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Summary

This thesis collects research done on several models for the analysis of func-
tional magnetic resonance neuroimaging (fmri) data. Several extensions for
unsupervised factor analysis type decompositions including explicit delay mod-
elling as well as handling of spatial and temporal smoothness and generalisations
to higher order arrays are considered. Additionally, an application of the natural
conjugate prior for supervised learning in the general linear model to efficiently
incorporate prior information for supervised analysis is presented. Further ex-
tensions include methods to model nuisance effects in fmri data thereby sup-
pressing noise for both supervised and unsupervised analysis techniques.
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Resumé

Denne afhandling omhandler videnskabeligt arbejde i relation til modellering
og analyse af data fra funktionel magnetisk resonans skanning (fmri). I denne
forbindelse er flere udvidelser af eksisterende modeller til eksplorativ dataanal-
yse blevet udviklet. Disse modeller inkluderer eksplicit modellering af tids-
forsinkelser i faktoranalyse lignende modeller, regularisering af parametre til
sikring af tidslig og rumlig jævnhed samt generalisering af disse modeller til hø-
jere ordens data (tensorer). Herudover præsenteres muligheden for at indbygge
ekstra information i klassiske analyser ved hjælp af den naturlige konjugerede
prior for den generelle lineære model. Desuden omhandler afhandlingen mod-
ellering af forstyrrende signaler, som kan tjene til at undertrykke støj i b̊ade
klassiske og eksplorative analyser af fmri data.
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Preface

This thesis was prepared at Informatics Mathematical Modelling (imm), the
Technical University of Denmark (dtu) in partial fulfillment of the requirements
for acquiring the Ph.D. degree in mathematical modelling.
A substantial part of the research was done at the Danish Research Centre for
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(al). tel was employed at drcmr until fall 2007 where he moved to the Center
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Chapter 1

Introduction

1.1 Neuroimaging

Neuroimaging refers to directly or indirectly image the structure and/or function
of the brain. In general imaging techniques can be divided into two broad
categories: structural and functional imaging. Structural imaging refers to the
observation/study of the anatomical features of the brain, whereas functional
imaging refers to the study of brain function.

This thesis is concerned with applications of machine learning in the field of
of functional imaging in particular the functional magnetic resonance imaging
technique (fmri).

Ever since its discovery fmri (Ogawa et al., 1990a) has received an increasing
interest which can be demonstrated by the vast increase in publications on fmri,
figure 1.1. In particular fmri has become an important tool in the efforts to
advance our knowledge on brain function. Interpretation of data obtained from
fmri experiments is challenging due to limited knowledge about the origins of
the signal, low signal to noise ratio and the massive amount of data generated. In
this thesis noise reduction, supervised- and unsupervised analysis techniques are
applied in attempts to obtain more parsimonious representations that facilitate
understanding and overview of the data.
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Figure 1.1: The figure shows how the amount of fmri publications recorded
in the online data base pubmed (http://www.pubmed.org) has evolved since
1993. The numbers illustrated in the left panel are the number of pubmed pub-
lications per year containing fmri in either the title or the abstract. For the last
year (2008) the number of publications are based on linear extrapolation from
the 23rd of April. Note that the amount of publication in 2007 amounted to
approximately 35 per week, indicating that the fmri is a highly active research
area. In the right panel the fraction of publications on fmri is illustrated by nor-
malising with the total number of publications recorded in pubmed per year. It
is seen that there is a substantial increase in the number of publications per year
even when correcting for the increase in the total number of publications. Note
that the numbers may be somewhat inaccurate, however, they large agree with
numbers reported in a recent review article by Bandettini (2007) commenting
on the current challenges in fmri.

http://www.pubmed.org
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1.2 Overview

The subjects covered in this thesis serve mainly to collect some of the research
done during the Ph.D. and to introduce the papers attached in appendix B.

Chapter 2 – Background serves as a brief and simple introduction to inter-
preting brain images and functional neuroimaging. A full description of fmri is
well beyond the scope of this text, therefore readers who are not familiar with
these subjects should refer to the literature for more information. A good intro-
duction to magnetic resonance and fmri are available in Buxton (2002) whereas
a more detailed description of the echo-planar imaging (epi) technique can be
found in Schmitt et al. (1998).
Chapter 3 – Pre-processing describes typical preprocessing steps for fmri
and anatomical mri data.
Chapter 4 – Data Analysis and Models introduces the general linear model
as well as the factor analysis model and extension to multi-way arrays in the
form of canonical decomposition/parallel factor analysis.
Chapter 5 – New Models introduces models developed during the Ph.D. in-
cluding shift invariant multi-way analysis, smooth and sparse coding, Bayesian
general linear model with a natural conjugate prior and slice-wise modelling of
fmri data. Readers familiar with the subjects of neuroimaging and analysis
fmri data are encouraged to skip directly to this section.
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Chapter 2

Background

Aristotle was famous for knowing everything. He taught that the
brain exists merely to cool the blood and is not involved in the
process of thinking. This is true only of certain persons.

William Jacob ”Will” Cuppy
(August 23, 1884 – September 19, 1949)

2.1 Navigating the Brain

In a very coarse and superficial description the brain consists of white matter
(wm), mostly constituted by myelinated axons, surrounded by grey matter (gm)
containing cell bodies. This overall structure is illustrated in figure 2.1. In
practice this very coarse description is far from correct as many (very important)
gm structures are hidden inside the wm. Furthermore, the hard division into wm
and gm is hardly appropriate. Figure 2.2 shows how the cerebral cortex can be
divided into lobes. For examples the role of the occipital lobe is mainly related
to processing of visual input whereas especially the frontal lobe is important for
higher order cognitive functions. The structure of the brain is inherently three
dimensional, however, it is possible to visualise the brain in isometric plane
projections. For these types of projections the typically used convention for mri
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(a) White Matter (b) Grey matter

Figure 2.1: wm/gm and hemispheres. Panel (a) shows a reconstruction of
the wm surface and panel (b) shows the gm surrounding it. Anterior represents
frontal areas whereas posterior designates parts to the back. Inferior refers to
bottom while superior refers to the top. Again medial are used to describe
areas near the thalamus in the midbrain (division between hemispheres). Dor-
sal/ventral refers to over/below.

images is radiological convention (meaning the left hemisphere of the brain is
displayed to the right, equivalent to viewing axial slices from the bottom). In
the neuroimaging literature, however, neurological convention (left hemisphere
displayed to the left) is more common. A projection obtained by a vertical cut
parallel to the ears is denoted a sagittal plane, whereas a plane parallel to the
face is a coronal plane. Finally, the projection obtained by a horizontal cut is
denoted a transversal plane, three dimensional views of these cuts are illustrated
in figure 2.3.

2.2 Functional Magnetic Resonance Imaging

The main focus of this thesis is on modelling of the blood oxygenation level
dependent (bold) signal often used to achieve functional contrast in mri. How-
ever, the usefulness of many of the methods addressed in this thesis should
extend to other functional contrasts as well as other modalities such as positron
emission tomography (pet), magnetoencephalography (meg), electroencephalog-
raphy (eeg) and optical imaging.

The description of fmri will here be restricted to the bold signal even though
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Figure 2.2: Lobes in the cerebral cortex. The figure is a reconstruction
of the left gm surface. The different lobes have been roughly sketched and
coloured. Gyri (singular gyrus) are the convex folds in the brain tissue, whereas
areas with negative curvature (concave folds - dark) are in general called sulci
(singular sulcus). Very deep sulci, such as the division between the hemispheres,
are denoted fissures.

many different functional contrast measures exist. Other methods include ar-
terial spin labelling (asl), this technique relies on measuring blood perfusion
by assessing the difference between a measurement where the blood (water) is
tagged magnetically and a control experiment without tagging. The perfusion
signal as measured by asl is expected to be more directly related to neural ac-
tivity than the bold signal and more stable over time (some sequences can even
measure absolute perfusion) being a differential measure. The disadvantages,
however, include lower signal to noise ratio, longer repetition times, and diffi-
culties in getting full brain coverage. Other examples include for example the
vascular-space-occupancy vaso technique for measuring blood volume changes
(Lu et al., 2003) and functional measurements by diffusion mri, where water is
expected to diffuse into the cell (cell swelling) in response to neuronal activation
(Song et al., 1996; Darquie et al., 2001; Le Bihan, 2003; Li and Song, 2003; Song
et al., 2003; Le Bihan et al., 2006).

2.2.1 Blood Oxygenation Level Dependent Signal

Although there exist other contrast measures which are expected to be more di-
rectly coupled to neuronal activation the bold signal remains the most widely
used contrast for functional measurements in mr imaging. Advantages of this
method include the relatively low complexity (in terms of measuring) and the
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(a) Sagittal

(b) Coronal

(c) Transversal

Figure 2.3: Isometric plane projections in the brain. Panel (a) sagittal
plane, panel (b) coronal plane, panel (c) transversal plane

high signal to noise ratio (snr) when compared to competing methods. The
bold is expected to be related to the local field potential as described (Logo-
thetis et al., 2001; Logothetis, 2002)) but the exact relation to neuronal activity
is unknown. The main assumption behind this functional measure is (as is the
case for many other methods) that increased neuronal activity gives rise to lo-
calised increased blood flow. bold measurements were first performed on rats
by Ogawa et al. (1990b,a), and later on humans Ogawa et al. (1992).

Measurements of the bold signal is typically based on echo-planar imaging (epi)
techniques and the actual measured effect stems from signal loss due to presence
of deoxygenated haemoglobin (dhb) (giving rise to field inhomogeneity). The
sequences used are often based on gradient echo (ge) sequences due to the
high snr even though spin echo (se) is expected to give better localisation
(Bandettini et al., 1994; Duong et al., 2002). Oxygenated haemoglobin (hb)
is weakly diamagnetic (and has very little influence on the local field) whereas
dhb is weakly paramagnetic causing shortening of the t?2 relaxation time. The
presence of dhb will therefore result in loss of mr signal (faster loss of signal).

Given these observations increased neuronal activity would be expected to cause
increased oxygen consumption thereby decreasing the mr signal. However, the
phenomenon is more complicated and in general the bold signal is expected to
be caused by at least three effects; the cerebral blood flow (cbf), the cerebral
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blood volume (cbv) and the cerebral metabolic rate of o2 (cmro2).

The following description of the bold signal is motivated by the model suggested
by (Buxton et al., 1998), a mathematical description of the model will be given
later in this section. An increased oxygen extraction due to neuronal activity
results in a short increase in the dhb. This should give rise to a short decrease
in the mr signal (initial dip), this effect however is rather small and may be
difficult to observe in practice. The increased oxygen consumption gives rise to
an increased cbf dominating the first effect thus decreasing dhb (increase in mr
signal). The large increase in cbf is expected to be necessary because neuronal
activity is limited by the blood flow in resting state. The increase in blood
flow expand the blood vessels and increases cbv, thus increasing the amount
of dhb. This effect is insignificant compared to the effect of cbf. However,
it has been suggested that the post stimulus undershoot may be caused by
cbv returning slower to baseline than cbf. In this context it should be noted
that some contradicting experimental evidence exists (Frahm et al., 2008). The
total temporal extent of the bold response is expected to be approximately
30 seconds. In the case where the bold signal can be assumed to be linear
time invariant (lti) the output can be modelled as a simple convolution of an
input signal (activation paradigm) driving the response (Boynton et al., 1996).
We will refer to the impulse response (used in convolution) as the canonical
heamodynamic response function (hrf). An example of a hrf is displayed in
figure 2.4.

Although there is much support that the bold signal is in general a non-linear
function of the neuronal input, (Liu and Gao, 2000; Miller et al., 2001; Kershaw
et al., 2001; Birn et al., 2001; Huettel, 2004; Birn and Bandettini, 2005; Gu
et al., 2005; Wan et al., 2006; Robinson et al., 2006; Jin et al., 2006), analyses
of bold imaging data is typically based on linear models due to the attractive
computational properties. A widely used example of such a model is the gen-
eral linear model (glm) introduced in section 4.4. Note that by including time
derivatives (or similar expansions) in linear models it is possible to model varia-
tions in the response (delay and dispersion) and even (to some extent) account
for non-linearities using Volterra expansions (Friston et al., 1998).

In the following, however, we consider a more general case where the bold signal
is described by a non-linear dynamical model formalising the observations given
above in a mathematical framework. We assume that the bold signal y is
governed by some function g(x,θ) given the internal or external states (time
varying) defined in the vector x and the in general unknown parameter vector
θ

y(t) = g(x(t),θ),

where t denotes the (continuous) time variable. Several forms of the function
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Figure 2.4: Haemodynamic response function. The figure illustrates the
hrf used in the spm5 software package based on a mixture of gamma functions.
This hrf function is commonly denoted the spm canonical hrf and describes
the expected bold impulse response.

given above have been suggested (Friston et al., 2000a; Buxton et al., 2004),
however, here we consider only the non-linear model suggested by (Buxton et al.,
1998), typically referred to as the original ”Balloon model”

We start by simply stating that the change in blood volume, v over time is given
by the difference between inflow f(t) and the outflow v1/α this last term is mo-
tivated by the viscoelastic windkessel model (α is an inverse stiffness parameter
between zero and one)(Frank, 1930; Mandeville et al., 1999), hence the term
Balloon model,

∂v(t)
∂t

=
1
τ0

(f(t)− v1/α) (2.1)

where τ0 is a time scaling parameter. We now consider the change in dHb which
we assume to be determined by the inflow, outflow and the amount of oxygen
extracted

∂q(t)
∂t

=
1
τ0

(f(t)
Et
E0
− v(1/α−1)q(t)). (2.2)

Here E(t) is a function describing the extraction of oxygen often taken to be
given by E(t) = 1− (1−E0)1/f(t). Where E0 is the rest oxygen extraction frac-
tion. The variable s(t) describes a signal that depends on the neural activation
(even though what exactly is meant by this notion is somewhat vague). We will
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assume that this variable is governed by

∂s(t)
∂t

= u(t)− s(t)/τs − (f(t)− 1)/τf , (2.3)

where u(t) is the input ‘neural activity’, τs and τf are time constants related to
the dampening of s(t) in absence of activity and inflow feedback respectively.
We further assume that s(t) control the inflow directly (linearly)

∂f(t)
∂t

= s(t). (2.4)

The remaining parameters (not described in terms of their time derivative) are
assumed to be time stationary. Typically some of the parameters introduced
are assumed to be known a priori (theoretically, or estimated from data in
previous experiments). Other parameters can be estimated from the data; the
main problem with this approach, however, is that the correct parameters are
difficult to determine and reasonable priors for the parameters will have to be
provided.

In Jacobsen et al. (2008) we compared a stationary version of the model above
to an extended version of the Balloon model developed in Friston et al. (2000a)
and Buxton et al. (2004) using a combination of Markov chain Monte Carlo and
resampling techniques. Another comparison of these models using classical test-
ing theory is presented in Deneux and Faugeras (2006) (based on ml estimates
of the parameters and model likelihood).

2.2.2 Noise

Analysis of data obtained from bold fmri are typically analysed in image-space
(after reconstruction) considering only the magnitude of the complex valued sig-
nal even though some experimental evidence exist that the phase may provide
additional information for localisation of effects (Rowe, 2005). Then noise in
these magnitude images are expected to have Richian distribution (also known
as the Rice distribution) assuming that the measurement noise is Gaussian (Gud-
bjartsson and Patz, 1995; Andersen, 1996; Sijbers et al., 1998; den Dekker and
Sijbers, 2005). Most analysis techniques make the often reasonable assumption
that the distribution is Gaussian around a mean value.

Others sources of nuisance effects than the measurement error exist and in gen-
eral we consider any unwanted contrast mechanism (i.e. not related to the
effect of interest) as noise. A very prominent example is movement artefacts,
the most obvious effect of movement is a simple rigid body displacement. In
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practice, however, the effects of movement are much more complicated due to
various other effects. First of all the mri signal is not measured instantaneously
but rather sampled by sequentially transversing the spatial frequencies compli-
cating the artifacts in image space. Furthermore, multi-slice epi acquisitions
are typically acquired interleaved further complicating the situation. We briefly
consider movement correction methods in section 3.3.

Low frequency fluctuation in bold imaging is often attributed to physiological
effects such as spontaneous neural activation, however, the fact that it is also
observed in phantoms and cadavers (Lund and Larsson, 1999; Smith et al., 1999)
indicate that effects are also caused by hardware instability (such as heating up
of scanner hardware). This effect makes it particularly difficult to measure the
bold signal over prolonged periods of time. A small part of this effect is caused
by the steady slow decrease in the static magnetic field (B0). However, in pratice
this effect is drowned by other effects such as instability of the shim and radio
frequency system, and in general drift may cause either increase or decrease of
the signal. High-pass filtering prior to or during modelling is commonly used to
reduce this problem when analysing bold fmri data.

Other effects include physiological noise contributions due to cardiac pulsation,
respiration and interaction with movement effects. We will describe these effects
in further detail along with means of reducing the impact on data analysis in
sections 4.5.1 and 5.5.



Chapter 3

Pre-processing

If you torture data sufficiently, it will confess to almost anything.

Fred Menger

3.1 Normalisation and Coregistration

Aligning and transforming brain volumes has been the topic of extensive re-
search, and a full description is beyond the scope of this text, hence, only a
selection of topics and references will be presented. We here make the dis-
tinction between coregistration and normalisation in that coregistration will
refer to six-parameter rigid body transformation, whereas, normalisation will
refer to more general image registration including non-linear deformation mod-
els. Coregistration can be formulated in terms of the more general linear/affine
transformation

xnew = Ax, (3.1)

where x is an vector describing the image position to be transformed augmented
with 1 at the end, e.g. [x1 x2 x3 1]T for the three dimensional case which we will
consider in the following. Likewise, the vector xnew describes the transformed
position. The affine (4 × 4) transformation matrix A, in which the last row
is constrained [0 0 0 1], describes a twelve parameter linear transformation,
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e.g. translation, rotation, shearing and zooming. The affine transformation can
be re-parameterised into a six-parameter transform describing only translation
and rotation (see (Ashburner and Friston, 1997)) which forms the basis for
coregistration or movement correction which we will consider in section 3.3. The
six parameters are then optimised according to a cost function such as the sum
of squared differences (only appropriate witin modality) or normalised mutual
information with a template image. Unfortunately, the presence of local minima
causes difficulties and global optimisation techniques such as multi-resolution
approaches are often applied (Jenkinson et al., 2002).

Automated normalisation methods can be roughly divided into two groups, ei-
ther based on basis functions (known as low dimensional non-linear warping)
or high dimensional non-linear warping. The basis function approach relies on
defining a set of typical deformations for example based on a discrete cosine
transform with frequencies up a selected cut-off frequency (Ashburner and Fris-
ton, 1999). The other class of methods typically rely on fluid deformation models
or similar types of models (Christensen, 1994; Ashburner et al., 1999).

One use of normalisation is the registration of an anatomical image to a standard
template. The normalisation provides the possibility of identifying coordinates
with respect to an anatomical template/atlas or direct investigation of the de-
formations (morphometry). A popular template is the widely used Talairach
template (Talairach and Tournoux, 1988) based on detailed anatomical descrip-
tion from a post-mortem study of one brain. A more modern template is the
Montreal Neurological Institute (mni305) template based on the mri scans of
305 young healthy right handed subjects (239 male, 66 female, mean age 23.4 ±
4.1) approximately in register with the Talaraich template (Evans et al., 1993).

For more details on coregistration and normalisation procedures see Woods et al.
(1992); Friston et al. (1995a); Ashburner and Friston (1997, 1999); Ashburner
et al. (1999); Woods et al. (1998a,b); Jenkinson and Smith (2001); Jenkinson
et al. (2002) and references herein.

3.2 Anatomical Data

Functional volumes can be acquired very fast (typically within 2-3 seconds),
however, in terms of identifying anatomical features they have several shortcom-
ings. In particular a high noise level, low spatial resolution and bad wm/gm
contrast is usually to be expected. In order to accurately delineate anatomical
features a high resolution t1 weighted anatomical volume is usually acquired. By
overlaying the activation from statistical analysis of functional scans, anatomi-
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Figure 3.1: Cortical surface mapping. The figure show an overview of the
steps involved in cortical surface mapping.

cal localisation of the effects is possible assuming that good alignment between
the functional and anatomical scan can be provided using an appropriate co-
registration method. The anatomical image also provides good gm/wm contrast
making segmentation possible. Brain function is (to some extent) restricted to
gm, largely located in a layer near the edges of the brain. This cortical gm
represents a highly folded structure as seen in figure 2.1. Because activity is
expected to be spatially extended along this folded structure it is sometimes
preferable to display the activation on an unfolded representation of this cor-
tical layer. We used this approach to visualise a perceptual filling in effect in
Larsen et al. (2006). In the following we briefly summarise the steps involved
in obtaining a surface based representation also known as cortical flattening.
An overview of the steps are displayed in figure 3.1. It should be noted that
normalisation is typically performed prior to the procedure described here.

• Inhomogeniety correction: Due to spatial variations in the sensitivity of
the receiving head coil, tissue has different intensities according to the po-
sition within the head coil. This effect is especially pronounced for surface
coil arrays. This causes the intensity of the same substance to vary when
sampled at different spatial locations. This is particularly problematic for
the segmentation into gm and wm as algorithms rely on differences in in-
tensity to classify the tissue type. In order to correct for this difference
in intensity a procedure know as coil inhomogeneity correction is typically
performed prior to segmentation. These correction methods are typically
based on the (reasonable) assumption that the variations in sensitivity
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varies slowly over space. One often used approach is to estimate a three
dimensional bias field based on low frequency spatial transforms (dct,
dft) or slowly varying three dimensional Legendre polynomials to the im-
age intensities within a rough initial segmentation (pre-segmentation) of
the data (Vaughan et al., 2001). More optimal procedures include the
bias correction, segmentation and normalisation in the same estimation
process (Ashburner and Friston, 1997, 2005; Zhang et al., 2001).

• Segmentation: Segmentation refers to classifying voxels into wm,gm,cerebral
spinal fluid (csf) and possibly other tissue types. A full description of
methods for classification is well beyond the scope of this text. However,
in appendix A.1.6 a simple segmentation procedure providing a represen-
tation of the usually well-defined wm/gm boundary surface which will
suffice of construction of a cortical surface representation.

The tesselated volume based on the segmented volume can be deformed
iteratively according to an local energy function. The energy function is
constructed with a spring term smoothing the surface and an intensity
based term attempting to move the surface to obtain a target intensity.
Depending on whether the target intensity is based on wm/gm bound-
ary intensity or the gm/csf matter boundary intensity either the wm/gm
surface or the gm/csf surface (also known as the pial surface) can be ob-
tained (Dale et al., 1999).

• Inflation: The inflation process is performed in order to obtain a surface
free from folds allowing easy visualisation or deformation in order to align
the surface to a template. This process is usually performed by iteratively
minimising an energy function penalising folds while attempting to keep
local distances constant. Depending on the exact form of the energy func-
tion either an inflated surface as shown in figure 3.1 or a sphere can be
obtained. The sphere representation is useful for aligning the surface to a
surface based atlas (Fischl et al., 1999a,b).

• Unfolding: In order to obtain an unfolded representation allowing easy
visualisation surface cuts has to be made. For studies imaging the visual
cortex a cut that approximately separate the occipital lobe from the rest of
the brain and a cut along the calcarine sulcus is usually made. Finally, the
surface is projected onto a plane (two sides), unfolding is now the process
of warping the regions from the side on which the cuts were made onto the
other side. The unfolding procedure typically introduce severe distortions
in local distances on the surface as compared to the original mesh (espe-
cially in regions near the cuts). The distortion may be reduced by once
again minimising a local length preserving energy function (now keeping
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the desired two dimensional representation fixed) (Fischl et al., 1999a).
The resulting surface is a flat representation of the cortical gm where ac-
tivation can be overlaid using the original positions from the folded mesh
for each vertex.

3.3 Motion correction

Even minor movements during an fmri experiment severely degrade the quality
of the signal. The main reason is that some voxels will be moved to another part
of the brain potentially with a different signal intensity (for example moving a
wm voxel into gm or vice versa). For the same reason this effect is normally most
prominent at edges in the images for example at intersection between csf and
gm/wm (for example near the ventricles and at the edge of the brain/head).
The signal contamination due to movement may be reduced by the use of a
six parameter rigid body transformation (displacement and rotation) (Friston
et al., 1995b; Woods et al., 1992). By the use of this simple correction method we
implicitly assume that movement happens between volumes. This assumption
will most certainly not be satisfied because most sequences use almost all the
time for either magnetisation or readout. In reality, the effects of movement
are highly non-linear and include effects of both field inhomogeniety and spin
history. Nevertheless, rigid body transformation greatly reduces the effects of
movement and are virtually always applied.

Interpolation schemes such as either tri-linear, B-spline or sinc interpolation
are applied in order to estimate the effects of sub-voxel movements. The six
movement parameters are typically determined by ml estimation based on either
minimising the sum of squares difference from a reference image. In certain cases
movement correction procedures have been reported to cause spurious effects
especially when considering the least squares objective even when no movement
is present (Freire and Mangin, 2001). It may therefore be advantageous to
consider alternative more robust cost functions as described in Freire et al.
(2002). An example of an alternative cost function is the normalised mutual
information.

The reference image is typically chosen to be the first or middle image in the time
series. Often a two step procedure is formed where the images are aligned to the
first image during the first pass and then aligned to a mean image (calculated
using the transformation obtained in the first pass) in the second pass.

Prospective movement correction procedures implemented directly on the scan-
ner hardware rely on estimating movement during scanning and correcting the
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gradients according to the detected movement. An example of this method
is the prospective acquisition correction (pace) method described in Thesen
et al. (2000). The main disadvantage of this procedure is that movement is
not corrected until it is detected in the images which causes regular rigid body
re-alignment to still be necessary. An improvement to the pace method was de-
scribed in Speck et al. (2006) where detection of movement was based on optical
tracking.

In addition to rigid body re-alignment correction of geometric distortions caused
by movement by field inhomogeniety interaction effects was suggested in Ander-
sson et al. (2001).

After the rigid body re-alignment procedure residual motion effects may still
severely affect the images and further analysis (Lund et al., 2005). Further
correction for these effects have been suggested in Friston et al. (1996). This
method relies on modelling of the nuisance effects caused by movement using
a Taylor series expansion of the fitted movement parameters and spin history
effects (movement parameters from the previous volume). This method is de-
scribed in details in section 4.5.1.

3.4 Slice Time Correction

Sequences used to obtain the desired t?2 weighting for functional imaging are typ-
ically recorded one slice at a time resulting in different acquisition time for each
slice. A complication of this time delay is that the slices are usually recorded
interleaved to reduce cross-talk between slices. Ignoring the differences in tim-
ing may cause problems especially in the case of fast shifting (event related)
paradigms. The methods for correction of slice acquisition time typically rely
on adapting either the data or the model to account for differences in slice
acquisition time. The methods that attempt to correct the data rely on tem-
poral interpolation changing the data to make it appear as if all slices were
acquired simultaneously. Interpolation in the time series requires that the sig-
nal is sufficiently sampled (meaning that the signal is band-limited and consist
of frequencies lower than the Nyquist criterion). In fmri this condition is often
expected to be fulfilled for the signal of interest, however, physiological noise
in particular cardiac induced noise is seldom sufficiently sampled compromising
time interpolation. The other class of methods rely on changing the model to
account for differences in acquisition time. In general, these fall into two cat-
egories. One category of methods attempt to make the model flexible enough
to account for the differences in slice timing also allowing the model to cap-
ture differences in the bold response caused by differences in local physiology.
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The other category adapts the model such that timing differences are modelled
explicitly.

3.5 Smoothing

The strong traditions for spatial smoothing of data as part of the pre-processing
exist for several reasons. Most importantly smoothing suppresses non spatially
distributed noise by averaging neighbouring voxels. Also the smoothing process
may help to reduce anatomical differences between subjects and improve nor-
malisation by eliminating unnecessary fine details. Furthermore, the fact that
Gaussian random field theory is often used to control the family-wise error in
mass-univariate hypothesis tests for significant effects require that data exhibit
smoothness over several millimeters to become in agreement with the assump-
tions usually made in Gaussian random field grf theory Worsley et al. (1996).
Drawbacks of smoothing include compromised spatial resolution. Smoothing is
usually done by convolving with a three dimensional Gaussian kernel either in
the frequency domain or approximately in the spatial domain to reduce compu-
tational cost.

In addition to spatial smoothing temporal smoothing/low pass filtering is also
considered in some cases to suppress noise. This will introduce severe (known)
temporal autocorrelation in the signal. If the introduced autocorrelation is ex-
pected to dominate over the autocorrelation in the data a framework where
the known introduced autocorrelation is corrected can be formed as described
in Worsley and Friston (1995). This can serve as a robust alternative to pre-
whitening, the two approaches are described in detail in (Friston et al., 2000b).

3.6 High-Pass filtering

Due to the presence of low frequency fluctuations not related to the effects
of interest (Lund and Larsson, 1999; Smith et al., 1999) it is often desirable
to remove low frequencies in the data prior to the analysis, this is typically
performed by applying a high-pass filter. One way to perform this task is to
include a low frequency Fourier or dct expansion (Worsley and Friston, 1995)
up to a desired cut-off frequency in the glm used to model effects of interest.
Other approaches use expansions in orthogonal polynomials (Worsley et al.,
2002) (this has the advantage that the resulting fit is free at both the end and
the onset). The optimal cut-off frequency for the high pass filter should depend
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on the specific scanner hardware, i.e. the optimal parameters could be found
by analysing null time series data as done in (Lund et al., 2006). During design
of the stimulus paradigm it is important to consider the limitations caused by
low frequency drift and ensure that the effects of interest occur at frequencies
higher than the desired cut-off frequency.



Chapter 4

Data Analysis and Models

Statistical Analysis:

Mysterious, sometimes bizarre, manipulations performed upon the
collected data of an experiment in order to obscure the fact that
the results have no generalisable meaning for humanity. Commonly,
computers are used, lending an additional aura of unreality to the
proceedings.

Woodman (1979)

4.1 Temporal Autoregressive Modelling

We will denote the autoregressive (ar) model of order p an ar(p) model. In
this model the signal yt at time t is described in terms of the past signal values
as given in the expression

yt =
p∑
i=1

λiyt−i + εt (4.1)

where λi is the autoregressive coefficient corresponding to the ith lag and εt is the
residual noise at time t usually assumed uncorrelated Gaussian. The symmetric
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Toeplitz covariance matrix for an ar(p) noise model can be described in terms of
the Yule-Walker equations Yule (1927); Walker (1931) by solving these equations
the ar coefficients for a given signal can be calculated iteratively. The ar noise
model is a popular choice in the modelling of correlated noise in particular
for fmri due to attractive computational properties. In particular closed form
expressions for the inverse of the covariance matrix for these models exists as
described in Siddiqui (1958).

4.2 Linear Cross Correlation Analysis

We define the cross-correlation as a measure of the similarity between a poten-
tially complex discrete function f and a reference function g at lag τ

(f ? g)τ =
∑
j

f∗j gτ+j , (4.2)

where ∗ denotes the complex conjugate. Further we denote the cross-correlation
between a signal f and itself the autocorrelation, e.g. (f ? f)τ . In order to
determine activity in fmri studies the Pearson product-moment correlation co-
efficient estimate between the time series signal y and a reference time series x
(at zero lag) has been suggested (Bandettini et al., 1992, 1993)

rxy =
∑

(xi − x)(yi − y)√∑
(xi − x)2(yi − y)2

. (4.3)

Here x denotes the sample mean of x. The reference signal is typically based
on some exceptions for the experiment, the correlation is then evaluation over
the voxels in the brain and voxels where the correlation exceeds some threshold
are declared active.

4.3 Statistical models and Bayes Theorem

A special case of what is now known as Bayes theorem was presented in an
essay by Price (1763) with reference to his friend the, at the time of publica-
tion, deceased Reverend Thomas Bayes. Bayes theorem allows us to take into
account prior information during modelling. In the following we will consider
Bayes theorem used on a generative model M . The generative model enables
us to simulate an output vector which we will denote y given some parameters
θ. Given a specific choice of noise model and parameters it is relatively easy to
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calculate the probability of observing a specific output (p(y|M ,θ)), we will de-
note this probability the likelihood. However, typically the quantities of interest
are conditioned on the data and not the model. Bayes theorem

p(M ,θ) =
(y|M ,θ)p(M, θ)

p(y)
(4.4)

allows us to asses the probability of the model and parameters after observing
a specific data vector y (posterior probability). The additional quantities that
have entered in this equation are the probability of the model, p(M ,θ), and the
combined probability of observing the data over all possible models, p(y). The
probability of the model expresses the expectations about the model and param-
eters prior to observing the data (hence typically denoted the prior). The prob-
ability of the data in the denominator can be calculated by summing/integrating
the likelihood over all possible models and parameters. Note that this quantity
only depends on the data (constant given a specific observation vector) therefore
its calculation is often omitted because it serves only as a normalisation factor
(and due to the substantial computational complexity involved in its evaluation).

4.4 The General Linear Model

Linear models are very popular for the analysis of fmri data (Friston et al.,
1994, 1995c; Boynton et al., 1996) due their simple nature. We define the glm

Y = XB +E (4.5)

Where Y denotes a T × N matrix containing the observed times series (of
length T ) as columns for each of the N voxels. X is a T × K matrix which
we will denote the design matrix and B is a K × N parameter matrix (to be
estimated). Finally, the E is the T ×N residual matrix. To estimate values for
the parameters we will proceed by choosing a probability density for the residual
a popular and simple choice is the spatially independent matrix variate Normal
distribution (E ∼ MT×N (0, I,Σ))

p(E|Σ) = (2π)
−TN

2 |Σ|−N/2 exp
(
−1

2
Tr
[
E>Σ−1E

])
(4.6)

Note that the temporal covariance is assumed to be constant over space in the
voxels included in the model. If we substitute Y −XB for E in the expression
above we can maximise the probability by differentiating with respect to the
each of parameters and equating to zero. Hereby we can construct the following
relation for the maximum likelihood estimate of the parameters BML

X>Σ−1XBML = X>Σ−1Y ⇒ BML = (X>Σ−1X)−1X>Σ−1Y (4.7)
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This estimate is also know as the generalised least squares (gls) or pre-whitened
maximum likelihood estimate. This can be motivated by studying the equivalent
model where the data and design matrix respectively is transformed according
to the relations Σ−1/2Y and Σ−1/2X. In this equivalent the residual are now
uncorrelated (scalar covariance). The ml for this pre-whitened problem is known
as the ordinary least squares (ols) solution. Even though the expressions above
describe a multivariate model the estimation is essentially univariate due to
the assumption of independence over voxels and we may therefore estimate any
subset of voxels independently. We have further assumed that the design matrix
is deterministic and that the covariance Σ is known. However, the main problem
is obtaining a good estimate for the temporal covariance, one possible choice is
to estimate it from the residuals Σ = 1

1−KE
>E note that this estimate only

has full rank and hence can be inverted if N >= T +K. The estimation of the
temporal covariance is an ill-posed problem due to the many free parameters,
hence the estimate of the covariance will be very dependent upon even small
variations in the data. In order to reduce this problem and handle cases where
N < T + K a specific structural form or a regularised version of Σ is often
used. By the use of an expectation-maximisation (em) algorithm where the
model parameters and the free parameters of the temporal covariance matrix are
estimated alternatingly it is possible to take into account temporal correlations
in the noise. An example of such an algorithm, where the temporal covariance
matrix is assumed to be based on an ar(1) process is the restricted ml (reml)
procedure applied in the spm software package (Worsley and Friston, 1995).
Note also that the temporal covariance need not be estimated from the same
data that the model is specified for but may be based on based on an estimate
over a larger region (Worsley, 2005). Techniques that rely on estimating priors
from the data itself is typically known as empirical Bayesian techniques.

In the case where X>X is singular we may still use the expressions given above
by replacing the inverse by a pseudo inverse and K with the rank ofX. However,
in this case the parameters of the model are not unique (in the sense that other
parameters can produce the same residual) and interpretation of the parameters
may be hampered. The ml estimates given above implicitly assumes that all
parameter values are equally probable (flat parameter prior) in section 5.1 we
will consider a case where prior expectations on the parameters can be included
in the model.

4.5 Hypothesis Testing

In classical/Fisher statistics testing is usually done using the hypothesis testing
framework. In this framework a null hypothesis is constructed reflecting how a
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test statistic would behave if the effect of interest was not present. If the test
statistic is sufficiently extreme as compared to the expected behaviour the data
does not support the null hypothesis and we accept the alternative hypothesis.
An example of this is the T -test

t =
x̂− µ
σ̂/
√
n

(4.8)

Where x is the quantity to be tested, µ is the value of x that defines the null
hypothesis, σ̂ is the sample standard deviation and n is the residual degrees of
freedom (total number of samples minus the degrees of freedom used to esti-
mate the model). Under the null hypothesis (no effect, Gaussian uncorrelated
noise) the test statistic t is distributed according to a T -distribution with n
degrees of freedom. If x is based on two samples (two-sample T -test/paired T -
test) the denominator can be calculated assuming either equal sample size and
variances (polled-variance estimate), different sample sizes and equal variances,
or different sample sizes and unequal variance through the Welch-Satterthwaite
equation (Satterthwaite, 1946; Welch, 1947). Testing for effects in fmri experi-
ments is classically done by mass univariate hypothesis testing, where the effect
of interest is tested on a voxel-wise basis. The voxel-wise T -test in the glm with
pre-whitening reads

ti =
c>bi

σ̂i(c>bi)/
√
n
, (4.9)

where the standard deviation estimate in the denominator is calculated accord-
ing to σ̂i(c>bi) =

√
σ̂i

2c>(X>X)†X>Σ−1X(X>X)†c. The contrast vector c
defines a linear combination of effects (columns in X) in the glm to be tested.
An alternative test useful for testing the significance of a combination of effects
is the F -test, here the ratio between the variance explained by two competing
models (the null model and the alternative model) is tested. For a descrip-
tion of various tests and in particular the concept of contrasts see for example
Christensen (1996).

The voxel-wise T - and F -test attempt to control the voxel-wise false positives
(the probability of observing an effect when the null hypothesis is true is com-
monly referred to as an uncorrected p-value). However, when many voxels are
considered this may not be desirable as even a quite low false positive rate can
result in many non-active voxels being reported active. Under the assumption
that all tests (voxels) are independent Bonferroni correction allow control of
the so called family-wise error by simply dividing α by the number of (inde-
pendent) tests. The family-wise error here refers to the probability of making
one or more type-I errors. This correction, however, is typically considered too
conservative due to the fact that voxels exhibit strong local dependence (espe-
cially after spatial smoothing). In order to take spatial dependence into account
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while controlling the family-wise error rate corrections based on Gaussian ran-
dom fields grf have been suggested (Worsley et al., 1996). Another alternative
is to control the expected overall false discovery rate (fdr), i.e. the fraction of
voxels declared active which on average can be expected to be false positives
(Benjamini and Yekutieli, 2001; Benjamini and Hochberg, 1995; Genovese et al.,
2002).

The strong emphasis put on the null hypothesis unfortunately has a tendency to
make hypothesis testing quite sensitive to the explicit assumptions made such
as for example normality. For instance variance estimates are quite sensitive
to outliers making assumption of Gaussian residuals/normality important in
especially F -tests.

The hypothesis testing framework is based on testing that the null hypothesis
becomes sufficiently improbable, the Bayesian framework allows us to go beyond
standard hypothesis testing in that we are able to assign probabilities to all the
models of interest under the assumption that the prior distributions applied are
appropriate.

4.5.1 Nuisance Variable Regression

In this section we describe ways to model nuisance effects through a linear
model we will denote nuisance variable regression (nvr). We demonstrated
the usefulness of this procedure in Lund et al. (2006) and showed that explicit
modelling of various nuisance effects reduces violations of the normality and
independence assumptions usually made in the glm.

Noise related to physiological effects is a very prominent confounding factor
in fmri. The respiration cycle causes blood oxygenation changes, gross head
movement and movement of organs in the abdomen (Raj et al., 2001). Also
the cardiac cycle introduces complicated artefacts such as inflow effects of mag-
netised blood and movement of the tissue near larger vessels that cannot be
described by a simple rigid body transformation. In addition to increasing the
signal variance these effects are known to introduce temporal correlations also
known as non-white noise in the residual errors due to the oscillatory behaviour
of these signals. This has implications in the analysis step as residual errors are
usually assumed to be either independently identically distributed (i.i.d.) or to
be described by a simple and sometimes global noise model such as an ar(1)
process (Friston et al., 2002). Removal of these physiological noise effects using
high, low or band-pass filters are only possible if their frequency range is known
and limited. Due to the long tr usually applied in fmri to get whole brain
coverage (typically 1-3 s) respiration and certainly the cardiac cycle is usually
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under sampled causing aliasing. This undersampling causes the effect to alias
into frequencies which could be both high and low within the sampling band-
width rendering the physiological noise broad banded. Furthermore, broadening
of the frequency range due to non-stationarity of physiological noise is strongly
amplified by aliasing as we showed in Lund et al. (2006). Several attempts to
model these effects using various techniques have been performed Glover et al.
(2000); Hu et al. (1995); Lund et al. (2006); Thomas et al. (2002).

The nvr model (Lund et al., 2006) includes three sets of regressors to account
for known nuisance effects (β will refer to parameters to be determined from
data for example by ml estimation):

1 A highpass filter in the form of a discrete cosine set (Worsley and Friston,
1995) to model low frequency drift caused by hardware instabilities:

NL(tn) = βL,1 cos(φL(tn)) + βL,2 cos(2φL(tn)) + · · ·+ βL,p cos(pφL(tn))
(4.10)

Where φL(tn) = π/T and p = floor(2T/TL). T is the duration of the
entire time-series, TL is the period of the fastest oscillation to be removed,
tn is the time at which the first slice of volume n is sampled and floor
denotes a function that returns the largest integer less than or equal to
the argument.

2 A first order Volterra expansion of the movement parameters (Friston
et al., 1996) obtained from the rigid body re-alignment procedure to model
residual movement effects still present after re-alignment:

NM (tn) =βM,1m1(tn) + · · ·+ βM,6m6(tn)
+ βM,7m1(tn−1) + · · ·+ βM,12m6(tn−1)

+ βM,13m
2
1(tn) + · · ·+ βM,18m

2
6(tn)

+ βM,19m
2
1(tn−1) + · · ·+ βM,24m

2
6(tn−1)

(4.11)

Wheremi(tn) is the ith rigid-body re-alignment parameter (i = x, y, z, rx, ry, rz)
corresponding to the volume acquired at time tn.

3 Physiological noise regressors based on the retrospective image correction
(retroicor) method described by Glover et al. (2000). This method
models the physiological noise as a basis-set of sines and cosines repre-
senting the aliased frequencies of the cardiac and respiratory oscillations
and their higher harmonics. Glover et al. (2000) used both linear and
non-linear increasing phases for modelling of respiration effects. How-
ever, due to the comprehensive modelling of residual movement effects we
here consider primarily to model the oxygenation-dependent part of the
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respiration-induced noise, and thus only the phase increasing linearly with
time is used. The retroicor regression variables using 5 harmonics of
the cardiac and 3 harmonics of the respiratory signal then read:

NP (tn) =βP,1 sin(φc(tn)) + βP,2 cos(φc(tn)) + . . .

+ βP,9 sin(5φc(tn)) + βP,10 cos(5φc(tn))
+ βP,11 sin(φr(tn)) + βP,12 cos(φr(tn)) + . . .

+ βP,15 sin(3φr(tn)) + βP,16 cos(3φr(tn))

(4.12)

Where φc(tn) and φr(tn) are the phases cardiac and respiratory phases
respectively assigned to the volume acquired at time tn. The phase here
refer to the temporal distance from the first slice in the current volume to
the last peak in the cardiac or respiratory reference time-course, divided
with the peak to peak interval at that time-point. Here it is assumed that
the pulse and respiration rate stays constant within the acquisition of one
volume, however, the model is still capable of capturing non-stationary in
the cardiac and respiration time series. The acquisition time of volume n,
tn, is considered the time at which the middle slice (time-wise) is acquired.

4.6 Unsupervised Analysis

4.6.1 Factor Analysis

The factor analysis (fa) model developed by Spearman (1904) describes how
matrix-variate data can be described by a linear mixing of factors (sometimes
referred to as sources)

Y = AS +E. (4.13)

Where Y is a data matrix (for example time × voxels), the rows of S forms the
factors (spatial) and the columns of the mixing matrix, A, contains the strength
over time and weight for each of the factors as the rows. E is the residual
error (typically assumed to be Gaussian with diagonal covariance). Note that
the model is identical to the glm. Here, however, we aim to infer both the
mixing matrix and the factors. Unfortunately, the model above has a major
flaw in terms of its uniqueness, this can be seen by considering an alternative
factorisation

Y = (AQ−1)(QS) +E.

Where Q is any invertible matrix, this alternative model is clearly equivalent to
the former model in the sense that it provides the exact same residual error. For
A and S to be uniquely defined it is necessary to impose additional constraints
in the model.
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Resolving the ambiguity of the fa decomposition has been the topic of much
research and several different methods have been suggested a few of which are
described in the following sections.

4.6.2 Principal Component Analysis

The principal component analysis (pca) also known as the Karhunen-Loève
transform dates at least back to Pearson (1901) and has since been applied to a
wide range of problems in many scientific fields. The pca procedure mounts to
consecutively finding the directions in the data accounting for the most variance.
These directions define the principal components here encoded as the rows of
the matrix U

U>Y = ΣV > (4.14)

We here without loss of generality assume that the data matrix has zero em-
pirical mean (e.g. the empirical mean has been subtracted). Also we require
that Σ is a diagonal matrix and that both U and V are orthonormal (e.g.
U>U = V >V = I). Typically, the principal components are sorted according
to the amount of variance of the data they explain. Hence the diagonal of Σ is
non increasing. This model is a severely constrained version of the fa model,
the advantage of which is that it is uniquely defined under the assumption that
all eigenvalues of the sample covariance matrix (Y Y >) are distinct.

The pca decomposition can be performed efficiently using the singular value
decomposition (svd where the cost function ‖Y −AS‖2F is minimised subject to
the constraints U>U = V >V = I and Σ being diagonal (Golub and Van Loan,
1996; Golub and Kahan, 1965).

Even though orthogonality causes pca to be unique this constraint is normally
not meaningful for real data. Nevertheless approximate pca decompositions
(retaining only the components corresponding the largest singular values) are
useful for identifying the signal subspace. Such decompositions are often used
for dimensionality reduction (compression) or for forming a good starting point
for other methods such as ica.

4.6.3 Independent Component Analysis

The concept of independent component analysis (ica) was introduced in a pa-
per by Comon (1994). The main concept is to resolve ambiguity of fa type
decompositions by the assumption of independence of the sources, which is a
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good assumption for many data types. For fmri data ica has become a popular
explorative analysis tool and has been used to identify both signal and noise in
the data (McKeown et al., 1998b,a; McKeown and Sejnowski, 1998; McKeown
et al., 2003; Thomas et al., 2002; Beckmann and Smith, 2004). We begin by
writing the noiseless ica (or fa) model

Y = AS (4.15)

We here motivate the model as a blind source separation problem (bss), i.e. we
interpret the signal as a noise free mixing of the latent sources encoded in the
rows of S. We now aim to estimate the un-mixing matrix W = A−1 that will
reconstruct the sources as S = WX. We note that mixtures of independent
signals will not be independent and tends to become more Gaussian than the
signals themselves due to the central limit theorem. Hence, by estimating W
such that the rows of S become as non-Gaussian as possible while assuming
that the rows are independent should allow us to recover the original sources
(up to permutation and scaling). We note that this approach is only feasible if
the sources are not Gaussian (with the exception of one which can be allowed
to be Gaussian)(Hyvärinen, 1999).

We can write the joint density of the signal (given that we know the correct W ,
which we assume to be deterministic) as

p(X|W ) =
∏
i

ps(w:,iX)|W |, (4.16)

where the |W | is found as the determinant of the Jacobian of S with respect to
X. For maximisation purposes, i.e. ml ica, we will consider the log-likelihood

log p(X|W ) =
∑
ij

log ps(w:,ixj) + J log |W |. (4.17)

Here, the source distribution should be selected in accordance with prior expec-
tations an example is the Laplace prior which would correspond to determining
the sources such that the l1-norm is minimal. The determinant of the un-mixing
matrix ensures that the un-mixing/mixing matrix is invertible. This approach
of ml ica is equivalent to the information maximisation approach given in (Bell
and Sejnowski, 1995).

Other methods for ica include diagonalisation of higher order moments, cu-
mulants (Comon, 1994) or autocorrelation functions (Molgedey and Schuster,
1994) of the source matrix. Procedures such as the varimax rotation criterion
(Carroll, 1953; Kaiser, 1958) and related methods developed to resolve the am-
biguity of fa models can also be considered ica algorithms, however, these were
not motivated directly through independence of the sources.
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4.6.4 Sparse Coding

We once again consider the fa model and proceed by construction of a combined
likelihood and prior of the model. The likelihood term, pε(Y |A,S), favours data
reconstruction and the prior term, ps(S), favours sparsity of the sources.

psc = p(Y ,A,S)ps(S) (4.18)

The reconstruction term is often taken to be based on Gaussian noise, i.e. based
on the sum of squared error (‖Y −AS‖2F ), i.e. the l2-norm of the reconstruc-
tion. The number of non-zero elements in S, i.e. the l0-norm appears to be
an appealing way to measure sparsity of S. Unfortunately, ml estimation using
priors based on this quantity leads to N-P hard optimisation problems and in
practice the densities based on for example the Laplace prior (l1-norm) is often
chosen serving as a convex proxy for the l0-norm. By taking the logarithm,
switching sign and dropping normalisation constants in equation 4.18 we arrive
at the objective

CSC = ‖Y −AS‖2F + λ‖S‖1, (4.19)

where λ serves as a sparsity regularisation strength. The minimisation of the
objective is often approached by a Gauss-Siedel strategy, i.e. alternating be-
tween solving S for fixed A and vice versa. Normally, the norm of the compo-
nents in A is kept fixed by applying a Lagrange multiplier approach (Lee et al.,
2007) or by projected interior point methods (Olshausen and Field, 1996). Solv-
ing S for fixed A based on the objective in equation 4.19 is the well known
Least Absolute Shrinkage and Selection Operator (lasso) (Tibshirani, 1996)
or basis pursuit de-noising (bpd) problem (Shaobing and Donoho, 1994). This
convex optimisation problem has no known closed form solution and iterative
methods are typically applied. One such example is the Least Angle Regres-
sion and Selection (lars) algorithm(Efron et al., 2004) described in appendix
A.2.4 or the equivalent homotropy (Osborne et al., 2000) method which al-
lows minimisation of this objective function for all values of λ at the cost of
an ols solution. Other approaches include conjugate gradient (Olshausen and
Field, 1996), turning the problem into a non-negative quadratic programming
problem with negativity constraints of doubled size as done in the sparselab
(http://www.sparselab.stanford.edu) or using an iterative re-weighted least
squares (irls) procedure (Blumensath and Davies, 2004). Yet another simple
alternative is the modified gradient method given in appendix A.2.1 where the
update is spilt into two to avoid oscillations around zero.

One way to approach the problem of selecting an appropriate value of λ would be
to consider prior expectations (for example expected variance of S). In practice,
however, several different sparsity penalties are applied and the one providing
the best tradeoff between sparsity and reconstruction is selected. One possibility

http://www.sparselab.stanford.edu
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in the selection of this optimal tradeoff is large sample approximations such
as the Bayesian Information Criterion (bic) or Akaike’s Information Criterion
(aic). In practice, however, somewhat more heuristic measures such as the L-
curve (identifying the region of maximum curvature in a plot of for example
the reconstruction error as a function of the l0-norm or l1-norm) yields better
results.

A related model is the sparse pca model suggested in (Zou et al., 2006)

Y ≈ AWY ,

where W is regularised with a sparsity prior. The rationale behind this model
is to be able to explain data as a linear combination as few of the original data
points as possible (thus sources are S = WY ). This model can be estimated
through the minimisation of the following objective

argminA,W ‖Y −AWY ‖2F + λ1‖W ‖1 + λ2‖W ‖2F
subj. to A>A = I

.

Where λ1 and λ2 are regularisation parameters for the l1-norm and l2-norm
respectively. Note that A is restricted orthonormal, this together with a small
l2-norm regularisation ensures that the model is equivalent to standard pca
when no sparsity regularisation is chosen (λ1 = 0). We demonstrated this
model on fmri data in Sjöstrand et al. (2006).

4.6.5 Non-negative Matrix Factorisation

The non-negative matrix factorisation model (also known as positive matrix fac-
torisation) as described by Paatero and Tapper (1994) and later reinvented by
Lee and Seung (1999) is a version of the fa model where the model parame-
ters are constrained positive. Due to the non-negativity constraint cancellation
effects do not occur providing an often desired part-based representation. The
model has proved useful for a wide range of data such as text, pet (Lee et al.,
2001) and spectral data (Gobinet et al., 2004). Decomposition of unconstrained
data may be achieved by considering the amplitude of a spectral representa-
tion (Smaragdis and Brown, 2003) or simply adding a constant offset to the
data. The non-negative matrix factorisation model can be estimated using the
popular multiplicative updates (Lee and Seung, 1999) or over relaxed bound
optimisation (Salakhutdinov et al., 2003) described in appendices A.2.2 and
A.2.3 respectively. Other approaches include classical non-negative quadratic
programming using active set procedures (Lawson and Hanson, 1974; Bro and
de Jong, 1997) or methods that rely on projecting the gradient to the positive
orthant as described in Lin (2007). Unfortunately, non-negativity constraints
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does not in general alleviate the problem of non-uniqueness (Donoho and Stod-
den, 2004) and often additional constraints such as sparseness (Donoho and
Stodden, 2004) is imposed. In Mørup et al. (2008a) we presented a sparse ver-
sion of the nmf optimised using a non-negative version of the lars algorithm
(see appendix A.2.5).

4.7 Multi-way Decompositions

4.7.1 Canonical Decomposition / Parallel Factor Analysis

The parallel factor analysis (parafac) also named canonical decomposition
(candecomp) as suggested by (Carroll and Chang, 1970; Harshman, 1970) is
a simple generalisation of the fa decomposition model to n-way tensors. This
model, which we will denote the candecomp/parafac (cp) model, states how
a n-way tensor is decomposed into a sum of rank one components

yi1,i2,...,iN ≈
D∑
d=1

a
(1)
i1,d

a
(2)
i2,d

. . . a
(N)
in,d

. (4.20)

The approximation will be exact when D is higher than or equal to the rank of
the tensor Y (which defines the tensor rank). The 3-way version of this model is
illustrated graphically in figure 4.1. In fmri one example of data structured in a
3-way tensor is data measured over multiple subjects, here the modes are; space,
time and subjects. Due to the very restrictive nature of the cp decomposition it
is contrary to the fa model unique under mild conditions. In a rigorous proof by
Kruskal (1976) several sufficient conditions for the decomposition to be unique
is given. The most popular of these generalised to n-way (Sidiropoulos and Bro,
2000) states that decomposition is unique when

N∑
n=1

kA(n) ≥ 2D +N − 1, (4.21)

here kA(n) denotes the k-rank (Kruskal rank) of the matrix A(n) which is the
maximal number of rows that can be selected from A(n) such that all these
possible sets are linearly independent (the maximum independent set). Note
that it follows from this criterion that the cp decomposition may be unique
even when the number of components are greater than the rank of every mode
in the tensor.
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Figure 4.1: The CP model. The figure illustrates how a 3-way tensor is
approximated by a sum of rank-1 components in the 3-way CP model.

4.7.2 Estimating the cp model

Unfortunately, the cp model has no known closed form solution identifying the
correct subspace as was the case with the svd for the fa model when assuming
independent Gaussian noise with scalar covariance. However, by applying the
matricising operation and the Khatri-Rao product the model can be restated
such that the estimation for each mode becomes equivalent to a regular fa model

Y (n) ≈ A(n)Z, (4.22)

where Y (n) denotes the matrix obtained by matricising Y over the n′th mode
and Z> is the Khatri-Rao product over the remaining modes,

Z> = A(N) �A(N−1) � . . .�A(n+1) �A(n−1) � . . .�A(1).

By solving alternating between each of the modes the alternating least squares
(als) algorithm is formed. Note that if we assume independent Gaussian noise
with scalar covariance there is a closed form solution for each mode

A(n) ← Y (n)ZH
−1,

where

H = A(N)>A(N) • . . . •A(n+1)>A(n+1) •A(n−1)>A(n−1) • . . . •A(1)>A(1).

Note that the matrix inversion is on the often small factors × factors matrix.
Unfortunately evaluating the Khatri-Rao product to form Z is computationally
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intensive for large scale problems, a much more computationally efficient algo-
rithm can be implemented by pre-multiplying the largest mode with the data
before solving for the remaining modes (Tomasi, 2006).

4.7.3 Tucker

The Tucker model (Tucker, 1966) can be written as

yi1,i2,...,iN ≈
∑

j1,j2,...,jN

gj1,j2,...,jNa
(1)
i1,j1

a
(2)
i2,j2

. . . a
(N)
iN ,jN

, (4.23)

and can be considered an extended version of the cp where the core array G
serves to model linear interactions between the modes. By utilising the n-mode
matricising operation and kronecker product we can restate the Tucker model
as a sequence of regular fa problems

Y (n) ≈ A(n)Z, (4.24)

where

Z = G(n)

(
A(N) ⊗A(N−1) ⊗ . . .⊗A(n+1) ⊗A(n−1) ⊗ . . .⊗A(1)

)>
.

As a result estimation for each mode can be performed by using pseudo-inverses
for the least squares objective (Andersson and Bro, 1998). Estimation of the core
array can be performed utilising the n-mode tensor product, ×n, and regular
matrix pseudo-inverse

G = Y ×1 A
(1)† ×2 A

(2)† ×3 . . .×N A(N)†. (4.25)

Note that the Tucker model is equivalent to the cp model when the core tensor
is diagonal. By estimating the core tensor corresponding to an estimated cp
model and measuring the ‘deviation’ from a diagonal tensor the core consistency
diagnostic criterion is formed (Bro and Kiers, 2003). By examining when there
is a strong drop in core consistency (when adding more factors) it is possible to
asses how many factors are appropriate for describing the data at hand.
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Chapter 5

New Models

Remember that all models are wrong; the practical question is how
wrong do they have to be to not be useful.

George E. P. Box (18 October 1920 – )

Box and Draper, Empirical Model-Building, p. 74, Wiley

5.1 Poor-mans Bayesian General Linear Model

This section describe how using the conjugate prior allows efficient computation
of the model evidence/Bayes factor in a linear model serving as a computation-
ally ‘inexpensive’ alternative to iterative methods such as numerical integration
or variational Bayes.

The description of the glm given in section 4.4 relied on ml for estimation of
the parameters (flat prior) and with Gaussian assumptions on the residual error
term. The Bayesian framework described in section 4.3 allows us to incorporate
prior information in the model by the use of a meaningful prior distribution on
the model parameters. Typically, this process involve the use of methods such
as variational Bayes or numerical integration to obtain the posterior distribution
Penny et al. (2003); Kershaw et al. (1999). However, if many models are to be
compared solutions based on these iterative methods may be intractable. We
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therefore suggest the use of conjugate priors in which case the posterior distri-
bution and Bayes factor can be obtained as a closed form expression. Earlier
work Hansen et al. (2002) applied a Normal-Inverse-Gamma (nig) conjugate
prior for model selection. In this case noise is assumed Gaussian identically and
independently distributed (i.i.d., ‘white noise’). It is, however, well established
that noise in fMRI exhibits temporal correlations, see e.g., (Weisskoff et al.,
1993) which is typically dealt with by a pre-whitening procedure assuming a
known (typically estimated from data) temporal covariance structure.

Here we aim to derive a detection framework based on the natural conjugate
prior for the glm allowing for arbitrarily correlated normal noise. For this we
apply the normal-inverse Wishart (niw) prior. The choice of a conjugated prior
carries with it some constraints, in particular, it implies a relation between the
noise covariance and model parameter prior. Such a constraint may or may not
be relevant for a given setup. However, they lead to much more computationally
efficient estimates, since the relevant Bayes factors are closed form expressions.
It is well established that integration over model parameters can be carried
out analytically choosing a Gaussian prior. However, here we consider also the
integral over all possible realisations of the noise structure (i.e. average over all
possible correlated noise model). This should improve stability in cases where
the exact noise covariance is not known. Some generalisations of the natural
conjugate prior exists for the glm. However, these do not lead to closed form
expressions for the Bayes factor (Press, 1982; Daz-Garca and Ramos-Quiroga,
2003). We proceed by deriving a closed form expression for Bayes factors in
the glm using the niw prior, then we consider assigning meaningful hyper-
parameters to the prior distribution. Given the choice of prior parameters we
give expressions for the posterior parameter distribution and the posterior snr.
Finally, we consider some extensions of the framework to allow for adaptive
regularisation using empirical Bayes and discuss the possibility of estimating
hyper-parameters for the noise covariance prior.

In the following we will consider the linear model given by

y = Xβ + ε,

where y is a data vector of length T , X is a design matrix consisting of K
known components, β is an unknown parameter vector of length K and ε is the
residual error assumed to be normal distributed with zero mean and unknown
covariance (ε ∼ N (0,Σ)). With these assumptions the model likelihood is given
by

p(y|M) = p(y|X,β,Σ) = (2π)−T/2 exp
[
− 1

2 log |Σ| − 1
2 (y −Xβ)>Σ−1 (y −Xβ)

]
.

(5.1)
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Where |Σ| denotes the determinant of the matrix Σ. In the following section
we will define prior distributions for the model parameters β and the noise
covariance Σ.

Prior distribution

During the derivation we will consider a design matrix that is extended to have
full rank (eg. a design matrix Xf with T −K columns added). Note that we
will eliminate this restriction later by forcing the parameters of the additional
parameters to zero choosing a prior with zero variance on these parameters. We
introduce the reconstructed signal z = Xfβ and rewrite the model likelihood

p(y|z,Σ) = (2π)−T/2 exp
[
− 1

2 log |Σ| − 1
2 (y − z)>Σ−1 (y − z)

]
. (5.2)

We introduce the multivariate normal prior for the reconstructed signal z ∼
N (0,Q−1Σ)

p(z|Q,Σ) = (2π)−T/2 |Q|
1
2 exp

[
− 1

2 log |Σ| − 1
2z
>Σ−1Qz

]
. (5.3)

Notice that we have defined the prior for the reconstructed signal instead of the
model parameters as it is typically done (Goutte et al., 2000; Woolrich et al.,
2004). However, in this case where we have a Normal distributed prior and a
linear relation between the model and the reconstructed signal the two has a
simple relation (eg. if the parameters have covariance V the reconstructed signal
will have covarianceXfV X

>
f ). Here we will not require the product ofQ−1 and

Σ to be symmetric, however, we note that in cases where an asymmetric part
exists this part will not contribute when we later integrate over this distribution.

Further, we will apply the inverted Wishart distribution for the noise covariance
Σ ∼ W−1

m (B)

p(Σ|B,m) = (2)−
mT
2 |B|

m
2 ΓT (m2 )−1 exp

[
−m+T+1

2 log |Σ| − 1
2 Tr

(
BΣ−1

)]
,

(5.4)

where the ΓT (a) is the multivariate gamma function given by

ΓT (a) =
∫
G∈Ω

exp(−TrG) |G|a−
(T+1)

2 dG = π
T (T−1)

4

T∏
j=1

Γ(a+ (j−1)
2 ),
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where Ω is the complete set of all (T × T ) positive definite matrices and Γ(a)
denotes the ordinary Gamma function. Note the specific parametrisation of the
inverted Wishart distribution; the noise covariance scale matrix is denoted B
while m is the degrees of freedom. By multiplying the two prior distributions
we obtain the niw joint prior distribution (see appendix A.1.5) given the three
hyper-parameters Q,B and m

p(z,Σ|Q,B,m) =(2)−
(m+1)T

2 (π)−
T
2 |Q|

1
2 |B|

m
2 ΓT (m2 )−1

× exp
[
−m+T+2

2 log |Σ|
]

× exp
[
− 1

2z
>Σ−1Qz

]
× exp

[
− 1

2 Tr
(
BΣ−1

)]
.

(5.5)

Posterior distribution

According to equation 4.4 the posterior distribution is proportional to the prod-
uct of the likelihood and the prior distribution. We form this joint model and
prior distribution as the product of equations 5.2 and 5.5

p(y, z,Σ|Q,B,m) =(2)−
(m+2)T

2 (π)−T |Q|
1
2 |B|

m
2 ΓT (m2 )−1

× exp
[
−mp+T+2

2 log |Σ|
]

× exp
[
− 1

2 (z − µz)>Σ−1Qp(z − µz)
]

× exp
[
−Tr

(
1
2BpΣ−1

)]
.

(5.6)

For a more detailed derivation see Madsen and Hansen (2007). The resulting
distribution given above is by conjugacy again of the niw type with updated
hyper-parameters (Qp, Bp, mp and an additional parameter µz the recon-
structed mean which we assumed to be zero in the prior distribution). The
update parameters are given by

Qp =IT +Q,

Bp =B + (IT +Q−1)−1yy>,

mp =m+ 1,

µz =(IT +Q)−1y.
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The expression for the posterior distribution in equation 5.6 depends on the
model parameters β and the noise covariance Σ in order to remove the de-
pendence upon these parameters we proceed by marginalising the distribution
with respect to these. This marginalisation yields simply the niw normalisation
integral (see appendix A.1.5) and we obtain

p(M|y,Q,B,m) ∝
|B|

m
2
∣∣IT +Q−1

∣∣−1
2∣∣∣B +

(
IT +Q−1

)−1
yy>

∣∣∣m+1
2

.

(5.7)

This expression was derived under the assumption that the design matrix has
full rank. However, by forcing the parameter estimates of the last T−K columns
in the design matrix to zero (by having zero prior variance for these) and consid-
ering assignment of reasonable prior hyper-parameters the following expression
can be found (see (Madsen and Hansen, 2007) for further details)

p(M|y, v,B,m) ∝ b−
T
2 |Bprior|−

1
2 |A|

1
2(

1 + 1
b

(
y>B−1

priory − vy>B
−1
priorXAX

>B−1
priory

))m+1
2

,

(5.8)

where b = (m−T−1)y>y
Tr(Bprior) , v = Tr(Bprior)

(m−T+1) Tr(X>X)
, A =

(
IK + vX>B−1

priorX
)−1

andBprior is a hyper-parameter matrix set according to the expected covariance
structure of the noise.

In the case where Bprior is chosen to be the identity matrix the expression
given in equation (5.8) simplifies to the expression obtained with the white
noise Normal-Inverse Gamma (NIG) prior (Hansen et al., 2002), however, with
modified interpretations of the hyper-parameters. Note that we here integrate
over all possible realisations of correlated noise according to the Wishart prior.

Parameter estimates

The posterior reconstructed signal will follow a multivariate T -distribution with
m − T + 2 degrees of freedom, covariance matrix Q−1

p Bp and mean µz. Here
the posterior mode (map) estimate is simply the mean µz and we can obtain
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the posterior parameter estimates (βMAP ) directly by simply dropping the mul-
tiplication with X in the expression for µz

µz = (IT +Q)−1y = Q−1(IT +Q−1)−1y

= vXX>B−1
prior(IT + vXX>B−1

prior)
−1y

= vXAX>B−1
priory ⇒

βMAP = vAX>B−1
priory.

(5.9)

In the limit where v →∞ this estimate coincides with the standard pre-whitened
ML likelihood estimate.

βML = (X>B−1
priorX)−1X>B−1

priory. (5.10)

Posterior signal to noise ratio

The posterior distribution contains information about both the detected signal
and the noise. We will therefore derive a quantity that we denote the posterior
snr which can provide information about how heavily the signal was contam-
inated by noise. We estimate the posterior snr as the expected mean of the
reconstructed signal squared divided by the trace of the noise variance

SNRposterior =
µ>z µz

Tr( 1
m−TBp)

=
v2y>B−1

priorXAX
>XAX>B−1

priory

y>y − 1
m−T (vy>XAX>B−1

priory)
.

(5.11)

We can now evaluate a bound for the posterior snr which we will use to set
a reasonable value for the prior hyper-parameter m. In the limit where the
input signal y is contained within the subspace defined by the design matrix
X and v → ∞ (fully reconstructed signal) the posterior snr (equation 5.11)
will approach the value m−T

m−T−1 , hence this is an upper bound for the posterior
snr. The prior signal covariance is finite when m > T + 1. Choosing the lowest
possible integer m = T + 2 limits the posterior snr to two and therefore this
does not constitute a weak prior. In the case of maximum likelihood estimation
the snr scales with

√
T . Here, we can get a similar behaviour by setting m =

T +1+1/
√
T making the maximum obtainable (for v →∞) posterior snr ratio
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scale roughly with the square root of the input data dimension. In this relation
it should be noted that m has no influence on the MAP parameter estimate.

In figure 5.1 we use the proposed detection framework to detect the correct noise
model (based on nvr regressors) for each voxel in a visual experiment. Results
for detection of visual activation and the estimated posterior snr is displayed
in figures 5.2 and 5.3 respectively. For more details, simulations and discussion
see appendix B.1.

High-pass filter Motion

Cardiac cycle Respiration

Figure 5.1: Nuisance effects. The figures show the detected nuisance model
complexity overlayed on the anatomical volume for each of the nuisance effects
indicated by the headings. Note that the colouring relates to the detected model
complexity and not directly to the significance of the effects. Effect of the high-
pass filter is widely distributed over the brain whereas motion is most prominent
at the edges of the brain. At the large arteries of the brain such as the Circle of
Willis and the Medial Cerebral Artery the detected model complexity is highest
as it is to be expected. Respiratory effects are present at the edges of the brain
as well as in the ventricles. The colour bars indicate either the model complexity
K (high-pass filter and motion) or the order of the expansion (cardiac cycle and
respiration).
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Figure 5.2: Visual activation. The figures show axial slices of the anatomical
volume with the paradigm model order overlayed (number of harmonics of the
periodic stimulus cycle). Note that no thresholding is applied to the images
- it simply shows how many orders of the stimulus cycle was detected to be
present in the signal. Activation is mainly restricted to the primary visual areas
as is to be expected. However, as the detection scheme is extremely sensitive
effects in other areas are also detected. Using this method where we simply
select the most probable model we have implicitly assumed that the cost of any
misclassification (model to model or model to null hypothesis) is the same. If
false positives are a primary concern it may be useful to assign a higher cost to
misclassification of the null hypothesis.
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Figure 5.3: Posterior snr. The upper panel shows the anatomical volume with
the detected snr ratio overlayed as indicated by the colour bar. The two bottom
panels show flattened views of the occipital lobe with the detected posterior
snr overlayed in the colours indicated by the colour bars. lh denotes the left
hemisphere whereas rh indicates the right hemisphere, in order to flatten the
surfaces cuts were made along the Calcarine fissures as indicated by the arrows.
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5.2 Simple Algorithms Made Complex

Despite the title which may appear intimidating this section concerns a very
simple method for combining optimisation in the time and frequency domain.
Frequency representation of time series data accommodate efficient optimisation
for models with shifts, convolutions and smoothness due to the following basic
properties

• Shift in the time/spatial domain corresponds to multiplication in the fre-
quency domain.

• Convolution in time/spatial domain also becomes multiplication in the
frequency domain.

• Smoothness of signals in the time/spatial domain correspond to low fre-
quency representations in the frequency domain.

Further, the existence of efficient Fast Fourier Transform (fft) algorithms allow
transformation between the time/spatial and frequency domain to be performed
at limited computational cost O(n log n). Unfortunately, models are often con-
strained in the time domain in a way that is not transparent in a frequency
representation which hampers optimisation in the frequency domain. In par-
ticular, component identification can be improved by imposing constrains such
as sparseness, non-negativity or smoothness. While shifts and convolution are
efficiently implemented in the frequency domain constraints in the form of non-
negativity, sparseness and smoothness are typically defined in the time domain
without an explicit representation in the frequency domain. In Mørup et al.
(2007b) we applied the time-frequency gradient method (tfgm) which we later
formalised in Madsen and Hansen (2008).

We consider objective functions, C, of the form

C =
∑
t

ft(xt) +
1
N

∑
f

gf (x̃f ), (5.12)

where ft and gf are real valued functions of the real and complex variables xt
and x̃f such that x̃ = F(x). Thus, we require the objective functions to be
separable in either the time/spatial or frequency domain. The gradient with
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respect to xt and x̃f of objective functions satisfying (5.12) can be written as

∂C

∂xt
= f ′t(xt) +

1
N

∑
f

g′f (x̃f )eı2πft

= f ′t(xt) + F−1(g′)t,
∂C

∂x̃∗f
=

∑
t

f ′(xt)e−ı2πft + 1
N g
′
f (x̃f )

= F(f ′)f + 1
N g
′
f (x̃f ).

Thus, the gradient of the objectives can be converted arbitrarily between the
time and frequency domain. The crux of this property follows from the sep-
arability into sums over time/space or frequency instances (t or f). Further,
least squares objective in a form satisfying (5.12) are equivalent in the time and
frequency domain due to Parseval’s identity, i.e.∑

n

‖xn‖2F =
1
N

∑
f

‖xf‖2F .

We note that a variable which is updated in the frequency domain has to remain
real when applying the inverse dft. For this requirement to be fulfilled, e.g.
F−1(g) real valued, the following relation has to hold in the frequency domain

gN−f+1 = g∗f , (5.13)

where ∗ denotes complex conjugate. The constraint is enforced by only consid-
ering the bN/2c + 1 frequencies, i.e. frequencies up to the Nyquist frequency,
while setting the functions of the remaining frequencies according to (5.13).

In Madsen and Hansen (2008) we applied the tfgm to derive simple algorithms
for the following fa type decompostions:

• Shifted Non-negative Matrix Factorisation
The data and model parameters are constrained non-negative in the time
domain while temporal shifts are represented efficiently through the fre-
quency domain representation.

• Convolutive Sparse Coding
While convolution is efficiently implemented through multiplication in the
frequency domain the filter length in the time domain constrains regions
of Aτ to zero. Furthermore, the sparseness imposed on S resides in the
time domain.

• Sparse and Smooth Matrix Factorisation
While smoothness constraints can efficiently be implemented in the fre-
quency domain, sparseness constraints reside in the time domain.
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The following sections will briefly describe the derivation of these models.

5.2.1 Shifted Non-negative Matrix Factorisation

A popular approach for enforcing non-negativity is the use of the multiplicative
updates algorithm introduced in Lee and Seung (1999, 2000). See appendices
A.2.2 and A.2.3 for further details.

The shifted non-negative matrix factorisation (shiftnmf) model proposed in
Mørup et al. (2007b) is given by

ym,n ≈
∑
d

am,dsd,n−τm,d ,

where Y ,A and S are non-negative. While shifts correspond to simple multipli-
cation of a complex phase, the non-negativity constraint is not transparent in
the frequency domain. Thus, a method combining the apparent representation
of non-negativity in the time domain with the efficient implementation of shifts
in the frequency domain is desired. The least squares objective can be written
as

CLS(A,S) =
1

2N

∑
f

‖ỹf − Ã
(f)
s̃f‖2F .

Thus, in the frequency domain the objective becomes separable over frequencies,
however, the non-negativity constraint resides in the time domain. The model
can be estimated alternatingly solving for A, S and τ as described in Mørup
et al. (2007b). Here, the tfgm is applied when updating the variable S. The
gradient of the least squares cost function in the frequency domain is

g̃f =
∂CLS

∂S̃f
= − 1

N
Ã

(f)H

(x̃f − Ã
(f)
s̃f ).

By applying the inverse dft on the gradient in the frequency domain the corre-
sponding gradient in the time domain is obtained. Splitting the gradient in the
frequency domain into what constitutes the positive and negative part of the
corresponding gradient in the time-domain gives

g̃+
f =

1
N
Ã

(f)H

Ã
(f)
s̃f ,

g̃−f =
1
N
Ã

(f)H

ỹf .

Consequently, by taking the inverse dft of G̃
+

and G̃
−

the corresponding posi-
tive and negative part of the gradient in the time-domain are found. As a result,
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S can be updated using multiplicative updates in the time domain, hence, en-
forcing non-negativity through the update

sd,n = sd,n

(
g−d,n

g+
d,n

)α
.

In figure 5.4 we demonstrate the usefulness of the shiftnmf over regular in-
stantaneous nmf when shifts are present in the data.

5.2.2 Convolutive Sparse Coding

Traditionally, convolutive bss models have been estimated either in the time
domain by Toeplitz structured matrices or in a windowed frequency domain
representation Syskind et al. (2007). We will presently solve the convolutive bss
problem in the time domain using the tfgm. The Convolutive Sparse Coding
model is given by

ym,n ≈
∑
d,τ

aτm,dsd,n−τ .

Where S is sparse. The model is separable in the frequency domain and can be
optimised using the following objective of the form given in (5.12)

C =
1

2N

∑
f

‖ỹf − Ãf s̃f‖2F − λ
∑
n

log(sp(sn)).

Where the first term is the reconstruction error and second term the sparsity
penalty imposed with strength λ given by the sparse prior distribution sp. We
will consider the Laplace prior given by sp(sn) = e−|sn| forming a l1-norm
regularisation penalty. The sparsity in the time domain as well as regions where
the filter Aτ is zero is not transparent in a frequency domain representation.
However, the convolutive model is efficiently estimated in a frequency domain
representation. Thus, again the tfgm admits the benefits of the representations
in the two domains. The gradient of the least squares error in the frequency
domain is given by

∇LSãm,d,f = − 1
N

(ỹm,f −
∑
d

ã∗m,d,f s̃d,f )s̃∗d,f

∇LSs̃d,f = − 1
N

∑
m

ỹm,d,f (ỹm,f −
∑
d

ã∗m,d,f s̃d,f )

Thus, the gradient in the time domain is given by

∇Aτ = F−1(∇LS
Ã

)τ

∇S = F−1(∇LS
S̃

) + λ sign(S)
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(a) True components (b) Estimated components nmf

(c) Estimated components shiftnmf

Figure 5.4: Upper left panel: The true factors forming the synthetic data
(Y ∈ <9×1400). To the left, the strength of the mixing A of each source is
indicated in gray color scale. In the middle, the three sources are shown and to
the right is given the time delays of each source to each channel. Upper right
panel: Results obtained by conventional instantaneous nmf for the generated
synthetic data. Clearly, the model cannot account for the shifts in the data
hence the sources estimated are incorrectly estimated. Notice, only 68 % of
the variance of the data can be accounted for. Bottom panel: The estimated
factors obtained by a shiftnmf analysis. Clearly, the model with shifts has
correctly recovered the components of the synthetic data hence accounts for all
the variance in the data.
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Hence, by computing the gradient in the time domain it becomes transparent
how Aτ can be estimated such that only active regions of the filter Aτ are
updated. Notice, how the complexity of this approach does not increase when
increasing the filter length. Furthermore, the update in the time domain of
S enables the combination of sparseness constraint in the time domain with
efficient representation in the frequency domain. Aτ and S are updated using
linesearch, i.e. by Aτ ← Aτ − µA∇Aτ and S ← S − µS∇S .

In Madsen and Hansen (2008) we demonstrated this algorithm on eeg data.

5.2.3 Sparse and Smooth Matrix Factorisation

Smoothness is often imposed by penalising changes over time in the signal based
on penalty terms such as local estimates of the temporal derivative, i.e. ‖st −
st−1‖2F or curvature ‖st−1 +st+1−2st‖2F as described in Bro (1998); Hastie and
Tibshirani (1990). In the frequency domain this can be expressed as

‖w̃fsf‖2F (5.14)

where w̃f = 1 − e−i2πf/N and w̃f = 2 − e−ı2πf/N − ei2πf/N for the derivatives
above. Smoothness constraints in the time domain correspond to reduced high
frequency content. Hence, smoothness can be imposed by penalising high fre-
quency regions of the components, i.e. by considering an objective of the form
given in (5.12)

C =
∑
n

1
2
‖yn −Asn‖2F +

λ2

2N

∑
f

‖w̃f s̃f‖2F .

From the objective above it can be seen that smoothness does not improve the
identifiability of the model since multiplying the sources S by the orthogonal ma-
trix Q result in a representation that is equally smooth, i.e. ‖s̃f‖F = ‖Qs̃f‖F .
Thus, additional constraints are necessary in order to obtain an unambiguous
representation. We will here improve the identifiability of the model by imposing
sparseness on S. Again, sparsity is not transparent in a frequency representa-
tion. However, the sparsity and smoothness constraints can again be combined
using the proposed tfgm. Consider the following sparse and smooth matrix
factorisation

C =
1
2

∑
n

(‖yn −Asn‖2F + λ1‖sn‖1) +
λ2

2N

∑
f

‖w̃f s̃f‖2F ,

where w̃f weights frequencies according to the smoothness desired. Clearly, the
objective has the form given in (5.12). Thus, the gradient of the above objective
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is given by

∇A = −(AS − Y )S>

∇S = −A>(AS −X) + λ1 sign(S) + λ2F−1(S̃
′
).

where, s′f |w̃f w̃∗fsf . Again A and S are updated using linesearch, i.e. by A ←
A− µA∇A and A← S − µS∇S .

In figure 5.5 we demonstrate how smoothness and sparseness imposed on simu-
lated data improves identifiability and reduces noise in the decomposition.

Similarly spatial smoothness of components can be imposed by penalising high
frequency spatial factors. For fmri data which is usually recorded in three di-
mensions this requires that the dft is performed on arrays that respect the
original spatial structure of the data (e.g. a three-way array). It is typically
not appropriate to enforce smoothness on edges of the brain (borders of the
brain mask). Unfortunately, it is not trivial to exclude regions or to use win-
dowing functions when applying the tfgm and it is often easier to calculate
the cost function and gradient in the spatial domain, where it is easy to exclude
edges/regions, instead of in the frequency domain. A cost function often used to
measure spatial smoothness is the Laplacian based on curvature (here written
with respect to the Cartesian coordinates l,m, n of the function f(l,m, n)).

∇2f =
∂2f

∂l2
+
∂2f

∂m2
+
∂2f

∂n2

We can approximate the Laplacian locally based on finite differences of the
six immediate neighbouring points (6 neighbourhood) which corresponds to the
curvature penalty.

L(l,m, n) = f(l + 1,m, n)− f(l − 1,m, n) + f(l,m+ 1, n)
−f(l,m− 1, n) + f(l,m, n+ 1)− f(l,m, n− 1)
−6f(l,m, n)

This can straightforwardly be generalised to larger neighbourhoods (such as the
26 neighbourhood that is used in the generation of figure 5.6). When the cost
function is written in the spatial domain it is relatively simple to exclude effects
from edges in calculation of the cost function and gradient. In figure 5.6 we show
how spatial smoothness regularisation based on the l2−norm can suppress noise
in a sc decomposition. Spatial regularisation based on the l2-norm does not
render the decomposition unique, an attractive alternative is l1-norm regulari-
sation. However, if gradient methods are used naively to optimise parameters
severe convergence problems can occur due to elements oscillating around zero
(these elements are supposed to be zero) causing step sizes to become arbitrarily
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Figure 5.5: Sparse and smooth matrix factorisation. The top graph shows
the three true underlying sources used to simulate data, all three components are
both sparse and smooth. These sources was mixed such the the input consisted
of nine realisations of the signal (Y ∈ <9×1000) with additive Normal distributed
noise (snr of 0 db). The middle graph shows the sources identified by the
proposed smooth and sparse matrix factorisation algorithm imposing (λ1 =
0.25, λ2 = 0, i.e., without any smoothness regularisation). Finally, the bottom
graph shows how introducing smoothness regularisation suppresses noise in the
solution (λ1 = 0.25, λ2 = 20 for frequencies larger than 0.14 samples−1). While
smoothness suppresses noise in the sources it will also introduce a bias in this
particular case reducing the explained variation from 64% to 53%.
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small. One possible solution is using an irls scheme (see for example Blumen-
sath and Davies (2004)) for estimation. However, this iterative scheme seem
to suffer from very slow convergence for this particular application making it
impractical to use it for large-scale data sets. An adapted version of the robust
gradient method described in A.2.1 could be employed in the spatial frequency
domain to circumvent oscillation problems in gradient based optimisation, pro-
viding a more efficient way to optimise parameters (however, in this case it is
not trivial to completely circumvent the edge effects described earlier).

5.3 Shift Invariant Multi-way Decomposition

In Mørup et al. (2008b) we present an algorithm allowing multi-way decompo-
sition with explicit modelling of delays over one mode. The model is motivated
by the fact that time delays are known to occur naturally in neuroimaging data.

As proved by Kruskal (1977), the regular instantaneous cp model is unique
under mild conditions. Conditions that, in the presence of noise in the data,
are practically always satisfied. Consequently, modeling repeated trials by cp
in theory not only improves the component identification but also resolves the
ambiguities encountered when modeling the averaged data by (bilinear) factor
analysis. Notice that the application of cp to eeg was already suggested in
the original paper on cp (Harshman, 1970) and was later reinvented in Möcks
(1988) under the name topographic component analysis. In Andersen and Rayens
(2004) it was further demonstrated how the cp model is useful in the analysis
of neuroimaging data such as fmri (Andersen and Rayens, 2004). Additional
applications of multilinear (also called multiway) modeling in eeg and fmri
include (Möcks, 1988; Field and Graupe, 1991; Wang et al., 2000; Beckmann
and Smith, 2005; Miwakeichi et al., 2004; Mørup et al., 2006; De Vos et al.,
2007; Acar et al., 2007).

Time shifts occur naturally in fmri data. For instance, these could be due to
hemodynamic delay (Buxton et al., 1998) or they could arise in stimuli studies
(Sereno et al., 1995), where delays play a particularly important role. Extending
the cp model to incorporate delays form the shifted cp model (shifted over third
mode), denoted as scp model,

xi,j,k =
∑D

d=1
ai,dbj−τk,d,dck,d + ei,j,k. (5.15)

Here, each time profile bd is shifted according to the vector τk,d that represents
time-samples dependent on the k index of the third mode. Hence, the shifts will
be along the j index, see also Figure 5.7. Data generated from the scp model
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Figure 5.6: Imposing spatial smoothness and sparseness. The figure
illustrates how smoothness regularisation (here in three dimensions denoted by
x, y and z) when used with sparsity imposed through L1-norm regularisation
may improve the identification of components. In the figure above λ1 indicates
the strength of the sparsity regularisation whereas λs refer to the strength of
the smoothness regularisation. The (spatial) dimensionality of the 3 factors are
10 × 10 × 10 for visualisation purposes the third dimension has been unfolded
(along the x-axis). Each row of images therefore corresponds to an unfolded
factor. From top to bottom the true factors along with several different attempts
to find the factors are displayed each consisting of 3 factors. The input data was
simulated by a mixing matrix of size 50 × 3 (Gaussian with scalar covariance)
which mixed the factors into a 50 × 1000 data matrix with additive Gaussian
noise (also scalar covariance). A low snr of approximately -18.5 dB was chosen
at which the sparseness prior was not sufficient to produce satisfactory factors.
Notice how increasing smoothness suppresses noise making it possible to identify
the true factors but makes it more difficult to identify the non-smooth edges in
the images (here the smoothness penalty of λs = 0.4 seems to produce the best
result).
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Figure 5.7: The cp model can be considered a straightforward generalisation of
2-way (matrix) decomposition (left panel) to arrays of more than two modalities
(middle panel). Thus, the data is described by an outer product of factors
pertaining to each of the modalities. The scp model allow shifts to occur over
the second mode such that for each index of the third mode the component of
the second mode is shifted a given amount.

is no longer multilinear and therefore the cp model is no longer a valid model
for the data. When data violates multi-linearity, ‘cp-degenerate’ solutions are
known to occur. Roughly speaking, this refers to solutions in which some com-
ponent loadings are highly correlated in all modes and the elements of these
components become arbitrarily large (Stegeman, 2007). cp-degeneracy makes
the estimation unstable, the algorithm slow to converge (or even diverge), and
the result difficult to interpret — largely because the model is plaqued by strong
between-component cancellations (Harshman and Lundy, 1984). To avoid cp-
degeneracy in the cp model, artificial restrictions in the form of orthogonality
(Harshman and Lundy, 1984; Field and Graupe, 1991) or independence (Beck-
mann and Smith, 2005) have been imposed; alternatively, the signal is analysed
via purely additive models based on analysis of amplitudes in a spectral repre-
sentation (Miwakeichi et al., 2004; Mørup et al., 2006). Rather than restricting
the cp model, we propose a pseudo-multilinear model using the unambiguous
cp model combined with a time-shift accounting for explicit delays.

Modeling of delays is further motivated by a number of papers that explain how
degenerate solutions might be caused by component delays (Field and Graupe,
1991; Andersen and Rayens, 2004; Harshman et al., 2003a; Hong and Harsh-
man, 2003). Indeed, if shifts are causing cp-degeneracy, then it is more natural
to extend the cp model to accomodate shifts rather than resorting to orthog-
onality or independence constraints that may not be physiologically justified.
Furthermore, a decomposition into profiles resembling pairs of functions and
their derivatives, e.g. pairs of cosine and sine functions in (Field and Graupe,
1991), provides strong evidence that neuroimaging data should be decomposed
by a model accounting for shifts rather than models based on instantaneous
mixing.
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Methods

Factor analysis with shifts have been treated in numerous papers (Bell and
Sejnowski, 1995; Harshman et al., 2003a,b; Truccolo et al., 2003; Mørup et al.,
2007a,b). Shifts based on the cp model has previously been treated in (Hong
and Harshman, 2003; Knuth et al., 2006). Unfortunately, the algorithms devised
are prohibitively slow for large scale problems such as eeg and fmri and do not
allow for non-integer shifts. Presently, we derive an efficient algorithm for scp
with the following benefits

• Closed form solutions are obtained for all modes while keeping the remain-
ing modes fixed.

• Integer shifts are estimated by cross-correlation rather than the exhaustive
searches used in (Hong and Harshman, 2003).

• Non-integer shifts can be found by iterative methods in the frequency
domain.

Non-integer shifts are in particular important for fmri data due to low temporal
resolution.

Estimating the SCP model

In (Hong and Harshman, 2003) the scp model was proposed and an algorithm
devised based on exhaustive integer searches over all possible shifts. This is,
however, very expensive making the estimation infeasible when including many
shifts. Thus, we here propose to solve the model in the frequency domain rather
than the time-domain. The attractive property being that each integer delay
τk,d has a closed form solution while keeping the remaining delays fixed given
by calculating cross-correlations which is inexpensive in the frequency domain.
Furthermore, in a frequency representation non-integer delays can be estimated
using gradient based searches. Finally, in a frequency representation B has a
closed form solution.

In the frequency domain the scp model is given by

xi,f,k =
∑D

d=1
ai,db̃f,dck,d exp[−ı2πf − 1

J
τk,d] + ẽi,f,k.

Thus, the sources bd are assumed to be periodic such that shifts τk,d correspond
to the complex multiplication of b̃d with the factor exp[−ıπ f−1

J τk,d]. Thus, we
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assume that the data can be arranged such that each source time course in
each epoch is periodic, if this is not the case the periodicity can be enforced by
introducing a temporal windowing function. Notice, due to Parseval’s identity
there is a one-to-one correspondence between the least squares error in the time
and frequency domain such that the least squares minimisation can be performed
arbitrarily between the two domains∑

i,j,k
‖ei,j,k‖2 =

1
J

∑
i,f,k
‖ẽi,f,k‖2.

5.3.0.1 A, B and C updates

Let b̃(k)
f,d = b̃f,d • exp[−ı2π f−1

J τk,d], i.e. B̃ componentwise shifted according

to the delays to the kth channel. Let further zj+k(J−1),d = ck,db
(k)
j,d , i.e. the

Khatri-Rao product between C and the shifted version of B.

Using n-mode matricising and the Khatri-Rao product we can state the estima-
tion of A, B and C by ordinary factor analysis

X(1) = AZT +E(1) via A← X(1)Z
T†

x̃(2)f,: = b̃f,:(C̃
(f) �A)T + ẽ(2)f,: via b̃f,: ← x̃(2)f,:(C̃

(f) �A)T†

x(3)k,: = ck,:(B(k) �A)T + e(3)k,: via ck,: ← X(3)k,:(B
(k) �A)T†

Notice, where as A and C are updated in the real domain B is updated in the
complex domain.

5.3.0.2 τ update

Let
r(3)d

′
k,:

= x(3)k,: −
∑

d6=d′
ck,d(b

(k)
d � ad)

T,

i.e. rd
′

(3)k,:
is the remaining signal at the kth row when projecting all but the

d′th source out of X(3). Notice, with this notation the least squares error can
be rewritten as∑

k
‖x(3)k,: −

∑D

d
ck,d(b

(k)
d � ad)

T)‖2

=
∑

k
‖rd

′

(3)k,:
− ck,d′(b(k)

d′ � ad′)
T‖2

=‖rd
′

(3)k,:
‖2 − ck,d′

∑
j
bj−τk,d′ ,d′

∑
i
rd
′

i,j,kai,d′ + ‖ck,d′(b(k)
d′ � ad′)

T‖2.
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The first and third term is independent of τk,d′ . Thus, the least square error is
minimised when the second term is maximised. Let,

sk,d′(j) =
∑

i
rd
′

i,j,kai,d′

ṽk,d′(f) = s̃∗k,d′(f)b̃f,d′ .

τk,d′ can now be estimated as

τ̂k,d′ = argmax
t
|vk,d′(t)|

τk,d′ = τ̂k,d′ − (J + 1).

I.e. as the delay corresponding to maximum absolute cross-correlation between
sk,d′(j) – the time profile of the residual for the d′ component and bd′ -the com-
ponent time profile. The value of ck,d′ corresponding to this delay is given by

ck,d′ =
zk,d′(τ̂k,d′)
bT
d′bd′

.

If C is constrained positive only positive values of zk,d(t) are considered. The
above procedure can only estimate integer delays. However, by minimising the
least squares error in the complex domain with respect to τ a gradient and
Hessian can be calculated such that non-integer delays can be estimated for
instance by the Newton-Raphson procedure.

In Mørup et al. (2008b) we demonstrate the model on simulated and real eeg
data as well as fmri data. In figure 5.8 the results using the algorithm on a
standard fmri retinotopic mapping paradigm are presented. Figure 5.8 gives
the estimated spatial activity (A) found by scp for a standard ring and wedge
paradigm. In addition figure 5.9 gives the estimated delays.

The delays observed correspond well to delays obtained from a traditional voxel
based dft analysis (Sereno et al., 1995; Engel et al., 1997; Warnking et al., 2002).
Where it is assumed that the time series for the delay modeling is sinusoidal
and constant in strength over the epochs. Thus, the benefits of the scp are that
noisefull epochs are given less importance in the estimation of the delays while
a more complex pattern of the time series improves the delay estimation. For
further details on the model, results and discussion see Mørup et al. (2008b).

5.4 Slice-wise Modelling of fMRI Data

An often used approach for dealing with different timings for each slice in fmri
data is to interpolate the signal in time to make it appear as if all slices were
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Figure 5.8: The component strength (C) over voxels overlayed on the high
resolution structural scan for the one component scp model. The map was
threshold such that the 5% of the voxels with the largest voxel score C are
shown, a standard Z-transform is not meaningful because C is constrained non-
negative. Top left panel: Clearly, the most prominent activity found by scp on
the ring paradigm corresponds well with areas pertaining to visual information
processing, i.e. visual cortex. Top right panel: Also for the wedge paradigm
the most prominent activity for the one component scp model pertains to visual
cortex.
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Figure 5.9: The estimated temporal delays based on the one component scp
model as well as the traditional dft analysis for the ring and wedge paradigms.
Top left panel: Delays estimated by scp for the ring paradigm. Clearly, the
delays are symmetric across the two hemispheres.Top right panel: Delays
estimated by scp for the wedge paradigm. Clearly, there is a difference in the
delays between right and left visual field, i.e. right and left hemisphere. Bottom
left and right panel: Delays estimated based on the phases obtained by a
voxel based dft analysis of the ring and wedge paradigms. Similar symmetries
are found as obtained by the scp, however, the maps are not as smooth as the
delay maps found by scp thus appear somewhat more confounded by noise.
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acquired simultaneously (Henson et al., 1999). Such an approach enables the
use of the same design matrix for all voxels but require that all parts of the
signal are sufficiently sampled. While this may be true for the effects of interest
it is typically not the case for cardiac signal components.

In order to investigate effects of different acquisition times for the slices we
construct a modified nvr approach. Here we model each slice separately based
on the individual timing. This (potentially) causes the design matrix to be
different for each slice. This effects of difference in slice acquisition timing may
also be present in the effects of interest as demonstrated by Van de Moortele
et al. (1997). However, the use of a flexible model such as a harmonic expansion
applied here allow us to capture the effects of the visual stimulus regardless of
phase differences. Had this not been the case the paradigm regressors can also
be shifted accordingly like it is done in the fmristat software package (Worsley
et al., 2002).

The fact that fmri volumes are usually obtained interleaved and that we ex-
pect neighbooring slices (spatially) to be confounded by physiological noise in a
similar way enables us to investigate whether non-stationarity of physiological
noise within the acquisition of one volume is a concern. We will do so by cal-
culating the histogram of voxels exhibiting cardiac effects over slices (spatially),
this histogram is expected to be smooth if the assumption of stationarity holds.
In figure 5.10 we show these histograms of cardiac effects colour coded by the
cardiac phase using the first, middle and last slice as reference as well as for slice-
wise modelling. The data used in the generation of these plots will be described
in the next section (5.5). Each histogram shows the cardiac phases over the 40
slices acquired in each of 16 scanning sessions. It is seen that cardiac effects are
most predominant at the lower slices near the circle of Willis and the medial
cerebral artery. The colour coding reflects the phases of the cardiac cycle esti-
mated by the first order of the retroicor cardiac regressors. The phases are
widely distributed over the whole range (−π to π) even in a single slice making
it reasonable to assume that the features of the cardiac cycle may be captured
in a single slice. Evidence for the interleaved acquisition order of the slices is
most pronounced in sessions 7w and 8r. This may be caused by differences in
the detection power depending on the time of sampling. From the histograms
we clearly see that using either the first or the last slice as reference causes the
effect of slice acquisition to be visible, by using the middle slice (time-wise) the
effect is smaller but still present. When using slice-wise modelling the effect has
almost disappeared indicating that slice-wise modelling of physiological noise is
appropriate.

A toolbox for performed slice-wise modelling of physiological artefacts using
the retroicor procedure was developed during investigation of these effects.
This toolbox functions as a plug-in for spm5 and also provides the possibility of
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automatically calculating and adding retroicor regressors based on files with
recordings of cardiac and respiratory cycles. In addition, the toolbox also allows
slice-wise modelling of effects of interest. This is accomplished by performing
model specification, estimation, ar modelling and calculation of p-values on a
slice-wise basis. Note that when using this toolbox smoothing should not be
performed until after modelling. A currently preliminary version of the toolbox
is available at http://www.brain-fmri.com.

5.5 Unsupervised Nuisance Variable Regression

Physiological noise originating from respiration and the cardiac cycle are promi-
nent sources of temporally correlated noise in fmri data. These correlations
violate assumptions usually made about the residual error in standard univari-
ate general linear model analyses. Both supervised correction methods, based
on recordings of the cardiac and respiratory cycles, and unsupervised correction
methods, attempting to estimate the noise components from the data have been
suggested. The supervised methods reduce the presence of temporal correla-
tion in the residual noise, whereas this remains to be shown for unsupervised
methods. Here we propose an unsupervised method for the correction for phys-
iological noise contributions in fmri data using pca, and show that the method
successfully reduces temporal correlations in the residual equivalent to super-
vised methods. Here, we suggest extracting information about the physiological
noise from the data itself to include these effects in a standard glm and evaluate
the consequences of this approach on the temporal whiteness and normality of
the residual errors.

Method

We suggest to replace the retroicor regressors described in section 4.5.1 by
a number of nuisance regressors estimated from the data itself (hence the term
unsupervised) also intended to model physiological noise contributions. This
model is useful in cases where measures of the respiratory and/or cardiac cycles
are not available. One way to capture nuisance effects is to use the time series
of a voxel known to contain only nuisance effects directly, this approach has
been demonstrated in several cases. In a study by (Petersen et al., 1998) a
seed region within the sinus sagittalis was used to fit a non-linear state space
model and obtain phase estimates that where subsequently used to regress out
related effects in a glm. Similarly Lund and Hanson (1999) observed that
the residual variance could be used to automatically identify regions related to

http://www.brain-fmri.com


64 New Models

10 20 30 40
0

200

400

600
1R

10 20 30 40
0

200

400

600
2R

10 20 30 40
0

200

400

600
3R

10 20 30 40
0

200

400

600
4R

10 20 30 40
0

200

400

600
5R

10 20 30 40
0

200

400

600
6R

10 20 30 40
0

200

400

600
7R

10 20 30 40
0

200

400

600
8R

10 20 30 40
0

200

400

600
1W

10 20 30 40
0

200

400

600
2W

10 20 30 40
0

200

400

600
3W

10 20 30 40
0

200

400

600
4W

10 20 30 40
0

200

400

600
5W

10 20 30 40
0

200

400

600
6W

10 20 30 40
0

200

400

600
7W

10 20 30 40
0

200

400

600
8W

(a) First slice
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(b) Last slice
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(c) Middle slice
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(d) Slice-wise modelling

Figure 5.10: Cardiac phases over slices. The figure shows histograms over
slices for each of 16 scanning sessions. The four panels differ by the choice of
reference slice for the retroicor regressors. It is seen that effects of slice ac-
quisition are clearly visible for the three models with a single reference slice,
however, for slice-wise modelling the effects appears significantly reduced. In-
dicating that taking slice acquisition time into account when modelling cardiac
effects is appropriate.
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physiological noise and include these time series in the analysis. In a study of
functional connectivity by Fox et al. (2006) the time series of a region within a
ventricle was used to remove nuisance effects before the analysis. In this study
we expand this method to use time series from different regions either based
on regions extracted from the high resolution anatomical scan or a parametric
map of the residual variance from a model excluding these regressors. The
choice of the residual variance as an identifier for nuisance regions is based on
the observation that parametric maps of the residual variance closely resembles
a coarse angiogram, we will denote this procedure unvr for other nuisance
regions (nr) suffixes wm, gm and csf will be added accordingly. If we were
simply to include the time series of all the voxels within the (nr) in our design
matrix an equally large number of degrees of freedom would be lost in the
analysis. Furthermore, the time series is expected to become highly colinear.
One technique to deal with these problems is to include only a subspace of the
extracted time series using for example pca. Other latent variable models such
as ica or fa could be used to obtain this subspace. However, these methods
often rely on an initial pca decomposition and rotate the components within
this subspace to minimise a specific cost function. In this case we are only
interested in the span of the subspace and consequently pca will suffice for this
application. Before the pca analysis it is common to normalise time series with
their respective standard deviation (hence do the eigenvalue composition on the
sample correlation matrix instead of the covariance matrix). This step makes
small effects that are consistent (over voxels) more noticeable in the extracted
components at the cost of removing information about the signal dynamics. Here
we investigated both procedures, however, because we only observed marginal
differences for all nuisance regions we only report results for pca decomposition
using the correlation matrix.

We demonstrated this approach in Madsen and Lund (2006) later other have
utilised very similar approaches for modelling physiological artefacts see for ex-
ample (Behzadi et al., 2007).

Testing assumptions on residuals

Three different tests were performed on the blus residuals (Best Linear Unbi-
ased with a Scalar diagonal covariance matrix) from the analyses using Statis-
tical Parametric Mapping diagnosis (spmd) .

• Test for arbitrary order temporal correlations based on linearity of the
cumulative power spectrum (Dependence).

• Durbin-Watson test statistic the uniformly most powerful test for presence



66 New Models

of first order correlations (Correlation).

• Shapiro-Wilk test for normality (Normality).

For complete references see Luo and Nichols (2003). The three tests address
correlation and normality on a mass univariate (voxel-wise) basis, to asses the
assumptions on all voxels we calculated the number of rejections of the null
hypothesis at a specific level and normalised with the nominal value.

Data

The functional datasets each consisted of 381 volumes and were acquired on a
3T (Siemens Magnetom Trio) scanner using the standard birdcage head coil.
A total of 16 datasets were collected from 8 different normal subjects using a
echo planar imaging gradient echo sequence with 42 slices acquired in inter-
leaved order with the following acquisition parameters: tr=2370 ms, te 30
ms, flip angle (fa) 90 degrees, field of view (fov) 192x192 mm, 64x64 acquisi-
tion matrix. For delineation of anatomical regions a high resolution anatomical
scan were obtained using a mprage sequence with 192 sagital slices and 1 mm
isotropic resolution. Additional sequence parameters were as follows: tr=15.4
ms, te=3.93 ms, fa=9 degrees, fov=256x256. For the duration of the scan the
subjects were stimulated visually (8 Hz reversing checkerboard (expanding ring
(r) and rotating wedge (w)). Each rotation/expansion lasted 30 seconds.

Prior to data analysis volume-wise 6 parameter rigid body re-alignment was
performed using spm2, and the resulting images where subsequently analysed
using several different glms. All models were estimated using spm2 with resid-
uals assumed to be i.i.d. except for the ‘spm2-ar(1)’ model where the standard
spm2 pre-whitening procedure using an ar(1) model was applied (Friston et al.,
2002). The mass univariate linear regression model applied here reads

yv = Xβv + εv, (5.16)

Where yv is a vector containing the recorded fmri signal at voxel v, X is the
design matrix and εv is a vector of residuals at voxel v.

Results

For the unvr approach we investigated the impact of the size of the nr on
the extent of the region activated by the visual paradigm. Figure 5.11 shows
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the mean number of activated voxels over sessions divided by the number of
activated voxels identified using the standard nvr approach (see section 4.5.1)
for each session. It is seen that there is a tendency towards an increase in the
number of activated voxels for nr sizes up to around 1%, when the nr becomes
larger than 2% the number of activated voxels decreases.

Examples of parametric maps of the F -test statistic for physiological nuisance
effects using the retroicor, unvr, unvr wm and unvr csf methods are
shown in figures 5.12, 5.13. The maps are thresholded at p<0.05 GRF corrected.
Dominant effects are seen near the major arteries e.g. circle of Willis and the
medial cerebral artery for all 4 methods. Effects observed near the edges of the
brain could be related to non-rigid movement due to either cardiac pulsation or
respiration.

Results from the three tests for normality dependency, correlation and normality
are summarised in figures 5.15 and 5.16. In figure 5.15 different versions of the
unvr method is compared to the nvr approach as well as other simple models.
We see that the unvr approach reduces the number of violations for all three
test similar to or better than the nvr model.

In figure 5.15 the test for arbitrary order temporal correlations (top panel -
dependency) showed that modelling the physiological noise by either the nvr
or the unvr approach greatly reduces the number of rejection of the null hy-
pothesis. The ar(1) approach performs particularly bad in this test because
it only models first order correlations. In the test for first order correlations
(middle panel - correlation) the behaviour is more or less the same, however,
the ar(1) approach performs quite good which is to be expected. In the test for
normality (bottom panel - normality) the nvr and unvr modelling schemes also
perform better than the competition. Overall its can be inferred that modelling
of physiological noise reduces the presence of correlation and non-normality in
the residuals. The CompCorr method (Behzadi et al., 2007) is basically the
unvr method without projecting out movement and high pass filter effects -
this method is seen to perform similarly but consistently slightly worse than
the unvr approaches. unvr methods based on other types of masks (csf, wm)
show performances similar to the mask based on mean residual error. The gm
mask was included in order to enable comparison with the other methods, note
that performances with respect to the three tests are similar, however this mask
will reduce the amount of visual activity detected due to expected overlap with
activated regions. It should be be noted that the simple model (no filter and no
modelling of physiological effects) performs worse than all other methods for all
three tests.

In figure 5.16, we see that including the regressors for explaining the change in
respiration volume over time (rvt) as well as the cardiac-respiration interaction
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(cxr) effect almost has no effect on the number of violations, suggesting that
these effects are not dominant in this particular dataset. The test for arbitrary
order temporal correlations (top panel - dependency) shows that the included
nvr approaches greatly reduces the number of rejection of the null hypothe-
sis both compared to high-pass filtering (hp) and the ar(1) approach which is
included for reference. In the test for first order correlations (middle panel - cor-
relation) we see the same tendency (but with ar(1) modelling performing much
better). In the test for normality (bottom panel - normality) the hp method and
the ar(1) method almost coincide whereas the nvr approaches perform much
better. Overall we see that all the methods based on the nvr approach perform
almost identically for all three tests. Furthermore, we see that changing the
reference slice for the retroicor regressors does affect residual whiteness and
normality substantially. The ”nvr first, middle and last slice” model includes
retroicor regressors based on 3 different reference slices (the first, middle and
last based on the acquisition time) giving a total of 48 physiological regressors
as compared to the 16 included in the nvr model, also it is seen that the tests
are not affected substantially even though the power of each test is reduced due
to the reduced degrees of freedom in the residual. In figure 5.17 the amount of
variance of cardiac effects (identified by retroicor cardiac regressors) that are
modelled by the unvr approach as a function of the mask size (e.g. the amount
of voxels from the residual error variance mask that was used pca decomposi-
tion). From figure 5.17b we see that the regressors from unvr and retroicor
cardiac modelling are most similar at a mask size of around 1% also indicating
that the choice of mask size is reasonable.

If false negatives are of primary concern which can be the case in for example
pre-surgical planning the nuisance regressors can be orthogonalised effects of
interest simply by filtering out the effect prior to pca decomposition thereby
providing better control for false negatives, however, at the cost of more false
positives.
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Figure 5.11: The dependence of the mask size on the activation extent.
The figure shows the mean number of voxels activated by the visual paradigm
as a function of the mask size used in the unvr analysis. The number of voxels
activated in each of the 16 sessions were determined using a threshold of p<0.05
(family-wise error corrected for multiple comparisons using grf) and divided
by the number of voxels detected using the nvr approach for each session. It
is seen that the curve exhibits a maximum around a mask size of 1%. If the
mask is smaller than this the unvr approach may not be able to capture the
dynamics of the physiological noise. However, if the mask is enlarged to above
1% the activation slowly drops presumably caused by unvr regressors starting
to explain part of the visual paradigm.
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Figure 5.12: Effects of physiological noise using supervised method. The
figure shows regions that revealed effects of the retroicor modelling (including
both cardiac and respiratory effects). Activation was assessed by an F-test over
the 16 retroicor regressors that entered the nvr model thresholded at p<0.05
fwe (grf corrected). Effects are predominant near large vessels in the brain
and in the ventricles.



5.5 Unsupervised Nuisance Variable Regression 71

Figure 5.13: Effects of physiological noise using unsupervised method.
The figure shows regions that revealed effects of the unvr regressors intended to
model physiological noise effects. Activation was assessed by an F -test over the
16 physiological noise unvr regressors that entered the unvr model thresholded
at p<0.05 fwe (grf corrected). The regions show high resemblance towards
regions identified by the retroicor method. The fact that this map shows
more significant effect especially at slices near the circle of Willis is not surprising
because the unvr regressors are based on time courses from these regions. Once
again effects are predominant near large vessels in the brain and in the ventricles.
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Figure 5.14: Visual activation after unsupervised noise modelling. The
figure shows the activity of the visual paradigm assessed by an F -test over the six
regressors modelling the paradigm in the unvr modelling approach. Activation
was thesholded at a fwe of p<0.05 (grf corrected). It is seen that highly
significant visual activation in the occipital lobe remains after unvr modelling.
There were no obvious differences between the activation using the nvr and
unvr approach from visual inspection.
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Figure 5.15: Residual diagnostics – unsupervised vs. supervised The
three panels are related to three different tests (dependence, correlation, nor-
mality) on the assumption of uncorrelated i.i.d. residual noise. For each of the
16 sessions the ratio with which the number of rejections of the null hypothesis
exceeded the expected value, a threshold of p<0.001 was used (e.g. it is expected
that 0.1 percent of voxels would exceed this threshold by change). A value of
around 1 would correspond to uncorrelated normal i.i.d. noise. The legend box
indicates the symbols and lines used for each of the modelling approaches given
in the bottom legend.
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Figure 5.16: Residual diagnostics – nuisance modelling. The plots show
how modelling of different nuisance effects influences the residual whiteness and
normality. The three panels are related to three different tests (dependence,
correlation, normality) on the assumption of uncorrelated i.i.d. residual noise.
For each of the 16 sessions the ratio with which the number of rejections of the
null hypothesis exceeded the expected value, a threshold of p<0.001 was used
(e.g. it is expected that 0.1 percent of voxels would exceed this threshold by
change). A value of around 1 would correspond to uncorrelated normal i.i.d.
noise. The legend box indicates the symbols and lines used for each of the
modelling approaches given in the bottom legend.
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Figure 5.17: Cardiac effects explained by unsupervised nuisance mod-
elling. The figures attempt to illustrate how the unvr model performs in terms
of modelling cardiac nuisance effects as a function of the mask size. Panel (a)
shows the fraction of the variance of the physiological effects (identified by the
retroicor regressors) that are also be explained by the unvr regressors as a
function of the unvr mask size. A value of 1 (the maximum possible) would
mean that the signal identified by the retroicor approach can be modelled
completely by the unvr regressors (e.g. the regressors span the same subspace).
Values less than one does not indicate that the unvr regressors explain less vari-
ance but rather that they explain different things. The blue unbroken line shows
the mean fraction over sessions for the whole brain whereas the broken red line
shows the same in a gm mask. The fraction of explained variance is slightly
higher in the whole brain as compared to only the gm. This is to be expected
because effects are dominant in areas not part of gm and because the mask is
mainly constructed from these areas. For mask sizes up to around 2% the ex-
plained variance increases from 60% to around 65% and then seems to saturate
at this value, a similar tendency is seen for the whole brain curve. It should
however be noted that the 60% of variance explained in gm means that there
is a high resemblance between the effects modelled by both schemes. Panel (b)
show whether the unvr regressors cover the subspace formed by the two first
order cardiac cycle retroicor regressors. The explained variance reaches a
maximum around a mask size of 1% and then decreases slowly.
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Chapter 6

Conclusion

The availability of computational processing power continues to grow rapidly
enabling more sophisticated models to be used in the processing of data. One
such example is the application of Bayesian inference to neuroimaging data.
However, despite these advances computationally efficient algorithms and proce-
dures for estimation and inference remain important issues in the neuroimaging
community due to the vast amounts of data collected.

The Bayesian modelling framework provides a way to incorporate prior infor-
mation in the form of prior probability densities for various model parameters.
Specification of prior information is particularly useful at high noise levels that
often plague fmri data. For unsupervised modelling we show how prior infor-
mation in the form of non-negativity, sparseness and smoothness may enter to
constrain models, improve identification and suppress noise in fa type decom-
positions.

Bayesian inference also facilitates comparison of different models in that the
posterior probabilities are naturally penalised according to the complexity of the
models (for example the number of free parameters). The main disadvantage
of such practise is the computational complexity involved in the evaluation of
the integrals that arise when marginalising with respect to parameters to obtain
posterior probabilities of the model or certain parameters in the model. We
showed that the use of conjugate priors allow these integrals to be performed
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analytically, this approach may serve as a computational efficient alternative to
iterative procedures such as variational Bayes and numerical integration.

Identifying signals of interest in neuroimaging experiments such as fmri studies
is a difficult task due to many sources of noise. Noise enters both in form of
measurement noise and the presence of unwanted physiological contrast mech-
anisms such as cardiac and respiratory effects. We showed that complementary
measurements of physiological signals such as the cardiac cycle enable explicit
modelling of nuisance effects, and that such practise helps to bring the residual
into agreement with the often simple noise model assumptions applied. In addi-
tion, we showed that unsupervised methods have great promise in identification
of these nuisance effects without the need for additional measurements.

Data modelling are often based on simple linear models because parameters in
these models are often easy to estimate and interpret. However, if the data does
not comply with the structure enforced by these simple models the advantages
are no longer present and results often become difficult to interpret. In such
cases relaxing the assumption of linearity may be useful, we demonstrated this
by adding modelling of delays and convolutions to factor analysis type decom-
positions and parallel factor analysis.



Appendix A

Equations and Computational
Issues

Linear Model:

An assumption concerning the nature of reality applied unquestion-
ingly to every relationship as though God had determined that truth
must always run in straight lines.

Woodman (1979)

A.1 Probability Distributions

A.1.1 Laplace Distribution

In the Laplace distribution the probability density of the random variable, x,
is based on absolute deviations (l1-norm) from the mean/median, µ. We write
this distribution x ∼ L(µ, β)

p(x|µ, β) =
1

2β
exp

[
−|x− µ|

β

]
, (A.1)

where β is a positive scale parameter. The variance is given by 2β2.
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A.1.2 Multivariate Normal distribution

We write the multivariate normal (Gaussian) distribution of the T × T random
vector x with mean vector µ and covariance Σ (x ∼ NT (µ,Σ))

p(x|µ,Σ) =
1

(2π)T/2 |Σ|1/2
exp

[
− 1

2 (x− µ)>Σ−1 (x− µ)
]
. (A.2)

A.1.3 Multivariate student t-distribution

We define the multivariate Student t-distribution with m degrees of freedom,
covariance Σ and mean µ of the random matrix x ∼ TT,m(µ,Σ) as

p(x|Σ,m) =
mm/2π−T/2|Σ|−1/2 Γ[(m+T )/2]

Γ[m/2](
m+ (x− µ)>(m− T + 1)Σ−1(x− µ)

)−m+T
2

,

E(x) = µ. (A.3)

var(x|Σ,m) =
m

m− 2
Σ. (A.4)

A.1.4 Inverted Wishart

We write the inverted Wishart distribution of the random matrix Σ with scale
matrix B and m degrees of freedom (Σ ∼ W−1

T,m(B))

p(Σ|B,m) =
|B|

m
2

2
mT
2 ΓT (m2 ) |Σ|

m+T+1
2

exp
[
− 1

2 Tr
(
BΣ−1

)]
, (A.5)

where the ΓT (a) is the multivariate gamma function given by

ΓT (a) =
∫
G∈Ω

exp(−TrG) |G|a−
(T+1)

2 dG = π
T (T−1)

4

T∏
j=1

Γ(a+ (j−1)
2 ),
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where Ω is the complete set of all (T × T ) positive definite matrices and Γ(a)
denotes the ordinary Gamma function.

E(Σ|B,m) =
1

m− T − 1
B.

A.1.5 Normal-Inverse Wishart

We define the Normal-Inverse Wishart distribution of the random vector x of
length T and T × T matrix Σ with the parameters Q,B,µ and m as

p(x,Σ|Q,B,µ,m) =(2)−
(m+1)T

2 (π)−
T
2 |Q|

1
2 |B|

m
2 ΓT (m2 )−1

× exp
[
−m+T+2

2 log |Σ|
]

× exp
[
− 1

2 (x− µ)>Σ−1Q(x− µ)
]

× exp
[
− 1

2 Tr
(
BΣ−1

)]
.

(A.6)

And introduce the notation NW−1(Q,B,µ,m)

We specifically note that the normalisation integral (the inverse of the part that
does not depend on x and Σ)∫
x∈RT

∫
Σ∈Ω

exp
[
−m+T+2

2 log |Σ| − 1
2 (x− µ)>Σ−1Q(x− µ)− 1

2 Tr
(
BΣ−1

)]
dxdΣ

= (2)
(m+1)T

2 (π)
T
2 |Q|−

1
2 |B|−

m
2 ΓT (m2 ),

where again Ω denotes the complete set of all (T ×T ) positive definite matrices.

A.1.6 Matrix Variate Normal

We define the matrix variate normal distribution of the T ×N random matrix
X ∼ MT×N (M ,Ω,Σ)

p(X|M ,Ω,Σ) = (2π)
−TN

2 |Ω|−T/2|Σ|−N/2

× exp
(
−1

2
Tr
[
Ω−1(X −M)>Σ−1(X−M)

])
,

(A.7)
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as a natural generalisation of the multivariate normal distribution. Here the
T ×N matrix M is the mean, Ω is the N ×N column covariance matrix and Σ
is the T ×T row covariance matrix. This distribution has a has a simple relation
to the multivariate normal distribution X ∼ MT×N (M ,Ω,Σ) ⇔ vecX ∼
NTN (vecM ,Ω⊗Σ).

Simple segmentation procedure

The literature on segmentation of mri brain volumes is extensive and remains
an active research area making an detailed explanation beyond the scope of
this text. However, in the following we describe a simple and crude method
to identify the wm/gm border from standard anatomical mri sequences. This
border commonly serves as a basis for an unfolded representation because it is
relatively well defined in t1 weighted images.

1 Data are filtered using an edge preserving sigma filter (Kriegeskorte and
Goebel, 2001; Lee, 1983) to ease the later segmentation process by reducing
the number of topological defects initially present (Dale et al., 1999).

2 Ventricles are located and filled; this process is done to avoid topological
defects (holes) in the segmentation in these areas.

3 A brain mask is applied to remove skull and other non brain regions. This
is done to avoid the region growing process to advance into these regions.

4 The white matter is found by region with a given threshold growing with
a seed point known to be located inside the white matter structure.

5 Dilation and smoothing of white matter is then performed to ensure that
the curvature is finite at all points.

6 Disconnection of the two hemispheres.

7 The region growing process is redone now using self-touch sensitive algo-
rithm meaning that the outer boundaries of the region are not allowed to
merge with itself and form rings. This step is performed to correct for
topological errors (handles) from the segmentation in step 4. This pro-
duces a white matter segmentation free from topological defects (handles),
however the result will be biased because the algorithm is only able to ex-
clude voxels. To account for this the same process is performed for the
inverse object yielding the opposite result (only inclusion of voxels). For
each of the corrections the damage compared to the original segmentation
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is estimated and the choice yielding the least damage is chosen (Kriegesko-
rte and Goebel, 2001). The resulting region is guaranteed to be free from
topological errors (has Euler characteristic 2, equivalent to a sphere).

An example of the segmentation based on this procedure is displayed in figure
3.1.
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A.2 Algorithms

A.2.1 Robust Gradient Method for Sparsity Regularised
Problems

Using naive gradient based search used to optimise sparsity regularised problems
will unfortunately often cause the solution to oscillate around zero. We will
apply the following straightforward procedure of splitting the update into a
reconstruction part and a sparsity part to alleviate this problem. We here aim
at minimising the (lasso) objective (‖Y −AS‖2F +λ‖S‖1) with respect to S),
however, the procedure should generalise directly to other sparsity priors and
cost functions

Algorithm A.2.1:
1: repeat
2: Update S to minimise ‖Y −AS‖2F
3: Snew = S − µ(A>(AS −X)
4: Update Snew according to the sparsity penalty such that

element crossing zero are set to zero

5: Snewd,j =
{

0 if |Snewd,j | < µλ
Snewd,j − µλSign(Snewd,j ) otherwise

6: if ‖Y − ASnew‖2F + λ‖Snew‖1) < ‖Y − AS‖2F + λ‖S‖1)
then

7: µ = 1.2µ
8: S = Snew

9: else
10: µ = µ/2
11: end if
12: until convergence

A.2.2 Multiplicative Updates

Multiplicative updates is a very simple way to ensure non-negativity while min-
imising a cost function. We aim to minimise the cost function C(θ) of the
non-negative variable θ. Further we write the gradient with respect to θ,
∇θC = [∇θC]+ − [∇θC]− where [∇θC]+ and [∇θC]− denotes positive and
negative parts of the gradient respectively. The multiplicative update is then
given by (Lee and Seung, 1999):

θ ← θ •
(
[∇θC]−./[∇θC]+

)
(A.8)
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Where ./ denotes element-wise division, since all quantities are non-negative, θ
will remain in the positive orthant. By adding a small constant ε = 10−9 to both
the denominator and the numerator potential division by zeros can be avoided
while fixed points are left unchanged. In Lee and Seung (2000) it was proven
that for the least squares the update is guaranteed to monotonically decrease
the cost function.

A.2.3 Over Relaxed Bound Optimisation

The over relaxed bound optimisation as described by Salakhutdinov et al. (2003)
is given by constructing the following simple extension of the multiplicative
update

θ ← θ •
(
[∇θC]−./[∇θC]+

)α
. (A.9)

where the exponentiation is elementwise and α is a step size parameter typically
tuned using a line search procedure.

A.2.4 Least Angle Regression and Selection

Consider the (lasso) objective (‖y−Xβ‖2F +λ‖S‖1). The following algorithm
commonly known as the Least Angle Regression and Selection (lars) algorithm
enables us to obtain the entire regularisation path, i.e., minimisation with re-
spect to β for all values of λ at the cost of an ols solution (Efron et al., 2004).

Algorithm A.2.4 Least Angle Regression and Selection (lars):
1: repeat
2: c = X>(y − Sβ)
3: j = arg max(|cI |)
4: A = [A j]
5: I = I \ j
6: βA = βA + µ(X>X)−1

A,A sign(cA)

7: µ = arg minµ

 ∃β̃Ak = 0 then I = [I Ak], A = A \Ak
∃l ∈ I : |c̃l| = |c̃A|
c̃A = 0

8: until cA = 0
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A.2.5 Non-neg. Least Angle Regression and Selection

Once again consider the (lasso) objective (‖y−Xβ‖2F +λ‖S‖1). The following
algorithm allows minimisation under non-negative constrained β, i.e. β ≥ 0, for
all values of λ at the cost of a ols solution.

Algorithm A.2.5 Non-negative Least Angle Regression and Selection (nlars):
1: repeat
2: c = X>(y −Xβ)
3: j = arg max(cI), cj > 0
4: A = [A j]
5: I = I \ j
6: βA = βA + µ(X>X)−1

A,A1

7: µ = arg minµ

 ∃ βAk = 0 then I = [I Ak], A = A \Ak
∃l ∈ I : c̃l = c̃A
c̃A = 0

8: until cA = 0
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B.1 Efficient Bayesian detection of fMRI signals
in temporally correlated noise

The paper concerns the use of the natural conjugate prior (Normal-Inverse
Wishart) in the glm for the analysis fmri data. The study extends the work
by Hansen et al. (2002) to include correlations in the prior distribution. The
article was submitted to NeuroImage on the 24th of October 2007.
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B.2 Shift-Invariant Multilinear Decomposition of
Neuroimaging Data

The paper concerns an extension of the cp model to include components that
are shifted over one mode. The model is demonstrated on simulated data as
well as eeg and fmri neuroimaging data. The article has been accepted for
publication in NeuroImage.
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B.3 Combining Time and Frequency Domain Op-
timization: Shifts, Convolution and Smooth-
ness in Factor Analysis Type Decomposi-
tions

This paper concerns the use of mixed time and frequency domain representations
in the optimisation of extended fa models. The article was submitted to Journal
of Signal Processing Systems on the 15th of February 2008.
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B.4 Shifted Non-Negative Matrix Factorization

The paper concern an extension of the nmf model to include factors that are de-
layed over one mode. The conference paper was published in the proceedings of
the 2007 ieee International Workshop on machine learning for signal processing
(mlsp2007). The article for selected for oral presentation at the conference.
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B.5 Shifted Independent Component Analysis

The following article concerns extension of the fa model to include shifted fac-
tors. The conference paper was published in the proceedings of the 7′th Interna-
tional Conference on Independent Component Analysis and Signal Separation
(ica2007).
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B.6 Recovery from optic neuritis: an ROI-based
analysis of LGN and visual cortical areas

The attached article was published in ‘Brain’, as the title suggest it concerns
an roi based visual fmri study of patients recovering from optic neuritis. By
following the examined patients over time we show how the bold response
changes in the lateral geniculate nuclei during recovery.
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B.7 Images of Illusory Motion in Primary Vi-
sual Cortex

The following article was published in ‘Journal of Cognitive Neuroscience’ and
concerns a visual fmri study on a perceptual filling in effect. When two separate
visual stimuli are displayed sufficiently close (spatially and temporally) illusory
motion between the two locations is perceived, we show that a bold response
is observed in V1 at locations referring to the path between the two locations.
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B.8 Unsupervised modelling of physiological noise
artifacts in fMRI data

The following abstract concerns using a factor analysis type decomposition to
eliminate effects of physiological noise in fmri data. The abstract was selected
for oral presentation at the annual meeting of the International society for mag-
netic resonance in medicine 2006 (ismrm2006).
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Unsupervised modelling of physiological noise artifacts in fMRI data 
 

Kristoffer H. Madsen1,2, Torben E. Lund2 

 
1Informatics and Mathematical Modelling, Technical University of Denmark, Kgs. Lyngby, 
Denmark 
 
2Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, 
Hvidovre, Copenhagen, Denmark 

 
Introduction: 
It has been shown that including nuisance regressors to account for movement 
[1] and physiological artefacts [2] in Genreal Linear Models (GLM) for the 
analysis of fMRI data provides an efficient way to reduce correlations and non-
normality in the residuals [3]. In order to model the physiological effects using 
the RETROICOR method [2] the respiratory and cardiac phase and frequency 
needs to be acquired. This however may not always be feasible. In the current 
study we propose a way to obtain such nuisance regressors without measures of 
respiratory and cardiac cycles. This is based on the observation that residual 
variance in fMRI data is most pronuced in regions strongly contaminated by 
cardiac noise [4], specifically a thresholded SPM of the residual variance in 
fMRI studies have remarkable resemblance towards angiograms. By capturing 
stucture of the time series within this region it may be possible to extact time 
functions that describe physiological noise in the specific data set. 
 
 
Methods: 
Sixteen datasets each consisting of 381 volumes of forty slices (matrix size 
64x64) was acquired on a 3T scanner (Siemens Trio) using a GRE EPI 
sequence: voxelsize:3mm isotropic, TE=30ms, TR=2.37s. During the scanning 
the subject was stimulated visually (reversing checkerboard (expanding ring 
and rotating wedge). Each rotation/expansion lasted 30 seconds. 
Following rigid body-realignment using SPM2, each dataset was subsequently 
analysed with six different general linear models: 
 
 “Simple” A model including baseline plus sine and cosine of the first three 
harmonics of the (1/30s) oscillation” “60sec-HP” a model similar to “Simple”, 
but now including a high-pass filter modelled as a discrete cosine set with a 
minimum period of 60s. 
 
“SPM2-AR(1)” A model similar to “60sec-HP” but with whitened residuals 
using a global AR(1) model estimated in a mask defined by the voxels where a 
significant effect of the paradigm was observed. (This is the recommended 
SPM2 procedure). 
 
 ”Full” A model similar to “60sec-HP” but including several extra nuisance 
regressors for modelling the autocorrelation. A Volterra expansion of the 
movement parameters giving was used to model residual movement effects 
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including spin-history effects [1] (24 regressors). Respiration and cardiac noise 
was modelled using 16 RETROICOR [2] regressors (5 cardiac harmonics and 
3 respiratory harmonics). The RETROICOR regressors is a Fourier basis 
spanned by the oscillations of the aliased frequencies. The cardiac frequency 
and phase was determined using the scanner pulsoximeter. The respiratory 
phase and frequency was measured using the scanner respiratory belt. 
 
“SVD+motion” a model similar to “60sec-HP” but including the 24 regressors 
to model residual movement and a variable number of nuisance SVD 
regressors constructed using a method described later. “SVD+full” a model 
like “Full” but including a variable no. SVD regressors. The SVD regressors 
where created by fitting a model without these additional regressors and using 
the residual variance in this test to identify the 7.5% voxels (approx. 5000 
voxels) that have the most residual variance. 
 
Singular Value Decomposition (SVD) was then performed on a filtered version 
of these time series (filtered using the highpass filter and the nuisance 
regressors from the original model). The additional regressors is the time series 
corresponding to K largest singular values. In order to determine the number of 
nuisance regressors (K) we use the Laplace evidence approximation [5]. 
Because fMRI data is spatially correlated the number of independent 
observations is not equal to the number of samples (voxels) that entered the 
SVD therefore the number of time points was used as the number of 
independent observations (equivalent to pre-whitening using SVD). 
After the analysis, Statistical Parametric Mapping diagnosis (SPMd) [6] was 
used to test the whiteness (“Dep” for arbitrary stationary dependence and 
“Corr” for AR(1)-type autocorrelation) and normality “Norm” of the residuals, 
from the different models. 
 
 
Results: 
The results of the SPMd of the six different analyses of the 16 different 
sessions and the no. component for the “SVD+motion” model are summarized 
in Figure 1, and for session 8 the SPMd images from the analyses are shown. 
When comparing the SVD regressors (from the “SVD+motion” method) it was 
found that on average 61% of the variance of the first harmonic cardiac 
RETROICOR regressors was explained by the SVD regressors. For the 2., 3., 
4. and 5. harmonics the corresponding numbers were 20%, 5%, 2% and 1%. 
Similarly the numbers for the three respiratory harmonics were 12%, 2% and 
2%. When comparing these numbers it should be noted that as the 
RETORICOR set is an orthogonal basis set and because the number of SVD 
regressors is lower than the no. of RETROICOR regressors it is impossible to 
explain total variance. The strong correlation between the first order harmonics 
should be noted as this is also where the largest effect is observed in the data. 
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Discussion: 
In this study we show that the suggested method reduces non-normality and 
correlation in the residuals equivalent or better than the RETROICOR method, 
however without measures of the respiratory and cardiac cycles. The number of 
regressors used in the suggested method (3-12) is significantly lower than the 
no. regressors in the RETROICOR method, thus suggesting that the regressors 
are more efficient The obtained regressors show strong correlation towards 
regressors obtained using the RETROICOR method. Furthermore, the effects 
are in fact present in regions related to the visual paradigm even though the 
visual cortex is normally not regarded as a region suffering from heavy 
contamination by cardiac and respiratory noise. 
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Figure 1: The three figures to the left show for the three different tests, across the 1
datasets, the factor by which rejections exceed the expected number. The different curve
correspond to several different analysis of the same dataset The dataset used in Figure 
is from session 8. The two figures to the right show the same in a region of interest (ROI
defined by an F-test where the paradigm was active (p<0.05 FDR corrected [7]). Due t
the relative few voxels in the ROI’s the normality test did not have enough power in th
case. The figure to the bottom right show the estimated no. of regressors for th
“SVD+motion” model over the 16 datasets. The no. regressors estimated where highe
for sessions with more movement (session 15 and 16) thus indicating that the method 
able to correct more when it is needed. It is seen that the difference between th
“SVD+motion” and “SVD+full” methods are only marginal. 
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Figure 2: The figure shows the output of a SPM-diagnosis (-log10(p) values) from the 
6 different analyses of the same dataset (horizontal). It is seen that the three rightmost 
models have similar and best overall performance. 
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B.9 Simultaneous acquisition of polar and ec-
centricity mappings of the human visual cor-
tex using fMRI

Based on a short abstract submitted to the Annual Meeting of the International
society for magnetic resonance in medicine 2005 (ismrm2005) was selected for
oral presentation. In the following a poster briefly describing this research is
presented.
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Simultaneous acquisition of polar and eccentricity mappings of 
the human visual cortex using fMRI

Objective
In order to delimit the borders between the primary visual areas a vis-
ual field sign map is often obtained by using both a polar mapping 
experiment (rotating wedge) and an eccentricity mapping experiment 
(expanding ring) [1]. In this work we suggest showing both stimuli si-
multaneously to obtain both the polar and the eccentricity mapping 
thereby reducing the time needed to obtain a visual field sign map or 
alternatively improving the quality.

Methods
Using a 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) and the 
standard birdcage head coil 525 GRE EPI volumes were acquired. The func-
tional volumes consisted of 20 slices with 3 mm thickness oriented along 
the calcarine sulcus, TR=1.2 s, FOV=192 mm, 64x64 matrix, flip angle = 67°.
A 3D rigid body transformation was used to correct for motion. For 
the data analysis a general linear model (GLM) was used to model the 
time series of each voxel. To account for temporal auto correlation 
the following nuisance covariates were included in the model: High 
pass filter consisting of discrete cosine transform basis functions with 
frequencies up to 1/60 Hz, residual motion effects including spin history 
[3], respiratory and cardiac cycle predictors (RETROICOR) [4]. The effects 
of interest were modelled with harmonics of the stimulation cycle rate 
as described in figure 1. To determine the phase of the activation 
the time to peak (TTP) was found from the reconstructed signal. The 
hemodynamic delay was determined and accounted for by comparing 
the phase of stimuli running in opposite directions. In order to determine 
activated areas an F-test of the regressors in question was used.

Conclusion
The results suggest that it is possible to identify signals from a rotating 
wedge and an expanding/contracting ring in a single experiment 
thereby reducing the time needed to construct a visual field sign map. 
The quality of the mapping was comparable to one obtained by using 
two separate experiments each with the same duration.
The experimental data furthermore suggests that discrimination be-
tween two relatively closely spaced frequencies of activation is possi-
ble. This might find use in a wide range of different experiments.

References
[1] Sereno et al. 1994, Cereb Cortex, 4(6), 601-20.
[2] Slotnick et al. 2003, HBM, 18, 22-9.
[3] Friston et al. 1996, MRM, 35, 346-55.
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Results and Discussion
The result in figure 2 shows that discrimination between the two frequencies 
used is possible. Reasonable values for the hemodynamic delay were obtained 
as seen in figure 3. Figure 4 show phase maps. The present study used a 
single wedge. If independence between the right and the left hemisphere is 
assumed further optimization can be obtained by using a double wedge [2].
During the analysis it is assumed that the BOLD signal adds up linearly. 
In the present study this is assured using a relatively narrow ring and 
wedge (stimulation for 1.4-1.8 s). At the position of the overlap between 
the ring and the wedge an error is introduced as the model predicts an 
additive effect. However, the effect is small as this occurs very rarely for 
a specific position. 

Figure 1: Experimental design
The visual stimulation consisted of a wedge rotating either clockwise (CW) or counter clockwise 
(CCW) at two different cycle times (time for a full rotation) on a grey background (as shown to 
the left). Simultaneously an expanding/contracting ring was shown also at two different cycle 
rates (time for one full expansion/contraction). Within both the ring and wedge a black-white 
checkerboard flickered at a reversal rate of 8 Hz [1], both stimuli covered a maximum of 18.4° 
of the subject’s visual field. During the first 3 scans the subject viewed a grey screen showing 
a green circular fixation point covering 0.1° of the visual field; this fixation point remained 
on the screen for the remainder of the experiment. The stimulation then consisted of the 
following:
90s CCW wedge cycle rate of 25 s and expanding ring cycle rate of 30s (1 and 2)
90s CCW wedge cycle rate of 30 s and expanding ring cycle rate of 25s (3 and 4)
25s with the fixation point only
90s CW wedge cycle rate of 25 s and contracting ring cycle rate of 30s (5 and 6)
90s CW wedge cycle rate of 30 s and contracting ring cycle rate of 25s (7 and 8)
These conditions were modelled with sine and cosine predictors (1. and 2. order harmonics) 
with the frequency corresponding to each of the cycle rates as shown to the right.

Figure 2: Detecting cycle time combinations
The figures show the mean posterior probabilities of different models in a region of interest 
(in the visual cortex) defined using a separate experiment. The different GLM’s were 
constructed assuming the cycle time combinations indicated on the axes. The calculations 
have been performed assuming a normal inverse gamma conjugate prior. The combination 25 
s and 30 s is identified as the most probable. This indicate that it is possible to resolve nearby 
frequencies in fMRI data. The figure to the left show the probabilities in a log colour scale 
whereas the more peaked figure to the right show the normalized probabilities assuming that 
the probability of the models tested sum to 1.

Figure 3: Hemodynamic delay
The figure show the hemodynamic delay (TTP) estimated for each voxel as a function of the 
F value (32,414 degrees of freedom) for each of the 4 different experiments. For higher F 
values the observed hemodynamic delay is both reasonable and consistent (mean 4.7 s, 0.8 s 
standard deviation for p<0.01 false discovery rate (FDR) [5]).

Figure 4: Phase maps
The figures show phase maps on inflated views of the right hemisphere. Figure 1 shows the 
eccentricity phase map from the combined experiment whereas figure 2 shows the result 
from a separate eccentricity mapping experiment. Likewise, figure 4 shows the result from 
a separate polar mapping experiment, figure 3 shows the corresponding result from the 
combined experiment. Note that the quality of the maps are comparable in fact the difference 
is close to what is normally seen as inter session variability for the separate experiments.
However, the total acquisition time for the combined experiment was reduced by half as 
compared to the separate experiments. A FDR of 0.01 was used to threshold the maps [5].

 1 - Combined
eccentricity map

 2 - Separate
eccentricity map

 4 - Separate
polar map

 3 - Combined
polar map
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Index

als, 34
Alternating least squares

see als
Anterior, 6

Balloon model, 10
Basis Pursuit De-noising, 31
Bayes, 22
Bayes theorem, 23
blus, 65
bold, 7
BPD, 31
bss, 30

Canonical decomposition
see cp

Contrast, 24
Convolutive, 49
Core consistency diagnostic, 35
Coronal, 8
cp, 33

dct, 16, 27
dft, 16

F -test, 24
Factor analysis, 28
False discovery rate, 26
Filtering, 19
fmri, 6

Gaussian random fields, 26

General linear model
see glm

Generalised least squares
see gls

glm, 23
gls, 24
Grey matter, 6
Gyrus, 7

High-pass filter, 19, 27
hrf, 9
Hypothesis testing, 24

ica, 29
Independent component analysis

see ica
Inferior, 6
Inflation, 16
Inhomogeniety, 15
irls, 31
Iterative re-weighted least squares

see irls

l1-norm, 79
lars, 31, 85
Least Angle Regression and Selection

see lars
lasso, 31
Least Angle Regression and Selection

Operator, 31
Likelihood, 23
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Lobes, 7
Low frequency drift, 19
lti, 9

mni space, 13
Motion, 17
Motion effects, 27
Multiplicative updates, 32, 84

nmf, 32, 48
Non-negative matrix factorisation

see nmf
Normalisation, 13
Nuisance Variable Regression

see nvr, 26
Null hypothesis, 24
NVR, 26

Orthonormal, 29

Parallel factor analysis
see cp

pca, 29
Positive matrix factorisation

see nmf
Posterior, 6
Principal component analysis

see pca
Prior, 23
Probability density, 79

Inverse/Inverted Wishart, 80
Laplace distribution, 79
Multivariate Student t, 80
Normal/Gaussian distribution, 80

Projected gradient, 32

Sagittal, 8
sc, 31, 49, 51
Segmentation, 16, 16, 82
Shifted nmf, 48
Singular value decomposition, 29
Smoothness, 51
Sparse pca, 32
Sparse coding

see sc

Sparseness, 51
Spatial smoothing, 19
Spin history effects, 27
spmd, 65

T − test, 24
Talairach space, 13
Template, 13
Temporal smoothness, 19
tfgm, 46
Transversal, 8
Tucker model, 35

Unfolding, 16
unvr, 63

Volterra expansion, 27

Warping, 13
White matter, 6
Windkessel viscoelastic model, 10
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