear
effects we use the deterministic model

φi,j = φ(γi,j) =

R−1∑
k=1

R∑
k′=k+1

γ
(k,k′)
i,j

√
2mk �mk′

+

R∑
k=1

γ
(k)
i,j mk �mk. (2)

that is parametrised by a vector of nonlinearity coefficients
γi,j = [γ

(1,2)
i,j , . . . , γ

(R−1,R)
i,j , γ

(1)
i,j , . . . , γ

(R)
i,j ]T of length K =

R(R+ 1)/2. This choice of model is motivated by the fact that
the nonlinearities in hyperspectral images are well modelled by
polynomial interactions between endmembers, which provides
a flexible representation that can approximate a wide range
of nonlinear effects (see [5]–[7], [9], [14] for more details).
Moreover, in this paper we assume that γi,j ∈ R+ because
of the considerations reported in [7] and because we have
observed that it can improve estimation results significantly.
However, in Section V we also describe a version of our model
where this positivity constraint in relaxed. Also note that the
factors

√
2 in (2) are simply introduced to simplify kernel com-

putations [9], however these factors do not have a physical
interpretation and can be removed from (2) without changing

the model by scaling the coefficients γ(k,k′)
i,j appropriately.

This paper considers the inverse problems of estimating the
abundances ai,j and of detecting the presence of nonlinearities
at each image pixel yi,j (whose intensity can then be mea-
sured by estimating ‖γi,j‖22). We formulate this problem as a
statistical inference task that we address in a Bayesian frame-
work by defining an appropriate Bayesian model and inference
algorithm.

III. BAYESIAN MODEL

This section presents an original Bayesian model for infer-
ring the unknown quantities of interest A and Γ from the

observed hyper-spectral image Y, where A is an R×Nrow ×
Ncol array gathering the abundance vectors ai,j and Γ an
K ×Nrow ×Ncol array gathering the nonlinearity coefficient
vectors γi,j . Following a hierarchical Bayesian approach, we
also include in the model all the parameters of the model whose
values are not easily known a priori and need to be inferred
from data jointly with A and Γ (e.g., the noise covariance σ2).
Unlike A and Γ, the other unknown quantities are of no interest
for decision making and are therefore removed from the model
by marginalisation during the inference procedure.

A. Likelihood

From the non-linear mixing model (1), and by assuming that
observations Y = [y1, . . . ,yN ] are conditionally independent
given A,Γ and σ2, we obtain

f(Y|A,Γ,σ2)

∝
∏
i,j

|Σ0|−1/2 exp

[
− (yi,j − xi,j)

TΣ−1
0 (yi,j − xi,j)

2

]
(3)

with xi,j = Mai,j + φ(γi,j), Σ0 = diag
(
σ2

)
, and where ∝

denotes proportionality. Note that to lighten notation the depen-
dence on M is not denoted explicitly (M is assumed to be
perfectly known).

B. Prior for the abundance matrix A

We assign the abundance coefficients the following hierar-
chical prior distribution

ar,i,j |βr ∼ NR+(0, βr)

βr ∼ IG(α1, α2) (4)

parametrised by some fixed hyper-parameters α1 and α2, and
where NR+(0, βr) denotes the truncated Gaussian distribution
on R+ with mode 0 and scale parameter β

1/2
r , reflecting the

positivity of ar,i,j . This prior model is very flexible and can be
adjusted to represent a wide variety of prior beliefs. Without
loss of generality, here we set α1 = 1 and α2 = 2, leading to a
(marginal) exponential prior for ar,i,j that represents our prior
beliefs that abundances are proportions and take values mainly
in [0, 1]. In particular that we expect small values to occur more
frequenty because most materials are not present on all image
pixels (notice however that the exact values of α1 and α2 gen-
erally have little impact on the inference because A is very high
dimensional and dominates the distribution of βr).

A strength of hierarchical priors such as (4) is their natu-
ral capacity to encode prior dependences between unknown
variables. For example, we expect the abundance coefficients
associated with the same material to exhibit correlations, par-
ticularly in terms of their scale. This belief is encoded in (4) by
defining one common hidden variable βr for each material or
endmember mr, which is shared by all the abundances related
to that material. This hierarchical structure operates as a global
pooling mechanism that shares information across the rows of



176 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 3, SEPTEMBER 2015

A (i.e, the abundance coefficients associated to the rth mate-
rial) to improve estimation performance. It is also possible to
relate (4) to a group �1 regularisation or a composite �1 − �2
regularisation, in the sense that without the pooling mecha-
nism marginalising the hidden variables βr would lead to an
�1 regularisation for the abundances ar,i,j , and introducing the
pooling mechanism also links the rows of A at the level of their
�2 norms. Finally, it is also worth mentioning that model (4)
does not account explicitly for spatial correlations between the
abundance vectors. This information could be introduced into
the model by using mixtures of Gaussian or Dirichlet distribu-
tions [15], [16]. However, the main focus of this paper is the
consideration of the spatial dependence between the nonlinear-
ities and their impact on estimation performance, though we
hope and anticipate that future models will exploit both types
of spatial information.

Finally, assuming that abundances are prior independent
given the hidden variables β = [β1, . . . , βR]

T , we obtain the
following joint prior for A,β

f(A,β) = f(A|β)f(β) (5)

with f(A|β) = ∏
r,i,j f(ar,i,j |βr) and f(β) =

∏
r f(βr|α1,

α2). Also notice that by using the hierarchical structure (4)
we obtain conjugate priors and hyper-priors for ar,i,j and βr.
Conjugacy generally leads to inference algorithms with signifi-
cantly better tractability and computational efficiency, which is
crucial given the high dimensionality of A.

C. Priors for the nonlinearity coefficients Γ

One of the contributions of this paper is to propose the
following hierarchical prior for the nonlinearity coefficients{

γi,j |si,j ∼ NR
K
+
(0, si,jIK)

si,j ∼ IG(α3, α3α4,i,j)
(6)

where RK
+ denotes the K-dimensional positive orthant, reflect-

ing a positivity constraint on γi,j . Notice that this prior is
parametrised by a local hyper-parameter α4,i,j that is related
to the prior mean of si,j , and therefore to the average power
of the nonlinearities at the pixel (i, j) (via the norm ‖γi,j‖22).
The prior also depends on a global hyper-parameter α3 that
controls the shape of the tails of the prior (6), and therefore
the probability of large deviations between si,j and α4,i,j . A
careful selection of α4,i,j and α3 will allow exploiting the spa-
tial dependences between the nonlinearity coefficients γi,j to
improve estimation performance.

As explained previously, a key feature of hierarchical mod-
els is their capacity to encode dependences and act as pooling
mechanisms that share information across covariates to improve
the inference. Here we wish to specify (6) to reflect the prior
belief that nonlinearities exhibit spatial correlations. In partic-
ular, due to the spatial organisation of images, we expect the
values of γi,j to vary smoothly from one pixel to another and
exhibit occasional abrupt and sharp changes. In order to model
this behaviour we specify α4,i,j such that the resulting prior
for Γ is a hidden gamma-Markov random field (GMRF) [13].
More precisely, we denote by S the Nrow ×Ncol matrix with

Fig. 1. Proposed 1st order neighbourhood structure (∀(i, j) ∈ Ω).

elements si,j , introduce a (Nrow + 1)× (Ncol + 1) auxiliary
matrix W with elements wi,j ∈ R+ and define a bipartite con-
ditional independence graph between S and W such that each
si,j is connected to four neighbour elements of W and vice-
versa. This 1st order neighbourhood structure is depicted in
Fig. 1., where we notice that any given si,j and si+1,j are 2nd
order neighbours via wi,j+1 and wi+1,j+1. The role of these
auxiliary variables is to introduce positive dependence between
the neighbouring elements of si,j and therefore to promote
regularity. However, this model also allows occasional sharp
changes because the distribution of any si,j given its neighbours
in si+1,j is heavy-tailed. A GMRF prior for S,W [13] is then
defined as the following hierarchical prior [13]:

γi,j |si,j ∼ NR
K
+
(0, si,jIK) (7a)

si,j |W, α3 ∼ IG(α3, α3α4,i,j(W)) (7b)

wi,j |S, α3 ∼ G(α3, 1/(α3α5,i,j(S))) (7c)

where

α4,i,j(W) = wi,j + wi+1,j + wi,j+1 + wi+1,j+1/4

α5,i,j(W) = (s−1
i,j + s−1

i−1,j + s−1
i,j−1 + s−1

i−1,j−1)/4.

The density for this joint prior for Γ, S and W is given by

f(Γ,S,W|α3) = f(Γ|S)f(S,W|α3)

where f(Γ|S) = ∏
i,j f(γi,j |si,j) and

f(S,W|α3) =
1

Z(α3)

∏
(i,j)∈VS

(si,j)
−(α3+1)

×
∏

(i′,j′)∈VW

w
(α3−1)
i′,j′

×
∏

((i,j),(i′,j′))∈E
exp

(−α3wi′,j′

4si,j

)
. (8)
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Notice that we denote explicitly the dependence on the value
of α3, which here acts a regularisation parameter that con-
trols the amount of spatial smoothness enforced by the GMRF.
Following an empirical Bayesian approach, the value of α3

remains unspecified and will be adjusted automatically dur-
ing the inference procedure by maximum marginal likelihood
estimation using the technique [17]. We refer to this model as
gamma-RCA with positivity constraint (G-RCA+).

Finally, it is worth mentioning that this model for the nonlin-
earity coefficients has similarities with the model proposed in
[11] that also considers the spatial regularity of non-linearities.
However, the model described [11] follows a segmentation
approach in which the non-linearity coefficients are assumed to
(and constrained) to take values in a finite set of possible values.
This leads to a piece-wise constant representation and requires
specification of the number of nonlinearity levels present in the
image, a value that is often difficult to determine a priori. The
model proposed in this paper provides a spatially smooth rep-
resentation of the nonlinearities that is possibly more realistic
than the piece-wise constant representation of [11], and also has
the practical advantage of not requiring practitioners to spec-
ify the finite number of admissible nonlinearity levels. Another
important distinction is that the model described in [11] does
not allow the non-negativity constraint for γi,j to be introduced,
which we have found to improve significantly the estimation of
the nonlinearities when the nonlinear coefficients (see [7] for
more details about this positivity assumption).

For potential applications where the assumption of positive
nonlinear terms would not hold, the proposed model G-RCA+
can be modified to allow γi,j to take positive and negative
values in R by using the following hierarchical prior

γi,j |si,j ∼ N (0, si,jIK) (9a)

si,j |W, α3 ∼ IG(α3, α3α4,i,j(W)) (9b)

wi,j |S, α3 ∼ G(α3, 1/(α3α5,i,j(S))). (9c)

Notice that now γi,j |si,j is Gaussian, instead of truncated
Gaussian as in (7a). This modification leads to a gamma-
RCA model without positive constraint (G-RCA) that bridges
between the proposed G-RCA+ model and the original RCA
model [11], where nonlinearity coefficients are constrained
to take a finite number of positive and negative values. For
brevity, we henceforth consider the G-RCA+ model unless
stated otherwise.

D. Prior for the noise covariance σ2

We assume that there is no prior knowledge available about
the values of noise covariance (other than the fact that it is diag-
onal) and assign each diagonal element σ2

� a Jeffreys’ prior,
leading to the joint prior

f(σ2) =
L∏

�=1

f(σ2
� ), with f(σ2

� ) ∝ σ−2
� 1R+

(
σ2
�

)
. (10)

In scenarios where prior knowledge is available, practitioners
can incorporate this information into the model by replacing the
Jeffreys’ prior by a more informative model (e.g. a conjugate
inverse-Gamma distribution).

Fig. 2. Graphical model for the proposed hierarchical Bayesian model (fixed
quantities appear in boxes).

E. Posterior distribution

We are now ready to specify the posterior distribution for
A,Γ,σ2,S,W and β given the observed hyper-spectral image
Y and the value of the spatial regularisation hyper-parameter
α3 (recall that this value will be determined by maximum
marginal likelihood estimation during the inference proce-
dure). Using Bayes’ theorem, and assuming prior independence
between (A,β), (Γ,S,W) and σ2, the joint posterior distri-
bution associated with the proposed Bayesian model is given
by

f(A,Γ,σ2,S,W,β|Y, α3)

∝ f(Y|A,Γ,σ2)f(A|β)f(β)f(Γ|S)f(S,W|α3). (11)

For illustration, Fig. 2. depicts the directed acyclic graph (DAG)
summarising the structure proposed Bayesian model (recall
that S,W have a bi-partite neighbourhood structure, which is
illustrated in the graphical model of Fig. 1).

IV. BAYESIAN INFERENCE

A. Bayesian estimators

The Bayesian model defined in Section III specifies the joint
posterior density for the unknown parameters A,Γ,σ2,S,W
and β given the observed quantities Y,M and the hyper-
parameter α3. This posterior distribution models our complete
knowledge about the unknowns given the observed data and
the prior information available. In this section we define suit-
able Bayesian estimators to summarise this knowledge and
perform hyperspectral unmixing. More precisely, we propose
the following two Bayesian estimators for hyperspectral non-
linear unmixing and nonlinearity estimation and detection:
The marginal posterior mean or minimum mean square error
estimator of the abundance matrix

ÂMMSE = E [A|Y, α̂3] , (12)

where the expectation is taken with respect to the marginal
posterior density f(A|Y, α3) (by marginalising Γ,σ2,S,W
and β this density takes into account their uncertainty). The
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minimum mean square error estimator of the pixel-wise nonlin-
earity energy(

‖̂φi,j‖
2

2

)
MMSE

= E
[‖φi,j‖22|Y, α̂3

]
, (13)

where the expectation is now taken with respect to the marginal
posterior density f(‖φi,j‖2|Y, α3). And the Bayesian hypoth-
esis test for nonlinearity detection

Pi,j > a1/(a0 + a1),

where

Pi,j = E [Ti,j(φi,j ,ai,j) > η |Y, α̂3] , (14)

with

Ti,j(φi,j ,ai,j) =
‖φi,j‖22

‖yi,j −Mai,j − φ
(t)
i,j‖22

,

is the posterior probability that the power of the nonlinear
effects in pixel (i, j) is η times larger than the power of the
noise at that pixel, and where a0 and a1 are application-specific
weights associated with incorrectly rejecting or accepting this
hypothesis (in our experiments we have used a0 = a1, η = 2).

Notice that in (12), (13) and (14) we have set α3 = α̂3,
which denotes the maximum marginal likelihood estimator of
the MRF regularisation hyper-parameter α3 given the observed
data Y, i.e.,

α̂3 = argmax
α3∈R+

f (Y|α3) , (15)

This approach for specifying α3 is taken from the empirical
Bayes framework in which hyper-parameters with unknown
values are replaced by point estimates computed from observed
data (as opposed to being fixed a priori or integrated out of the
model by marginalisation). As explained in [17], this strategy
has several important advantages for MRF hyper-parameters
with doubly intractable conditional distributions such as α3. In
particular, it allows for the automatic adjustment of the value of
α3 for each image (thus producing significantly better estima-
tion results than using a single fixed value of α3 for all images),
and has a computational cost that is several times lower than
that of competing approaches, such as including α3 in the
model and subsequently marginalising it during the inference
procedure [18].

B. Bayesian algorithm

Computing the estimators (12), (13) and (14) is very
challenging because it involves calculating expectations with
respect to posterior marginal densities, which in turn require
evaluating the full posterior (11) and integrating it over a
very high-dimensional space. Computing α̂3 is also difficult
because it involves solving an intractable optimisation problem,
(because it is not possible to evaluate the marginal likeli-
hood f(Y|α3) or its gradient ∇f(Y|α3)). Here we adopt the
approach proposed in [17] and design a stochastic optimisa-
tion and simulation algorithm to compute (12), (13), (14) and

(11) simultaneously. That is, we construct a stochastic gradient
Markov chain Monte Carlo (SGMCMC) algorithm that simul-
taneously estimates α̂3 and generates a chain of NMC samples
{A(t),Γ(t),S(t)}NMC

t=1 asymptotically distributed according to
the marginal density f(A,Γ,S|Y, α̂3) (this algorithm is sum-
marised in Algo. 1 below). Once the samples have been gen-
erated, the estimators (12), (13) and (14) are approximated by
Monte Carlo integration [19, Chap. 10], i.e.,

ÂMMSEj =
1

NMC −Nbi

NMC∑
t=Nbi+1

A(t), (16)

(
‖̂φi,j‖

2

2

)
MMSEj

=
1

NMC −Nbi

NMC∑
t=Nbi+1

∥∥∥φ(
γ
(t)
i,j

)∥∥∥2
2
,

(17)

and

P̂i,j =
1

NMC −Nbi

NMC∑
t=Nbi+1

[
1(η,∞)

(
T

(t)
i,j

)]
, (18)

with T
(t)
i,j = ‖φ(γ(t)

i,j )‖22/‖yi,j −Ma
(t)
i,j − φ(γ

(t)
i,j )‖22, and

where the samples from the first Nbi iterations (corresponding
to the transient regime or burn-in period) are discarded. The
main steps of this algorithm are detailed in below.

Algorithm 1. Proposed MCMC algorithm

1: Fixed input parameters: Endmember matrix M, number of
burn-in iterations Nbi, total number of iterations NMC

2: Initialization (t = 0)
• Set A(0),σ2(0),Γ(0),S(0),W(0),β(0), α

(0)
3

3: Iterations (1 ≤ t ≤ NMC)
4: Sample (A(t),Γ(t)) from (20) if using G-RCA+, or Sample
(A(t),Γ(t)) from (22) if using G-RCA

5: Sample σ2(t) from (23)
6: Sample β(t) from (25)
7: Sample S(t) from (26)
8: Sample W(t) from (7c)
9: if t < Nbi then

10: Sample (S′,W′) ∼ K(S,W|S(t),W(t), α
(t−1)
3 )

11: Set α(t)
3 = P[0,At](α

(t−1)
3 + δt [Λ(S,W)− Λ(S′,W′)])

with Λ(S,W) = −∑
((i,j),(i′,j′))∈E

wi′,j′

si,j
+

4
(∑

(i′,j′)∈VW
log (wi′,j′)−

∑
(i,j)∈VS

log (si,j)
)

12: else
13: Set α(t)

3 = α
(t−1)
3

14: end if
15: Set t = t+ 1.
16: Output {A(t),Γ(t),S(t)}NMC

t=1 .

1) Sampling the mixing parameters: The conditional distri-
bution of A,Γ given the other variables of the model is given
by

f(A,Γ|Y,Ψ,σ2, α3) =
∏
i,j

f(ai,j ,γi,j |yn,Ψ,σ2) (19)
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where

ai,j ,γi,j |yn,Ψ,σ2 ∼ N
R

R+K
+

(μi,j ,Σi,j), (20)

with {
Σi,j =

(
Ri,j +GTΣ−1

0 G
)−1

,
μi,j = Σi,jG

TΣ−1
0 yi,j ,

(21)

and where G is an L× (R+D) matrix with the endmembers
and the D nonlinear interaction spectra, i.e., G = [M,m1 �
m2, . . . ,mR−1 �mR,m1 �m1, . . . ,mR �mR] and

Ri,j =

([
diag(β) 0R,D

0D,R si,jID

])−1

.

We simulate from (20) using using the method proposed in [20].
Moreover, for the G-RCA model that does not constrain γi,j

to be positive, we replace (20) with the alternative conditional
distribution for ai,j ,γi,j |yn,Ψ,σ2 given by

ai,j ,γi,j |yn,Ψ,σ2 ∼ NR
R
+

×RK (μi,j ,Σi,j), (22)

that is also easy to sample using the method proposed in [20].
2) Sampling the noise variances: The conditional distri-

bution of σ2 given the other variables of the model is given
by

f(σ2|Y,A,Γ,Ψ, α3)

=

L∏
�=1

f(σ2
� |Y,A,Ψ,β, α3), (23)

with

f(σ2
� |Y,A,Γ,S,W,β, α3)

= pIG

⎛⎝σ2
� ;N/2,

∑
i,j

(yi,j − xi,j)
TΣ−1

0 (yi,j − xi,j)

2

⎞⎠ .

(24)

Sampling from the conditional (23) is achieved by simulating
L independent inverse gamma random variables.

3) Sampling the abundance hyper-parameters: Similarly,
the elements of β are also conditionally independent (given the
other variables of the model) and can be simulated in parallel by
generating inverse gamma random variables with distribution

βr|Y,θ,S,W, a ∼ IG
⎛⎝N

2
+ α1,

∑
i,j

a2i,j
2

+ α2

⎞⎠ . (25)

4) Sampling the nonlinearity levels S: Again, the elements
of S are conditionally independent given the other model
parameters

f(S|Y,θ,W, α3)

=
∏

(i,j)∈VS

f(si,j |Y,θ,W, α3), (26)

and can be simulated in parallel by generating inverse gamma
random variables with distribution

si,j |Y,θ,W, α3 ∼ IG
(
α3 +

K

2
, νi,j +

‖γi,j‖22
2

)
. (27)

5) Updating the MRF regularisation parameter α3: If
marginal likelihood f(Y|α3) was tractable we could update α3

from one MCMC iteration to the next by using a classic gradient
descent step

α
(t+1)
3 = α

(t)
3 + δt∇ log f(Y|α(t)

3 ),

with δt = t−3/4, such that α
(t)
3 converges to α̂3 as t → ∞.

However, this gradient has two levels of intractability, one due
to the marginalisation of (A,Γ,σ2,S,W,β) and another one
due to the intractable normalising constant of the gamma MRF.
We address this difficulty by following the approach proposed
in [17]; that is, by replacing ∇ log f(Y|α(t)

3 ) with an estimator
computed with the samples generated by the MCMC algorithm
at iteration t, and a set of two auxiliary variables (S′,W′) ∼
K(S,W|S(t),W(t), α

(t−1)
3 ) generated with an MCMC kernel

K with target density (8) (in our experiments we used a Gibbs
sampler implemented using a colouring scheme such that all the
elements of S′ and W′ are generated in parallel). The updated
value α

(t+1)
3 is then projected onto an interval [0, At] to guar-

antee the positivity constraint α3 ∈ R+ and the stability of the
stochastic optimisation algorithm (we have used At = 20).

It is worth mentioning that if it was possible to simulate the
auxiliary variables (S′,W′) exactly from (8) then the estimator
of ∇ log f(Y|α(t)

3 ) used in Algo. 1 would be unbiased and as a

result α(t)
3 would converge exactly to α̂3. However, exact simu-

lation from (8) is not computationally feasible and therefore we
resort to the MCMC kernel K and obtain a biased estimator of
∇ log f(Y|α(t)

3 ) that drives α(t)
3 to a neighbourhood of α̂3 [17].

We have found that computing this biased estimator is signifi-
cantly less expensive than alternative approaches, (e.g., using an
approximate Bayesian computation algorithm as in [18]), and
that it leads to very accurate nonlinear unmixing results.

V. SIMULATIONS: SYNTHETIC DATA

In this section we study the performance of the proposed
algorithm on a series of synthetic hyperspectral images firstly
with linear mixing and secondly with nonlinear mixing.

A. First scenario: Linearly mixed image

The objective here is to assess whether using the nonlinear
unmixing model proposed in this paper leads to good unmix-
ing results when analysing linearly mixed images, or if the
additional degrees of freedom in the model degrade the estima-
tion performance. This is crucial because in real hyperspectral
images most pixels exhibit predominantly linear mixing. We
evaluate the performance of the proposed G-RCA algorithm
(and its version incorporating the nonlinearity positivity con-
straints, G-RCA+) by unmixing a synthetic image of 100× 100
pixels generated with the classical linear mixing model (i.e.,
(1) with γi,j = 0) and using R = 3 endmembers (i.e., green
grass, olive green paint and galvanised steel metal)1. This image

1we extracted these endmembers from the spectral libraries of the ENVI
software [21] in a similar fashion to previous work [6], [9], [22].
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is generated using L = 207 spectral bands uniformly sampled
from 400 nm to 2500 nm and with an average signal to noise
ratio of 30 dB (σ2

� = 3.10−4, ∀�). The abundance vectors ai,j
used to produce this image have been generated using the model
(4) (we later present another experiment where the abundances
satisfy the sum-to-one constraint). The G-RCA and G-RCA+
algorithms for this experiment were implemented with NMC =
2000, Nbi = 1500.

The performance unmixing algorithms in terms of abundance
estimation is evaluated by computing the root normalised mean
square error (RNMSE) defined by

RNMSE =

√
1

NrowNcolR

∑
i,j

‖ai,j − âi,j‖2 (28)

where ai,j and âi,j are the true and estimated abundance
vectors for the pixel (i, j) of the image.

For this scenario, the proposed G-RCA algorithm is com-
pared with the classical NCLS algorithm [1] assuming the
LMM (without sum-to-one constraint (STO)), comparisons
to nonlinear SU methods will be addressed in scenario 2
described below. The results obtained with G-RCA,G-RCA+
and NCLS are 1.04× 10−2, 1.04× 10−2 and 0.97× 10−2

respectively. We observe that the three methods performed
similarly, showing that using G-RCA+ to analyse linearly
mixed pixels does not degrade significantly the estimation
performance.

By analysing the distribution of the estimated nonlinear-
ity levels ŝ2i,j (computed by approximating the expectation
E
[
s2i,j |Y, α̂3

]
) we confirm that G-RCA/G-RCA+ correctly

identifies linearly mixed pixels. Indeed, the mean and vari-
ance of the estimated nonlinearity levels (computed by polling
the 10000 pixels) are 1.4× 10−4 and 1.9× 10−7 for G-RCA
and 2.0× 10−5 and 4.2× 10−9 for G-RCA+, confirming that
the amplitude of the nonlinear coefficients are significantly
smaller than that of the abundances. It is also worth men-
tioning that unlike NCLS, G-RCA/G-RCA+ is able to han-
dle unknown coloured noise (i.e., frequency-dependent noise
levels).

B. Second scenario: Nonlinear mixtures

Data Set: The objective here is to evaluate the performance
of the proposed model when applied to images containing dif-
ferent kinds of linear and nonlinear mixtures. We consider a
synthetic image of 100× 100 pixels generated with the same
R = 3 endmembers of the previous experiment, but using 6
different mixing models. More precisely, we have used a Potts-
Markov random field (with parameter β = 1.6) to generate
a spatially coherent partition of the image where each parti-
tion is assigned to one of the 6 mixing models, which was
then used to generate the observations for that partition of the
image, (the map with the mixing model assigned to each pixel
is depicted in Fig. 3(a)). The class C1 (resp. C2) is associated
the LMM without (resp. with) abundance STO (LMM-WSTO
and LMM-STO, respectively). The pixels of class C3 have been

Fig. 3. Nonlinear unximing: (a) Mixing model (class) allocation, (b) true log-
energy of the nonlinear effects, (c)-(d) nonlinear log-energy estimated with G-
RCA and with G-RCA+.

generated according to the generalized bilinear mixing model
(GBM) [6]

yi,j =

R∑
r=1

ar,i,jmr

+
R−1∑
k=1

R∑
k′=k+1

γ
(k,k′)
i,j ak,i,jak′,i,jmk �mk′+ei,j (29)

with γ
(k,k′)
i,j = 1, which corresponds to the model investigated

in [14] (Fan’s model). The class C4 is composed of pixels
generated according to the PPNMM [9] as follows

yi,j = Mai,j + b (Mai,j)� (Mai,j) + ei,j . (30)

with b = 0.2. The pixels of the class C5 have been gener-
ated using the bilinear model investigated in [5], referred to as
Nascimento’s model (NM) and defined as

yi,j =
R∑

r=1

ar,i,jmr

+
R−1∑
k=1

R∑
k′=k+1

γ
(k,k′)
i,j mk �mk′ + ei,j (31)

where the mixture coefficients (associated with the linear and
nonlinear terms) of each pixel sum to one. Finally, the class C6
has been generated according to (1) with zero-mean Gaussian
nonlinearity coefficients with variance s2i,j = 0.1. Note that C6
is the only class allowing for negative nonlinearities. For the
classes C2, C3 and C4 (whose underlying models rely on the
abundance STO assumption), the abundance vectors have been
randomly generated according to a uniform distribution over
the admissible set defined by the positivity and sum-to- one
constraints. The mixing coefficients in (31) (for the pixels of
C5) have been uniformly generated in the simplex defined by
the positivity and STO constraints. The abundances of the pix-
els in C1 and C6 have been generated according to (4) with
βr = 0.3, ∀r. All pixels have been corrupted by additive i.i.d
Gaussian noise of variance σ2 = 3× 10−4, corresponding to an
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TABLE I
SCENARIO 2: ABUNDANCE RNMSES (×10−2)

average signal-to-noise ratio SNR 29 dB. The noise is assumed
to be i.i.d. for a fair comparison with SU algorithms assum-
ing i.i.d. Gaussian noise. Fig. 3(b) shows the log-energy of
the nonlinear contribution for each pixel of the image, i.e.,
log(φi,j).

Unmixing: Different estimation procedures have been con-
sidered for the four different mixing models:

• The NCLS algorithm [1] which is known to have good
performance for linear mixtures when the abundance STO
assumption can be relaxed.

• The FCLS algorithm [1] which is known to have good
performance for linear mixtures and relying on the abun-
dance STO.

• The GBM-based optimization approach [6] which is
adapted for bilinear nonlinearities. The optimization algo-
rithm is stopped when the norm of the difference between
consecutive parameter estimates is smaller than 10−6.

• The gradient-based approach of [9] which is based on
a PPNMM and has shown nice properties for various
polynomial nonlinearities.

• The FCLS algorithm used with an extended endmember
matrix (containing the bilinear products of the endmem-
bers) for unmixing based on the NM. This algorithm is
denoted by NM in the remainder of the paper.

• The RCA algorithm proposed in [11] with K = 6
classes, NMC = 3000, Nbi = 200 and β = 1.6 (β is the
granularity parameter of the Potts model used in [11] for
nonlinearity-based segmentation).

• The proposed G-RCA/G-RCA+ with NMC = 2000,
Nbi = 1500.

The abundance estimation performance of 6 unmixing strate-
gies is evaluated using the RNMSE obtained for each class of
pixels and defined by

RNMSEk =

√√√√ 1

NkR

∑
(i,j)∈Ik

‖ai,j − âi,j‖2 (32)

where Ik is the set of indices of the pixels in the class Ck and Nk

is the number of pixels in Ck. The results obtained by the 6 algo-
rithms and are presented in Table I which shows that the model
(1)–(2) leads to robust abundance estimation algorithms since
all RCA, G-RCA and G-RCA+ provide satisfactory results for
the 6 different mixtures. Moreover, we observe that G-RCA+
and G-RCA perform almost as well as RCA; note that G-RCA+
and G-RCA are fully unsupervised, whereas RCA requires

specification of the parameters K and β (note that the results
in Table I have been obtained with the best values for K and
β identified by cross-validation, using different values could
have degraded estimation performance significantly). We also
observe that G-RCA+ generally provides better abundance esti-
mates than G-RCA, supporting the assumption that γi,j ∈ R+.
Finally, Fig. 3, (c) and (d) show the nonlinearity level map esti-
mated by G-RCA and G-RCA+ (computed from the estimates
of {‖φi,j‖2}). We observe that both G-RCA+ and G-RCA were
able to correctly identify the regions where nonlinear effects
occur, and that G-RCA+ produced a better estimate of the
nonlinearity energies.

In order to assess the capacity of GRCA+ and GRCA to fits
different types of mixing models, Table II reports the average
image reconstruction (RE) for each class of pixels and defined
by

REk =

√√√√ 1

NkL

∑
(i,j)∈Ik

‖yi,j − ŷi,j‖2 (33)

where ŷi,j is the (i, j)th reconstructed pixel. The reconstruc-
tion errors in Table II confirm that RCA and G-RCA are
very flexible and can handle the 6 different mixing models
associated with the 6 classes considered. More precisely, the
reconstruction errors provided by RCA and G-RCA corre-
spond to the standard deviation of the additive Gaussian noise
(σ2 = 3× 10−4). G-RCA+ also provides accurate reconstruc-
tions errors, except for class C6, because G-RCA+ does not
consider negative nonlinearities.

Bayesian detection of nonlinearity As explained previously,
the proposed MCMC algorithm can be used to detect image
pixels with significant nonlinear mixing (this is formulated as
a Bayesian hypothesis test involving the posterior probability
(14)). In order to illustrate this, Fig. 4 compares the true
nonlinearity presence map (depicted in Fig. 4(a)) with the prob-
abilities (18) estimated with G-RCA+ and η = 2 (Fig. 4(b))
and the corresponding detection map (Fig. 4(c)) for the syn-
thetic image considered in Scenario 2. Recall that the detection
map is computed by thresholding the probability map (we used
a0 = a1 leading to a threshold value of 0.5). It is worth noting
that both η in (14) and the loss function coefficients a0, a1 are
application specific and can be adjusted to reflect prior knowl-
edge about the confidence in the model for a specific scene, the
probability of nonlinear effects, and the relative cost of false
positive (false alarm) and false negative detections. Moreover,
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TABLE II
SCENARIO 2: RECONSTRUCTION ERRORS (×10−2)

Fig. 4. Nonlinear mixing detection in the synthetic image of Scenario 2:
(a) Nonlinearity presence/absence (ground truth), (b) Posterior probability of
significant nonlinearities Pi,j estimated with G-RCA+ using (14), (c) Bayesian
hypothesis test for nonlinearity detection (Pi,j > 1/2).

TABLE III
SCENARIO 2: DETECTION PERFORMANCE

Table III shows the the empirical probability of false alarm PFA

and probability of detection PD computed with G-RCA+ for
this experiment and using different values of η. We observe
the good performance of G-RCA+, which for η = 1 is able to
detect over 85% of nonlinearly mixed pixels with a probability
of false alarm of 0.5%. Finally, it is of note that unlike the orig-
inal RCA algorithm [11], the Bayesian model proposed in this
paper does not allocate prior probability to the specific case of
linearly mixed pixels (i.e., the case φi,j = 0 has prior density
but not prior mass). As a result, it is not possible to perform
Bayesian point hypothesis tests (i.e., φi,j = 0 vs φi,j = 0) that
are possible with RCA. The development of a new Bayesian
model and Bayesian tests that combine the strengths of both
approaches is currently under investigation.

VI. SIMULATIONS: REAL HYPERSPECTRAL IMAGE

This section presents an application of the proposed G-RCA
method to a real hyperspectral image. The hyperspectral
image considered in this experiment was acquired in 2010
by the Hyspex hyperspectral scanner over Villelongue, France
(00◦03′W and 42◦57′N). This scene was observed at L = 160
spectral bands ranging from the visible to near infra-red with
a spatial resolution of 0.5 m. This dataset has already been
studied in [10], [11], [23], [24] and is mainly composed of
forested and urban areas (see [23] for more details about the
data acquisition and pre-processing steps). We have applied our

Fig. 5. Nonlinearity level estimation: (a) True colour image of the scene of
interest. Levels of nonlinearity estimated with RCA (using K = 5 levels) (b),
with G-RCA (c) and with G-RCA+ (d). (e) G-RCA+ estimation of poste-
rior probability of significant nonlinear mixing (14) (η = 2), and (f) nonlinear
mixing detection map.

method to the region of interest of size 180× 250 pixels that
is depicted in Fig. 5(a). This region is composed mainly of a
path and different vegetation species and has R = 5 endmem-
bers, whose spectral signatures have been extracted from the
data using VCA [25].

Figs. 5(c) and (d) show the nonlinearity levels estimated
with the proposed G-RCA/G-RCA+ method. For comparison,
the results obtained with RCA [11] are presented in Fig. 5(d)
(recall that to simplify the estimation problem, RCA artificially
constrains nonlinearities to take a finite number of values (5
here)). Since RCA does not directly estimate {‖φi,j‖2} but
{‖si,j‖2}, Figs. 5(c) and (d) depicts the minimum mean square
error estimator of the pixel-wise nonlinearity level

ŜMMSE = E [S|Y, α̂3] , (34)

where the expectation is now taken with respect to the marginal
posterior density f(S|Y, α3). In a similar fashion to the abun-
dance estimators, these estimators are approximated using
Monte Carlo using

ŜMMSEj =
1

NMC −Nbi

NMC∑
t=Nbi+1

S(t). (35)
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Fig. 6. Abundance maps estimated with NCLS, RCA, G-RCA and G-RCA+ (from left to right) for the Villelongue real image.

We observe that the results obtained with both methods are
in good visual agreement and highlight spatial structures that
can be easily identified in the colour image (e.g., path) where
one would expect nonlinear mixing to occur. More impor-
tantly, by not constraining the number of nonlinearity levels,
G-RCA and G-RCA+ produce spatially smooth estimates that
are realistic (and that do not require specification of the num-
ber of nonlinearity levels a priori). It is important to note that
the results obtained with G-RCA+ indicate that the nonlinear
effects in the image are sparser and weaker than previously
suggested by RCA (and G-RCA). Due to the high correlation
between the nonlinear terms (cross-products of the endmem-
bers) as well as their energy, the estimation of the nonlinear
coefficients is difficult, particularly for RCA and G-RCA that
do no take into account the positivity of Γ. Indeed, in the
model used in RCA and G-RCA Γ can take large positive and
negative values which average out, leading to large estimated
nonlinearity levels. By constraining the nonlinear coefficients
to be non-negative, G-RCA+ yields smaller and sparser non-
linearity levels that are arguably closer to the ground truth.
Finally, Figs. 5(e)–(f) show the estimated posterior probability
of nonlinear mixing computed using (14) (with η = 2) and the
nonlinear mixing detection results (computed by thresholding
the probabilities w.r.t. 0.5). Again, nonlinearly mixed pixels are
clearly identified near the path and at the boundary between two
fields where we expect nonlinear mixing to occur.

The abundance maps obtained by G-RCA/G-RCA+ have
been compared to those obtained with the algorithm considered
in Section V and the results obtained by the different methods

are generally similar. As an example, Fig. 6 shows that the
abundances estimates obtained with RCA, G-RCA, G-RCA+
(RCA-based nonlinear models) and with the NCLS (LMM-
based) algorithm. Note that there is no abundance ground truth
for this image making it difficult to quantify abundance esti-
mation precision directly. This figure shows that algorithm
based on the RCA model provide abundance maps gener-
ally in agreement with those obtained with NCLS, although
the results can vary locally (e.g, abundances of the first end-
member between the two fields). We implemented G-RCA(+)
using NMC = 2000 and Nbi = 1500 (computing these results
using MATLAB required 7 hours on a 3 GHz Intel Xeon
quad-core workstation). We observe that G-RCA and G-RCA+
perform similarly to the RCA algorithm, while not requir-
ing fixing a number of classes. Finally, for this image all
the methods achieved the same reconstruction error RE =√
(
∑

i,j ‖ŷi,j − yi,j‖2)/(NrowNcolL) = 0.22, due to the fact
that the image is predominantly composed of linearly mixed
pixels for which the eight methods perform similarly.

VII. CONCLUSION

This paper has presented a new hierarchical Bayesian algo-
rithm for spectral unmixing of hyperspectral images which
incorporates the spatial dependencies inherent in an image
associated with the nonlinear mixture effects. The nonlin-
ear mixtures were decomposed into a linear combination of
the endmembers and an additive term which represents the
nonlinear effects. This term was further decomposed as a
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combination of the endmembers cross-products. A Gamma
Markov random field was introduced to promote smooth non-
linearity variations in the image. In contrast with previously
reported work where nonlinear unmixing relied on a nonlinear-
ity level-based image segmentation, the proposed model allows
the level of nonlinearity to differ in each pixel while allowing
the identification of regions where nonlinear effects occur. In
this paper, a zero-mean Gaussian prior, restricted to the positive
orthant was assigned to the nonlinear coefficients of each pixel.
This choice was motivated by the fact that several existing mod-
els include positivity constraints for the nonlinear terms, e.g.
[4]–[6], include such constraints within the SU procedure, and
this was previously not possible using the RCA model in [11]
due to the marginalisation of these parameters. The results pre-
sented in this paper have shown that it can significantly improve
the unmixing performance. In this paper, the endmembers were
assumed to be perfectly known but often need to be extracted
from the data. Future work will include the generalisation of the
G-RCA+ model to account for endmember estimation errors
and more general sources of nonlinearity (such as endmem-
ber intrinsic variability). Finally, in some images abundances
exhibit strong spatial correlations, and taking this information
into account may improve estimation performance significantly
[15], [26], [27]. Therefore it would be very interesting to
design new models and nonlinear unmixing procedures that
are capable of simultaneously exploiting the spatial correlations
between abundances and between nonlinearities to produce best
results.
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