4,444 research outputs found

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids

    Effects of a radially varying electrical conductivity on 3D numerical dynamos

    Full text link
    The transition from liquid metal to silicate rock in the cores of the terrestrial planets is likely to be accompanied by a gradient in the composition of the outer core liquid. The electrical conductivity of a volatile enriched liquid alloy can be substantially lower than a light-element-depleted fluid found close to the inner core boundary. In this paper, we investigate the effect of radially variable electrical conductivity on planetary dynamo action using an electrical conductivity that decreases exponentially as a function of radius. We find that numerical solutions with continuous, radially outward decreasing electrical conductivity profiles result in strongly modified flow and magnetic field dynamics, compared to solutions with homogeneous electrical conductivity. The force balances at the top of the simulated fluid determine the overall character of the flow. The relationship between Coriolis and Lorentz forces near the outer boundary controls the flow and magnetic field intensity and morphology of the system. Our results imply that a low conductivity layer near the top of Mercury's liquid outer core is consistent with its weak magnetic field.Comment: 30 pages, 11 figures, 2 tables. To be published in Physics of Earth and Planetary Interiors (PEPI)

    The 1999 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 99 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, ten- sional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dy- namic response of the target materials, and validate these computations against experimental data

    Thermodynamic Characterization of Polymeric Materials Subjected to Non-isothermal Flows: Experiment, Theory and Simulation

    Get PDF
    Frictional or viscous heating phenomena are found in virtually every industrial operation dealing with processing of polymeric materials. This work is aimed at addressing some of the existing shortcomings in modeling non-isothermal polymer flowing processes. Specifically, existing theories suggest that when a polymer melt is subjected to deformation, its internal energy changes very little compared to its conformational entropy. This statement forms the definition of the Theory of Purely Entropic Elasticity (PEE) applied to polymer melts. Under the auspices of this theory, the temperature evolution equation for modeling the polymer melt under an applied deformation is greatly simplified. In this study, using a combination of experimental measurements, continuum-based computer modeling and molecular simulation techniques, the validity of this theory is tested for a wide range of processing conditions. First, we present experimental evidence that this theory is only valid for low deformation regimes. Furthermore, using molecular theory, a direct correlation is found between the relaxation characteristics of the polymer and the flow regime where this theory stops being valid. We present a new and improved form of the temperature equation containing an extra term previously neglected under the PEE assumption, followed by a recipe for evaluating the extra term. The corrected temperature equation is found to give more accurate predictions for the temperature profiles in the high flow rate regimes, in excellent agreement with our experimental measurements. Next, in order to gain a molecular-level understanding of our experimental findings, a series of polydisperse linear alkane systems with average chain lengths between 24 and 78 carbon atoms are modeled with an applied “orienting field” using a highly efficient non- equilibrium Monte Carlo scheme. Our simulation results appear to substantiate our experimental findings. The internal energy change of the oriented conformations is found to be similar in magnitude with the free energy change, indicating that it is not reasonable to be neglected from a macroscopic energy balance. Furthermore, the inter- molecular interactions are found to play a crucial role in the energy balance of the system, which explains why PEE is not obeyed when high degrees of orientation are achieved. In the end, a structural study is performed on highly oriented configurations of n-eicosane generated through steady-state non-equilibrium molecular dynamics (NEMD). We compare the simulated oriented structures to x-ray diffraction data for crystalline n-eicosane, and conclude that a crystalline precursor is formed during the simulations

    Non-Newtonian Microfluidics

    Get PDF
    Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses

    Structure and pressure drop of real and virtual metal wire meshes

    Get PDF
    An efficient mathematical model to virtually generate woven metal wire meshes is presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional images of real meshes, which are produced via computer tomography. Virtual structures are generated for three types of metal wire meshes using only easy to measure parameters. For these geometries the velocity-dependent pressure drop is simulated and compared with measurements performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of the measurements. The generation of the structures and the numerical simulations were done at GKD using the Fraunhofer GeoDict software

    Investigating the performance of high viscosity friction reducers used for proppant transport during hydraulic fracturing

    Get PDF
    Over the last few recent years, high viscosity friction reducers (HVFRs) have been successfully used in the oil and gas industry across all premier shale plays in North America including Permian, Bakken, and Eagle Ford. However, selecting the most suitable fracture fluid system plays an essential role in proppant transport and minimizing or eliminating formation damage. This study investigates the influence of the use of produced water on the rheological behavior of HVFRs compared to a traditional linear guar gel. Experimental rheological characterization was studied to investigate the viscoelastic property of HVFRs on proppant transport. In addition, the successful implication of utilizing HVFRs in the Wolfcamp formation, in the Permian Basin was discussed. This study also provides a full comparative study of viscosity and elastic modulus between HVFRs and among fracturing fluids such as xanthan, polyacrylamide-based emulsion polymer, and guar. The research findings were analyzed to reach conclusions on how HVFRs can be an alternative fracture fluid system within many unconventional reservoirs. Compared to the traditional hydraulic fracture fluid system, the research shows the many potential advantages that HVFR fluids offer, including superior proppant transport capability, almost 100% retained conductivity, around 30% cost reduction, and logistics such as minimizing chemical usage by 50% and the ability to stoner operation equipment on location. Finally, this comprehensive investigation addresses up-to-date of using HVFRs challenges and emphasizes necessities for using HVFRs in high TDS fluids --Abstract, page iv
    corecore