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ABSTRACT 

 

Frictional or viscous heating phenomena are found in virtually every industrial 

operation dealing with processing of polymeric materials. This work is aimed at 

addressing some of the existing shortcomings in modeling non-isothermal polymer 

flowing processes. Specifically, existing theories suggest that when a polymer melt is 

subjected to deformation, its internal energy changes very little compared to its 

conformational entropy. This statement forms the definition of the Theory of Purely 

Entropic Elasticity (PEE) applied to polymer melts. Under the auspices of this theory, 

the temperature evolution equation for modeling the polymer melt under an applied 

deformation is greatly simplified. In this study, using a combination of experimental 

measurements, continuum-based computer modeling and molecular simulation 

techniques, the validity of this theory is tested for a wide range of processing 

conditions. First, we present experimental evidence that this theory is only valid for low 

deformation regimes. Furthermore, using molecular theory, a direct correlation is found 

between the relaxation characteristics of the polymer and the flow regime where this 

theory stops being valid. We present a new and improved form of the temperature 

equation containing an extra term previously neglected under the PEE assumption, 

followed by a recipe for evaluating the extra term. The corrected temperature equation 

is found to give more accurate predictions for the temperature profiles in the high flow 

rate regimes, in excellent agreement with our experimental measurements. Next, in 

order to gain a molecular-level understanding of our experimental findings, a series of 

polydisperse linear alkane systems with average chain lengths between 24 and 78 
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carbon atoms are modeled with an applied “orienting field” using a highly efficient non-

equilibrium Monte Carlo scheme. Our simulation results appear to substantiate our 

experimental findings. The internal energy change of the oriented conformations is 

found to be similar in magnitude with the free energy change, indicating that it is not 

reasonable to be neglected from a macroscopic energy balance. Furthermore, the inter-

molecular interactions are found to play a crucial role in the energy balance of the 

system, which explains why PEE is not obeyed when high degrees of orientation are 

achieved. In the end, a structural study is performed on highly oriented configurations 

of n-eicosane generated through steady-state non-equilibrium molecular dynamics 

(NEMD). We compare the simulated oriented structures to x-ray diffraction data for 

crystalline n-eicosane, and conclude that a crystalline precursor is formed during the 

simulations.       
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Chapter 1 

 

Introduction 

 

 

1.1 The Elastic Behavior of Polymeric Materials 

 

At the beginning of the last century, polymers emerged as a new class of 

chemical compounds. Even though naturally occurring polymers have been used for 

quite some time before that (natural rubber), it wasn’t until 1909 that the Poly-Phenol-

Formaldehyde (PPF or Bakelite) resin was synthesized. Since then, a variety of other 

polymers were discovered and mass-produced. For example, Polystyrene (PS) (1930), 

Polyamide (Nylon) (1935), Poly-Vinyl-Chloride (PVC) (1938), Polyethylene (PE) 

(1939), Polyurethane (PU) (1940) are just a few of the most important ones.  

We now live in a time when polymers are replacing traditional materials in 

almost every application. From the synthetic fibers that are replacing cotton, silk and 

wool in the clothes that we wear to the highly complex composite materials replacing 

metals in the automotive industry, polymers are playing an increasingly important role 

in almost every aspect of our everyday life.   

Understanding the behavior of polymeric materials under industrial processing 

conditions has generated a tremendous amount of interest among engineering 
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communities over the past fifty years. This is due to a continuous growth of the polymer 

industry, driven by an increasing number of polymers being discovered and also an 

increasing number of applications in which polymers are used. It has been estimated 

that the polymer industry in the United States has surpassed the steel, copper and 

aluminum industries combined.  

When subjected to industrial processing operations, polymeric materials 

undergo repeated deformations, associated with heating, cooling and phase transitions. 

To understand properly the thermodynamics and energy balance of such operations, it is 

necessary to understand fully the structure-property relationships exhibited by polymers 

at all length and time scales. It is well known that for a polymeric material, the final 

mechanical and thermal properties are greatly affected by its processing history. For 

example, the crystallinity of a polymer can be controlled by simply adjusting the 

cooling rate in conjunction with an applied deformation. Even though most processing 

operations are non-isothermal, the research in this area has been focused primarily on 

isothermal deformations of polymeric materials. 

 

§1.1.1 General Equations  

In a typical engineering analysis of an incompressible, isothermal polymeric 

flow, one has to solve a set of equations for the conservation of mass (eq. 1.1), 

momentum (eq. 1.2) and an appropriate constitutive equation that relates the stress to 

the strain rate (eq. 1.3). For example, in the case of the Upper-Convected Maxwell 

Model (UCMM), one has the equation set [1, 2] 
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                                              ( ) 0=⋅∇−=
∂
∂ vρρ

t
                                            (1.1) 

                                     [ ] gp
Dt
D ρτρ +⋅∇−−∇=

v                                        (1.2) 

                                 ( )αββααβαβ τ
λ

τ vvG ∇+∇=+
1(                                    (1.3) 

along with appropriate initial and boundary conditions, where v is the velocity vector 

field, ρ is the fluid mass density, p is the hydrostatic pressure, τ is the extra stress tensor, 

G is the elastic modulus and λ is the relaxation time. The superimposed reverse hat 

denotes the upper-convected time derivative. In the non-isothermal case, when the 

temperature is taken as a variable, one has to add the energy conservation equation (eq. 

1.4) to the above set of equations: 

                               ( ) ( ) ( )vv ∇+⋅∇−⋅∇−= :
ˆ

τρ pq
Dt
UD                                (1.4) 

where Û  is the internal energy per unit mass and q is the heat flux vector field. It is 

important to note that the UCMM constitutive equation (eq. 1.3) has additional terms 

under non-isothermal conditions [1, 2].  

 

§1.1.2 Polymeric Materials with Purely Entropic Elasticity 

In equation 1.4, the internal energy on the left hand side is not a quantity that 

can be measured directly, and a simplification needs to be made. In thermodynamics, 

the Helmholtz free energy is defined as the difference between two components: 

internal energy and entropy multiplied by the temperature, 
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                                            TSUA −≡                                                    (1.5) 

If we define the “rate of accumulation of elastic energy” E&  as, 

                                            TSAE &&& +≡                                                    (1.6) 

then the “rate of accumulation of elastic energy” becomes 

                                            STUE &&& −=                                                     (1.7) 

In equations 1.6 and 1.7, the superimposed dot represents the substantial time 

derivative. For an isothermal process, the rate of accumulation E&  is identified with the 

rate of accumulation of Helmholtz free energy A& .  

Let us examine now both ends of the rheological spectrum. When purely viscous 

fluids (Newtonian, if the stress is linear with strain rate) are subjected to deformation, 

their conformational entropy does not change. In other words, the internal structure of a 

volume element will be the same whether the deformation is present or not. There have 

been simulation studies reporting the onset of the so-called “string phase” when extreme 

shear rates were applied to monatomic fluids [3, 4]. The authors of these studies 

however, have explained the existence of the string phase as being an algorithmic 

artifact. The appearance of ordered phases at extreme shear rates was eliminated when 

the systems were thermostated by fixing the configurational temperature, instead of the 

kinetic energy [3]. Therefore, it would be safe to assume that purely viscous fluids can 

accumulate elastic energy only by compression, thus by an increase in internal energy, 

                                             UE && =                                                        (1.8) 

On the opposite side of the spectrum we find the rubbery solids, which under the 

very successful Theory of Rubber Elasticity (TRE) [5] are considered to accumulate 
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elastic energy exclusively through a decrease in conformational entropy. The significant 

decrease in conformational entropy is associated with the lower number of degrees of 

freedom of the extended chains: 

                                            STE && −=                                                       (1.9) 

Polymeric melts on the other hand, which are viscoelastic in nature, are treated 

as either simple fluids with fading memory [6, 7] or as cross-linked networks with 

temporary junctions [8]. 

Astarita and co-workers [9-12] set the basis for what it is known today as the 

Theory of Purely Entropic Elasticity (PEE) as applied to polymer melts, and have made 

the assumption that the internal energy of a polymeric fluid is a unique function of 

temperature, thus independent of deformation. Mathematically, this can be written as 

                                               ( )TUU ˆˆ =                                                   (1.10) 

The immediate consequence of equation 1.10 is that the constant volume heat capacity 

per unit mass, defined the usual way as the derivative of the internal energy with respect 

to temperature at constant density, will also be independent of deformation: 

                                              ( )
T
TUcv d

ˆdˆ =                                                (1.11) 

Based of the assumption of PEE, the energy conservation equation 1.4 can be greatly 

simplified and can be written in essentially the classical way: 

                           ( ) ( ) ( )vv ∇+⋅∇−⋅∇−= :ˆ τρ pq
Dt
DTcv                                (1.12) 

We now have a more useful form of equation 1.4 written in terms of 

temperature, which is an easily measurable quantity. We should point out that equation 
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1.12 is exactly the same as for Newtonian fluid, and there is no explicit information 

related to the internal structure or conformation of the fluid, except only indirectly 

through the stress tensor. 

 

1.2 Review of Previous Work 

 

Driven by the explosive growth of the polymer industry since the 1940’s, the 

engineering community recognized the need to study and characterize these materials at 

the greatest depth. Particularly, much information was needed in relation to the energy 

balances associated with deformation under processing conditions.  

Recent advances in atomic force microscopy have made it possible to measure 

the mechanical properties of polymers at the molecular level. Consequently, a 

considerable amount of effort has been dedicated to measuring the elastic response of 

single polymer chains in various media [13-16]. The general consensus is that when 

single polymer chains are extended, their elastic response can entirely be attributed to a 

decrease in conformational entropy. A recent molecular simulation study appeared to 

substantiate this idea [17, 18]. In this study, the authors measured the elastic response of 

a single chain placed in a simulation box, which was then filled with a solvent (either 

chemically different or similar to the single chain). The authors then proceeded to 

extend the chain and map out the chain free energy using the “umbrella sampling” 

technique, while keeping the surrounding solvent at equilibrium. They concluded that 

unless the chain reaches its maximum extension length, the internal energy of the 
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system does not change. By definition, the chain adopts its maximum extension when 

all the torsional angles are in the trans conformation, while the bond angles and bond 

lengths are at their equilibrium values. Clearly, the internal energy increase observed at 

the highest extensions was due to modifications in bond angles. 

As will be shown in Chapter 3, our simulation results suggest that when a 

polymer melt (or an ensemble of chains) is stretched, the most important contributor to 

the change in internal energy is the inter-molecular non-bonded energy. The two other 

major contributors are the torsional energy and the intra-molecular non-bonded energy. 

The two latter components are of about the same magnitude and of opposite sign, 

offsetting each other. We believe that the results obtained in the abovementioned study 

are not at all surprising. The medium surrounding the extended polymer chain was kept 

at equilibrium, thus the change in the non-bonded inter-molecular energy was 

negligible. In reality, when a polymer melt experiences deformation, the 

macromolecular chains tend to align in the direction of the deformation, establishing 

more favorable side interactions with the neighboring chains. This plays a major role in 

the energy balance of the system, because these favorable interactions lower the inter-

molecular non-bonded energy significantly. In extreme cases, the oriented melts 

experience the phenomenon called “flow-induced crystallization”. Indeed, we have 

shown evidence of crystalline-like structures forming during simulation of n-eicosane 

subjected to planar elongational flow [19] (also, see Chapter 4). 

If we examine the internal structure of cross-linked rubbery solids, the chain 

segments connecting two network nodes can be modeled as isolated chains. When an 
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external deformation is applied, it is very difficult for the chain segments to establish 

favorable side interactions with neighboring chains, given the random distribution of the 

network nodes and the segment lengths. Thus, the inter-molecular interactions will be 

independent of deformation. Therefore, the energy accumulated through deformation 

will be entirely associated with a decrease in conformational entropy, as stipulated in 

TRE [5].  

When the Theory of Purely Entropic Elasticity was applied to polymer melts, its 

authors attempted to test it experimentally. In their experimental procedure, the 

temperature increase due to viscous heating for planar shear flow and uniaxial 

elongational stretching was measured [10, 11]. Two different polymers were tested: 

Polyisobutylene (PIB) and Polyvinylacetate (PVA). From a theoretical perspective, they 

simplified the heat equation 1.4 by assuming a Purely Entropic Fluid (eqns. 1.10 and 

1.11) by neglecting heat conduction effects and by considering the fluid homogenous; 

they subsequently solved equation 1.4 for the heat capacity in the transient regime. 

Under the experimental conditions, only PIB was found to be purely entropic in nature, 

while PVA was not. For PIB, the heat capacity was found to converge to the same value 

for all deformation rates investigated, thus concluding that equation 1.12 was obeyed, 

and that the PEE assumption used to derive it was reasonable. We believe that there are 

two main reasons why energetic effects were not captured by these early experiments: 

first, the spectrum of deformation rates employed was too low (up to 2.78 s-1) ; second, 

the flow was homogeneous (i.e. there were no spatial gradients in the degree of 

orientation); in Section 2.5, we will derive a more general form of the temperature 
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equation by not including the PEE assumption and we will show that there is an extra 

heat generation term arising from the spatial gradients of the degree of orientation. We 

also believe that their interpretation for the PVA experimental results was faulty. The 

evidence provided only suggests that PVA has a different transient behavior than PIB. 

The authors did not show clear evidence that the heat capacity is not a constant with 

respect to deformation rate, as they did in the PIB case.  

However questionable these results were, they established the theory of PEE as 

universally applicable in non-isothermal polymer rheology. We are aware of no further 

attempts to prove this theory experimentally. 

 

1.3 Theoretical Deviations from the Theory of Purely Entropic 

Elasticity 

 

Virtually all engineering analyses and commercially available software for 

modeling non-isothermal flow of polymeric fluids use equation 1.12 to describe the 

temperature evolution of the system. As Astarita and co-workers pointed out in their 

study, this approach has its limitations [9]:  

“The implications of this conclusion are very important in the 
engineering analysis of such polymer processing operations as extrusion 
and injection molding, where frictional heating is a crucial phenomenon. 
Polymer melts are known to be non-linear viscoelastic materials, and 
unless the assumption embodied in (eq. 1.10) is made, their frictional 
heating behavior would not be described by (eq. 1.12).” 
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Let us examine now the complete form of the temperature evolution equation if 

we do not make the assumption that the free energy is purely entropic in nature. First, 

we have to consider that aside from temperature, the internal energy of the fluid has an 

explicit dependence on one or more internal structural variables. In this case, the most 

widely used quantity to describe the internal structure of a polymer melt is the 

conformation tensor, c, which is defined as the second moment (dyadic product) of the 

end-to-end vector R, taken as an ensemble average: 

                                                      RRc ≡                                                   (1.13) 

If we consider both temperature and conformation tensor functionalities of the 

internal energy, then the constant volume heat capacity per unit mass will be defined as 

the partial derivative of the internal energy with respect to temperature, at constant c: 

                                                 ),(ˆˆ cTUU =                                                   (1.14) 

                                                
c

T
Ucv ∂
∂

=
ˆ

ˆ                                                     (1.15) 

Then, the substantial time derivative of the internal energy found on the left side of 

equation 1.4 becomes: 

          ⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

∂
∂

+=
∂
∂

+= cvc
c

c
c t

U
Dt
DTc

Dt
DU

Dt
DTc

Dt
UD

VT

v
VT
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The complete form of the temperature evolution equation is thus 
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We now have an additional term on the right side of equation 1.17 that does not 

appear in equation 1.12. This term contains the structural information missing in 

equation 1.12. In order to evaluate this term, one has to invoke a viscoelastic model, 

such as the UCMM or the Finitely Extensible Nonlinear Elastic model with the Peterlin 

approximation (FENE-P) [20] to relate the conformation tensor c to the rate of strain 

tensor. In Section 2.5, equation 1.17 will be discussed in detail, and the relative 

importance of the abovementioned additional term will be assessed using the UCMM 

and the single-mode Giesekus models. However, by careful choice of the flow system 

conditions, this term can be made to vanish. For example, if one is interested in the 

steady-state ( 0/ =∂∂ tc ) of a homogenous flow ( 0=∇c ), then equation 1.17 takes the 

same form as equation 1.12. Furthermore, in this case the heat capacity is no longer 

independent of deformation rate, as PEE would suggest (see equations 1.14 and 1.15). 

Some recent theoretical studies have brought the validity of PEE into question 

[1, 2]. Using the UCMM, a new temperature evolution equation was derived without 

using the PEE assumption. The new temperature equation has additional terms not 

appearing in equation 1.12, and includes terms describing the relaxational fluid 

processes. Furthermore, the heat capacity is written as a sum of two terms; one that is 

the equilibrium heat capacity and an explicit contribution from the conformational 

structure of the polymer, 

                              ( ) ( )( ) ( )
2

2

00 trtr
2
1

T
TKTcc

∂
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where, c0 is the equilibrium heat capacity, α is a material constant and is a measure of 

the degree of elasticity per unit mass, K(T) is the overall chain spring constant, c is the 

conformation tensor in the deformed state, and c0 is the conformation tensor in the 

unperturbed state. It is important to note that if K(T) is a linear function of temperature, 

the second term on the right side of equation 1.18 vanishes. However, as we shall see 

later in Chapter 3, our simulation results seem to suggest that K(T) is not a linear 

function of temperature, and the conformational contribution to the heat capacity can be 

significant. Furthermore, it is worth emphasizing that the functional form of equation 

1.18 is based upon the relatively simplistic UCMM. Other, more physically realistic 

models would produce different functional forms.  

The heat capacity represents the amount of heat necessary to raise the 

temperature of an object by one degree Kelvin. This amount of heat is directly related to 

the degrees of freedom of the smallest components of that particular material (atoms). 

When a polymeric material is subjected to deformation, the macromolecular chains tend 

to align in the direction of the deformation, which results in a decrease of the total 

number of degrees of freedom for the chains, or in other words a reduction in the heat 

capacity. Therefore, one would expect the heat capacity for an aligned system of 

macromolecules to be always smaller than the quiescent state value. Indeed, as we shall 

see later in §2.5.6 and §3.3.3, the heat capacity is decreasing as the deformation rate is 

increased for our model polymer (polyethylene).  
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1.4 Concluding Remarks 

 

In this chapter, we have reviewed some basic theoretical aspects regarding the 

elastic response of polymeric materials. We have identified two fundamentally different 

elastic responses for purely viscous fluids and purely elastic rubbers in the sense that for 

the former, the accumulation of elastic energy is entirely due to internal energy change, 

while for the latter it is entirely attributed to the conformational entropy. Furthermore, 

we have made a clear distinction between the elastic behavior of polymer melts on one 

hand and the elastic behavior of single polymer chains and cross-linked polymer 

networks on the other. This distinction has been overlooked before, in the sense that 

polymer melts were assumed to obey the Theory of Purely Entropic Elasticity. We also 

identified an additional term in the temperature evolution equation, which contains 

internal structural information (equation 1.17). 

In the following chapters, we will test the validity of the PEE assumption as 

applied to polymer melts. In Chapter 2, we will extend the experiments of Astarita and 

co-workers [10, 11] to test the validity of equation 1.12 for a much wider range of 

deformation rates. Equation 1.12 will be solved numerically using a finite element 

method after removing some of the simplifying assumptions in the original approach. 

This will provide the basis for comparison with the experimental measurements. Then, 

in Chapter 3 we will perform detailed atomistic molecular simulations under non-

equilibrium conditions for a series of polydisperse linear alkane systems under the 
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influence of an applied orienting field. These simulations will be performed in order to 

help us get a better understanding of the experimental results.   
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Chapter 2 

 

Rheology of Non-Isothermal Polymeric Flows  

 

 

2.1 Introduction 

 

When a polymeric material is subjected to deformation, it experiences the so-

called “frictional or viscous heating” phenomenon. This phenomenon occurs in both 

types of flow known in rheology, namely shear and elongational flows. The “viscous 

heating” term appears in the energy balance of the system (eq. 1.4), and is defined as 

the double dot product between the stress tensor and the rate of strain tensor ( v∇:τ ). 

Therefore, designing any industrial process that involves flow of polymeric materials 

requires accurate predictions of this particular term. By contrast, in the case of low 

viscosity Newtonian fluids (such as water), the heat generated through frictional 

phenomena is negligible, except under extreme conditions.  

In some typical industrial processing applications, polymeric materials are 

subjected to flow regimes that are either purely shear or elongational. Primarily, shear 

flow is found in operations such as capillary extrusion, while elongational processes 

include fiber spinning, film blowing and blow molding. In most cases, however, the 
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design engineer is faced with a mixture of the two, and accurate knowledge of both 

shear and elongational viscosities is needed.  

While the experimental techniques for determining the shear viscosity as a 

function of deformation rate are very well established, elongational viscosity 

measurements are still largely in the developmental stage and subject to some 

controversy. This is due to an array of technical difficulties encountered in these flows, 

which include the difficulty of generating a controlled steady-state elongational flow 

field, combined with the coexistence of shear effects. The shear viscosity of a polymer 

melt can easily be measured using “cone and plate” viscometers for low to moderate 

shear rates, or by using capillary extrusion rheometers for moderate to high shear rates.  

In extensional rheometry, there are two basic techniques for determining the 

elongational viscosity: tensile testing methods and converging flow methods. Each of 

these two methods carries advantages and limitations. The most widely used devices for 

the direct measurement of the elongational viscosity are the Meissner-type rheometers 

[21-23]. In these devices, the polymer sample is placed between two pulling devices in 

an oil or air bath in order to control the temperature, and then the constant elongational 

rate is achieved by deforming the sample with an exponentially increasing force. In this 

case, the advantages include the ability to generate shear-free uniaxial, biaxial and 

planar elongational flows. Some of the disadvantages include the fact that the sample 

needs to be very viscous or viscoelastic, typically close to the melting point. Therefore, 

these devices are limited in the temperature and strain rate ranges, which are usually 

much lower than the industrial processing conditions they are trying to imitate.  
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The second category of experimental techniques for determining the 

elongational viscosity is represented by the converging flow methods. See ref. [24] for a 

comprehensive review of these methods. Perhaps the most theoretically sound method 

for determining the elongational viscosity belongs to Collier and co-workers [24-27]. 

They introduced the use of the semi-hyperbolically converging die, which will be 

described in detail in §2.2.1. The semi-hyperbolically converging die retains some of 

the advantages of the Meissner-type devices, in the sense that it has been shown to 

generate essentially purely uniaxial elongational flow under full-slip at the wall 

boundary conditions [24, 26], while eliminating some of the disadvantages of the tensile 

devices. Using the Advanced Capillary Extrusion Rheometer (ACER 2000), and a 

Hencky strain of 7, elongational strain rates of up to 740 s-1 can be attained. The 

temperature is only bound at the high end of the range by the thermal degradation point 

of the polymer under investigation, while the lower bound of the temperature is 

determined by the range of the pressure transducer used. These experimental conditions 

are similar to what one would expect to find in an industrial processing operation, 

which makes the use of the semi-hyperbolically converging dies in extensional 

rheometry very attractive from a practical point of view. 
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2.2 Materials and Experimental Strategy 

 

§2.2.1 Geometrical Characteristics of a Semi-hyperbolically Converging Die 

The semi-hyperbolically converging dies (or in short, Hencky dies) are designed 

to generate purely uniaxial elongational flow, which is given by the unique geometry of 

the channel. Collier and co-workers provided evidence that the amount of shear 

experienced by the fluid at the wall is negligible [26]. By conducting “core-skin” 

experiments, in which the core consisted of a polymer melt, and the skin was a 

lubricant, followed by “skinless” experiments under the same conditions in which the 

lubricant was removed, they concluded that within statistical uncertainty, the viscosity 

measured using both techniques fell on top of each other. In other words, the amount of 

shear experienced by the “skinless” fluid sample at the wall was minimal, and the 

assumption of total slip at the wall was implied. Unless this assumption is made, the 

flow within the semi-hyperbolic channel is not purely extensional, but a combination of 

shear and elongational flow [24]. Later, using finite element modeling methods it was 

confirmed that the uniaxial elongational flow field was indeed generated within the die 

under full-slip boundary conditions [24]. Moreover, it was proven that the strain rate 

inside the die was independent of either axial or radial position. Kamerkar and Edwards 

examined experimentally the boundary condition by measuring the slip velocity in both 

straight-walled capillary tubes and Hencky dies, with and without the addition of a 

viscosity reducing additive (stearic acid) [28]. They found that the degree of slip was 

significantly greater for flow through the Hencky dies than through the capillary ones, 
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with or without the additive, under all experimental conditions. This implies that there 

is a high probability that the full-slip boundary conditions considered earlier [24, 26, 

27] are actually achieved in practice.  

The characteristics of the Hencky dies are given by their unique geometry,  

                                             ( )
Bz

Azr
+

=                                                   (2.1) 

where r(z) is the radius of the channel at axial position z from the entrance of the die. In 

equation 2.1, A and B are geometry-defined constants, and their mathematical 

expressions are 

                                                         22
0

22
0

e

e

RR
RR

LA
−

=                                                 (2.2) 

                                                         22
0

2

e

e

RR
R

LB
−

=                                                 (2.3) 

where L is the length of the die, R0 and Re are the entrance and exit radii respectively.  

The Hencky dies are also characterized by the Hencky strain number εH, which is the 

natural logarithm of the ratio of the entrance and exit areas: 
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where D0 and De are the entrance and exit diameters respectively. In Figure 2.1, an axial 

cross-section of the Hencky die is presented, with the Hencky strain 6=Hε . 
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Figure 2.1: Schematic representation of an axial cross-section of the Hencky 6 die. 
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§2.2.2 Materials 

 In the present study, we decided on Polyethylene to be our polymer of choice, 

due to its importance in the polymer processing industry. We tested both a low density 

and a high density version, and their molecular characteristics are given in Table 2.1 

below.  

The thermal conductivity of polyethylene usually takes values in the interval 

0.3<k<0.5 W/m/K [29, 30]. Generally, the low density polyethylenes take values toward 

the lower limit of the interval, while high density polyethylenes take values toward the 

upper limit. For the two polymers considered in this study, exact measurements of the 

thermal conductivity have not been performed. The lower and upper limits of the 

interval have been considered for LDPE and HDPE respectively. 

 

§2.2.3 Advanced Capillary Extrusion Rheometer (ACER) 

So far, we have identified the possibility to generate a uniaxial elongational flow 

field under strictly controlled experimental conditions. This represents a major 

improvement over the original experiments reported in support of PEE [10, 11] in the  

 

Table 2.1. Molecular Characteristics of the Polymer Samples. 
Material Grade MI 

(g/10min) 
Density 
(g/cm3) 

Thermal 
Conductivity 
(Wm-1K-1) 

MW 
 

PI 

LDPE Exact 3139 7.5 0.901 0.3 56,950 1.99 
HDPE Paxxon 

AB40003 
0.3 0.943 0.5 105,200 9.74 
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sense that much higher levels of orientation can be achieved using the Hencky dies [28]. 

In this work, our goal is to perform similar tests as in the original experiments of 

Astarita et al. [10, 11], but for higher deformation rates, and also for higher 

temperatures.  

Let us have another look at the temperature evolution equation for an 

incompressible fluid flow, which already contains the PEE assumption:  

                                   ( ) ( )v∇+⋅∇−= :ˆ τρ q
Dt
DTcv                                         (2.5) 

Our strategy is to solve this equation numerically for the temperature T using as few 

simplifying assumptions as possible. This will give us the expected temperature rise due 

to viscous heating for a spectrum of deformation rates. Note that the heat capacity here 

is a function of temperature only and not a function of conformation. Next, our plan is 

to measure experimentally the temperature rise due to viscous effects under the same 

flowing conditions and compare it to the predicted one from the numerical calculations. 

If the measured temperature rise is in agreement with the calculated one over the entire 

range of deformation rates, then the assumption of PEE will be verified. 

The first step in our strategy is to evaluate the viscous dissipation term ( )v∇:τ  

on the right side of equation 2.5. According to ref. [24], this term is given by: 
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where τzz is the normal stress in the direction of the flow, ε&  is the elongation rate, Hε  is 

the Hencky strain, ΔP is the pressure difference between the entrance and the exit of the 

die, and ηef is the effective elongational viscosity, as defined in ref. [24]. Therefore, in 
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order to evaluate the viscous dissipation term, it is necessary to measure the steady-state 

pressure drop, ΔP, as the elongation rate ε&  takes different values.  

The elongational viscosity measurements are made using an Advanced Capillary 

Extrusion Rheometer (ACER 2000), in which the capillary die is replaced by a Hencky 

die. A schematic of the ACER 2000 apparatus is given below in Figure 2.2. It is worth 

pointing out that the schematic shown is not drawn to scale, and is made for illustrative 

purposes only.  

In a typical viscosity measurement experiment, after the attachment of the die at 

the bottom, the barrel is first filled with polymer pellets and heated to the desired 

temperature. When the polymer is completely molten and the temperature inside the 

barrel wall has reached the prescribed value, the ram is attached. The drive mechanism 

will then push down the ram with precisely defined velocities, according to 

                                      ( ) 1exp −
=

H
ram

Lv
ε
ε&                                                (2.7)  

where ε&  is the elongation rate, L is the length of the die and εH is the Hencky strain. 

This equation is programmed into ACER’s software, and the parameters on the 

right side of equation 2.7 are specified by the user at the beginning of the experiment. 

For a particular elongation rate, the pressure drop along the die is measured using the 

pressure transducer and recorded as a function of time. The user has the option of 

deciding whether the steady state in terms of pressure drop has been attained, or the 

software can do it automatically according to a prescribed algorithm. The steady-state 

values of the pressure drop are then recorded and plotted as a function of strain rate.  



 24

 

 

 

 

 

 

Figure 2.2: Schematic representation of ACER 2000. 
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The software can provide further manipulations of the data; for example, it can 

calculate the effective elongational viscosity according to equation 2.8 [24, 26], 

                                                             
εε

η
&H

ef
PΔ

=                                                      (2.8) 

where exitin PPP −=Δ  is the pressure drop along the die, Pin is measured by the pressure 

transducer and Pexit is the atmospheric pressure. 

Following a similar procedure, the shear viscosity of a polymer melt can be 

measured using ACER by replacing the Hencky die with a capillary die. In this case, the 

ram is pushed down with prescribed velocities (vram) that are dependent on the shear rate 

values (γ& ) defined by the user. 
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where Rb is the radius of the barrel and R0 is the radius of the capillary die. Solving the 

momentum equation 1.2 for the flow of an incompressible Newtonian fluid through a 

capillary tube, one gets the following for the shear stress at the wall [31]:  
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where exitin PPP −=Δ  is the pressure drop measured by ACER, and L is the length of 

the capillary tube. The shear viscosity at the wall for this case is: 
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§2.2.4 Experimental Design for Temperature Measurements 

In section 2.4, the procedure for predicting the temperature profiles inside the 

die will be presented. In this procedure, the assumption that the elastic response of the 

polymer melt is purely entropic is embedded in the model equation (eq. 2.13). For a 

direct comparison, the temperature increase as a result of viscous heating effects is 

measured experimentally, under the same conditions simulated in the calculations. To 

this end, a thermocouple is placed at the bottom of the die, and the set of experiments 

described in §2.2.4 was redone for the same data points (in terms of inlet temperature, 

set flow rate and polymer used). In Figure 2.3, the schematic of the experimental design 

for measuring the temperature of the fluid coming out of the die is presented. Both dies 

(Hencky die and reverse conical converging die) were placed inside the barrel, therefore 

both dies were thermostated at Tin. The attachment of the reverse cone die was 

necessary to ensure proper measurement of the temperature of the fluid exiting the die. 

Preliminary attempts were made in which the reverse cone die was not used. At the 

highest flow rates, the velocity of the fluid coming out of the die reaches values up to 

1.25 m/s. The presence of the thermocouple at the bottom made the fluid stream coming 

out of the die shoot randomly in all directions, never completely touching the tip of the 

thermocouple. We did try to explore another non-invasive procedure to measure Texit 

using an infrared camera. The major inconvenience of this approach is the fact that the 

camera focuses on the surface of the fluid stream, thus recording the temperature at the 

surface. As we shall see in §2.4.1 later on, there are significant radial temperature 

gradients at the exit of the die. The infrared camera would  
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Figure 2.3: Schematic of the experimental design for measuring the temperature of the 
fluid at the die exit. 
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actually record the temperature at the die wall (same as Tin). Therefore, we decided that 

the design presented in Figure 2.3 yielded the best results, which were reproducible 

from run to run.  

First, the temperature of the fluid at the die inlet (Tin) was monitored separately 

in a preliminary set of experiments by replacing the pressure transducer with a 

thermocouple of the same shape and size. This step was necessary in order to verify that 

there are no temperature gradients along the axis of the barrel, and also to check that the 

fluid temperature inside the barrel is at the prescribed value. Therefore, in our 

subsequent calculations, Tin was considered as the set temperature on ACER. The 

temperature probe used to measure the temperature of the fluid at the die exit (Texit) was 

obtained from Omega Engineering Inc. using a J-type iron-constantan thermocouple, 

with part number JMQSS-032U-6. The temperature readings were made on a DP26-TC 

Differential Temperature Meter, also obtained from Omega Engineering Inc., with a 

precision of 0.1oC. The temperature increase (ΔT) was recorded as a function of strain 

rate for various inlet temperatures for the two polymers mentioned in §2.2.2. The results 

will be presented in §2.4.2. 

 

§2.2.5 Advanced Rheometric Expansion System (ARES) 

In section 2.5, a theoretical procedure for generalizing the traditional 

temperature equation 1.12 using the UCMM will be presented. This procedure will 

require accurate knowledge of the characteristic relaxation times of the polymers under 

investigation. The characteristic relaxation time λ can be determined by measuring the 
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dynamic loss and storage moduli for the polymer melt. This can be achieved by 

performing a Dynamic Frequency Sweep (DFS) using the “cone-plate” geometry on an 

Advanced Rheometric Expansion System (ARES) rheometer.  

In Figure 2.4, a simplified schematic of the experimental design on ARES is 

presented. The lower plate of the apparatus is connected to an electric motor, while the 

force and torque sensors are attached to the conic upper plate. The polymer sample is 

placed between the plates, which are surrounded by a gas convection chamber. The 

temperature is thus controlled by circulating pressurized gas (nitrogen or air) over two 

resistive heaters and through the chamber at a precise temperature. Furthermore, the 

temperature control loop of the system contains a temperature probe inserted into the 

lower plate for precise control of the temperature inside the sample. The polyethylene 

samples are prepared by compression molding at 160°C into flat sheets 1 mm thick. 

Circular discs 25 mm in diameter are then cut from the flat sheets after cooling to room 

temperature.  

At low frequencies, when the loss modulus "G is greater than the storage modulus 'G , 

the polymer melt is considered to behave as a viscous fluid, while at high frequencies, 

the storage modulus is greater, and the material is considered to develop elastic 

characteristics [27]. The frequency where the two moduli intersect is called the 

“crossover point”, and its reciprocal (1/ωcrossover) gives the characteristic relaxation time 

λ. The dynamic moduli, as well as the dynamic viscosity can be measured using the 

“cone-plate” viscometer (ARES), by applying shear step strains of prescribed 

frequencies ω in the interval 10-2 – 102 s-1. 
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Figure 2.4: Schematic representation of the “cone-plate” geometry on ARES. 

 

 

 

 

 

 



 31

2.3 Elongational Viscosity Measurements for HDPE and LDPE 

 

Let us first examine the elongational viscosity for the two polymers investigated. In 

Figures 2.5a) and 2.5b), the effective elongational viscosity (eq. 2.8) is plotted for 

HDPE (Fig. 2.5a) and LDPE (Fig. 2.5b) at strain rates in the interval 2<ε& <50 s-1. The 

measurements were made at three temperature set points for each polymer. For LDPE, 

the measurements were performed at 150°C, 170°C and 190°C, while for HDPE the 

measurements were performed at 190°C, 210°C and 230°C. The upper limit of the 

temperature interval was dictated by the thermal stability of the polymers, and we 

observed changes in the color of the polymers from translucent to light brown when the 

temperature was increased further. Clearly, HDPE has a higher thermal stability than 

LDPE, as expected. The lower limit of the temperature interval was dictated by the 

physical limit of the pressure transducer. It is well known that the viscosity of a fluid is 

a strong function of temperature, and it increases as the temperature is decreased. 

Consequently, the pressure drop recorded by the pressure transducer will increase as the 

temperature is lowered for a particular flow rate, which in turn puts limitations on the 

upper boundary of the strain rate spectrum that can be investigated. We observed that 

the safety limit of the pressure transducer (56 MPa) was approached at the highest flow 

rates as the temperature was lowered below the abovementioned limits.  

The purpose of measuring the elongational viscosity at different temperatures is 

two-fold. First, it will allow us to test the PEE assumption at more than one 

temperature. Second, the viscosity data at a given elongation rate can be fitted to an 
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Figure 2.5: Effective elongational viscosity for a) HDPE and b) LDPE. 
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Arrhenius type expression [1], 

                                  ( ) ⎟⎟
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where η0 is the “infinite temperature” viscosity, and A0 is an activation energy. The 

fitting parameters η0 and A0 for a given strain rate are then input into the finite element 

code and will account for the temperature dependence of the viscosity in §2.4.1. In 

Table 2.2, the fitting parameters are given for both polymers investigated. 

 

2.4 Finite Element Modeling 

 

The viscous heating term (eq. 2.6) can be determined from the experimental 

measurements described in §2.2.3, and the next step in our analysis is to compute the  

 

Table 2.2. Arrhenius Fitting Parameters for the Viscosity of HDPE and LDPE. 
HDPE LDPE  

ε&  
(1/s) 

η0 
(Pa·s) 

A0/kB 
(K) 

η0 
(Pa·s) 

A0/kB 
(K) 

2 20315.723 1834.177 4141.544 2420.944 
3 23065.660 1656.095 6997.973 2106.395 

4.5 25873.061 1481.147 10712.899 1821.999 
6.75 27098.328 1336.516 15810.890 1542.317 
10 27646.919 1205.008 20286.351 1318.180 
15 27491.897 1079.504 30646.385 1005.090 
23 25539.599 974.864 32226.460 842.302 
34 39019.108 628.583 27349.012 783.112 
50 43942.717 430.121 31115.282 594.244 
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radial and axial temperature profiles inside the die channel as a result of the frictional 

heating effects. This will be accomplished by solving equation 2.5 at steady state using 

as few limiting assumptions as possible.  

For this system, the steady-state temperature distribution equation can be written 

as 

                              ( ) ( )vv ∇+∇=∇⋅ :ˆ 2 τρ TkTcv                                     (2.13) 

where k is the thermal conductivity of the polymer melt. Given the complex nature of 

this partial differential equation, unless highly restrictive limiting assumptions are 

made, it is not possible to solve it analytically. We did succeed to find an analytical 

solution (eq. 2.14) to this equation by assuming an adiabatic system (by effectively 

zeroing the conduction term Tk 2∇ ) and by considering the temperature gradient having 

a non-zero component in the axial direction only.  
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where ΔP is the pressure drop along the die, ρ is the fluid density and cv is the constant 

volume heat capacity. However, we found that this level of approximation produced a 

severe over-prediction of the actual temperature increase along the die channel and 

proceeded to find a numerical solution to this equation without the abovementioned 

simplifications using a finite element technique. At this point, it is worth emphasizing 

that equation 2.13 has the assumption of PEE embedded in it, in the sense it does not 

contain the term dependent on the internal structure of the fluid (see eq. 1.17). 
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 We used FEMLAB® [32] to find numerical solutions to equation 2.13 for 

various inlet temperatures, elongation rates and the polymers given in Table 2.1. We 

built our model based on the “Steady-State Convection and Conduction” model in the 

Chemical Engineering module, using the 2D axially symmetric space dimension. We 

incorporated temperature functionalities into the heat capacity from ref. [33] for generic 

polyethylene, and into the elongational viscosity from our own experimental 

measurements. The velocity field is user pre-defined, and constitutes an input variable 

which will define the convection term on the right side of equation 2.13. The velocity 

field profile used in this study was previously calculated as [24] 

                                            rvr ε&
2
1

−=                                                     (2.15)                

                                               zvz ε&=                                                        (2.16) 

As detailed in ref. [24], this velocity profile corresponds to a purely uniaxial 

elongational field. In the present study, we did verify that the velocity profile is that 

described by equations 2.15 and 2.16 by solving the momentum equation 1.2 

independently in a separate set of FEM calculations, using the same full-slip boundary 

conditions. In the FEM analysis, equation 2.13 was solved numerically using the 

following set of boundary conditions:  

1. At the die entrance, ( ) setin TTzrT === 0, ;                                               (2.17) 

2. At the wall, setTz
Bz

ArT =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= , .                                                         (2.18) 
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§2.4.1 FEM Temperature Profile Predictions  

The FEM calculations gave us the radial and axial temperature profiles inside 

the die channel, which allowed us to compute average temperature values for the exit 

cross-section of the die. The Hencky strain number for the die used in our calculations 

is 6 (see eq. 2.4), the same as in the experimental part. The FEM calculations enabled us 

to predict an effective temperature increase (eq. 2.19) due to viscous heating along the 

die axis: 

                                           inexit
TTT −=Δ                                                (2.19) 

                                   
( )

∫
∫ =

= R

R

exit
rr

rrLzrT
T

0

0

d

d,
                                        (2.20) 

where Tin is the inlet temperature, R is the radius of the die channel at the die exit, r is 

the radial position, z is the axial position and L is the die length. 

In Figure 2.6, the axial temperature profile at r = 0 (Fig. 2.6a) and the radial 

temperature profile at z = 25mm (Fig. 2.6b) are given for the HDPE melt at the inlet 

temperature of 190°C in terms of the net increase inexit
TTT −=Δ  at all elongation 

rates. For all cases considered, these profiles are qualitatively similar. In the axial 

temperature profiles there is a maximum occurring close to the entrance at the lowest 

flow rates, due to two competing phenomena taking place. First, heat is generated due 

to friction within the body of the fluid. The stresses and the velocity gradients giving 

rise to the heat generation term are constants with respect to axial and radial positions  
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Figure 2.6: a) Axial and b) radial calculated temperature profiles for HDPE at           
Tin = 190°C. 
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for a particular flow rate [24], which in turn will make the heat generation term a 

constant throughout the entire spatial domain. Second, heat is removed by conduction 

through the die wall. This term is not a constant with either the radial or the axial 

position. As the radius of the channel gets smaller, the heat loss through the die wall 

increases. The heat conduction term is compensating the generation term, thus reducing 

the temperature. However, as the flow rate is increased, the maximum in the axial 

temperature profile will be pushed towards the exit. While the heat conduction term is 

increasing slowly with strain rate (due to sharper temperature gradients), the heat 

generation term is increasing much faster with strain rate and eventually it will 

overcome the heat loss through the die wall throughout the entire spatial domain. 

At the die exit, an average value for the temperature can be calculated by 

numerical integration using equation 2.20. Typically, the average temperature for a 

cross-section (or the “bulk temperature” [31]) is also weighted by the axial velocity vz. 

In this case, vz is independent of the radial position r and it will drop out of the equation: 

        
( ) ( )

( )

( ) ( )

∫
∫

∫
∫

∫
∫ =

=
=

=
=

= R

R

R

z

R

z

R

z

R

z

exit
rr

rrLzrT

rrv

rrLzrTv

rrrv

rrrvLzrT
T

0

0

0

0

0

0

d

d,

d

d,

d

d,
    (2.21) 

In Figure 2.7, the average temperatures at the exit cross-section of the die 

resulting from the FEM calculations are presented for HDPE (Fig. 2.7a) and LDPE (Fig. 

2.7b). For consistency, the temperatures are given in terms of the net change with 

respect to the inlet temperature. The FEM calculation results are not surprising. We 

observe a steady temperature increase as the strain rate is increased for both HDPE and 

LDPE. This can easily be explained if we take another look at the heat generation term. 
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Figure 2.7: Calculated average temperature changes at the die exit for a) HDPE and  
b) LDPE. 
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                                        2: εητ &ef=∇v                                                  (2.22) 

Even though the viscosity is decreasing as the strain rate increases, the heat generation 

term is directly proportional to the second power of the strain rate. Overall, the heat 

generation term will increase almost linearly with strain rate. Moreover, for a given 

flow rate, the temperature change will increase as the inlet temperature is decreased. 

Again, this is a consequence of the generation term, because the viscosity increases as 

the temperature is decreased. It is worth pointing out that at the same inlet temperature 

(190°C), the temperature increase is larger for LDPE than it is for HDPE. This is 

somewhat counterintuitive, given the fact that the viscosity of HDPE is greater than that 

of LDPE at the same temperature (see Fig. 2.5). Nevertheless, this behavior is easily 

explained if we take the thermal conductivity into consideration. In Table 2.1 the 

thermal conductivity values for typical HDPE and LDPE are given. In our FEM 

calculations we observed that the temperature profiles are sensitive to the thermal 

conductivity, and the lower value for LDPE fully accounts for the abovementioned 

behavior. 

 

§2.4.2 Experimental Temperature Measurements 

With the temperature profile calculations completed, we proceeded to measure 

the temperature change under the same conditions using the experimental design 

described in §2.2.4. In Figure 2.8, the complete results for HDPE are given.  

For the experimental measurements, we observe the same qualitative behavior 

predicted by the FEM calculations. We observe an excellent agreement between the  
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Figure 2.8: Temperature changes for HDPE: filled symbols represent the measured 
values; open symbols represent the FEM calculated values. 
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simulated and measured values for the temperature changes at low to moderate 

elongation rates, as is clearly shown in Figure 2.8. However, at high elongation rates, 

we notice a systematic deviation from the calculated values. Moreover, as the inlet 

temperature is decreased, the deviation starts to occur at lower flow rates.  

In Figure 2.9, we compare the behavior of HDPE and LDPE under the same 

conditions (Tin = 190°C). We notice that the agreement between measured and predicted 

temperature changes for LDPE is maintained for a wider range of elongation rates. As 

we shall see later on, this is due to differences in the relaxation times between the two 

polymers. Clearly, both polymers investigated show deviations from the predicted 

temperature profiles to various degrees. This is clear evidence that equation 2.13 is not 

obeyed for the entire range of elongation rates employed in this study. From this point 

on, we will try to find possible explanations as to why deviations from equation 2.13 are 

observed. 

 

2.5 Theoretical Analysis for Improving the Temperature 

Equation 

 

Let us examine the temperature distribution equation 2.13, and also the 

assumptions that were made in deriving and solving it. The analysis started with the 

energy balance equation 1.4.  

            ( ) ( ) ( )vvq ∇+⋅∇−⋅∇−= :
ˆ

τρ p
Dt
UD                                 (2.23) 
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Figure 2.9: Measured (filled symbols) and calculated (open symbols) temperature     
changes for HDPE (diamonds) and LDPE (squares) at Tin = 190°C. 
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Then, the following assumptions were made: 

 1. The fluid is incompressible ( 0=⋅∇ v )                                                     (2.24) 

 2. The flow is steady ( 0
ˆ
=

∂
∂

t
U ) and ( U

Dt
UD ˆˆ

∇⋅= v )                                   (2.25) 

 3. The fluid is purely entropic ( ( )TUU = ) and ( ( )
T
TUcv d

d
= )                     (2.26) 

 4. Full-slip boundary conditions at the die wall. 

Certainly, one would expect assumption 1 to be true for a wide range of 

pressures when it comes to liquids. In our experiments, we encountered pressures of up 

to 50 MPa, which is not enough to observe density changes through compression. The 

second assumption is also reasonable in this case. We have allowed sufficient time in 

our measurements for both the pressure and the temperature to reach steady-state 

values. As a direct consequence of the third assumption, the constant volume heat 

capacity is a constant with respect to elongation rate (i.e. the degree of orientation 

developed in the melts) and there is no conformation dependent extra term (see equation 

1.17). At this point, we will retain assumption 3 and will call it into question later on.  

Applying the first three assumptions above, the energy balance equation 2.23 

becomes the steady-state temperature distribution equation 2.27, 

                           ( ) ( ) ( )vqv ∇+⋅∇−=∇⋅ :ˆ τρ Tcv                                    (2.27) 

where q is the heat flux vector. Including assumption 4, the heat generation term is 

given by equation 2.28 [24] 

                                                    2: εητ &ef=∇v                                                  (2.28) 
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By applying the three dimensional Fourier’s law (eq. 2.29) [31] and considering the 

fluid isotropic in the sense that heat is conducted in all directions with the same thermal 

conductivity, we get the final form of the temperature distribution equation used in our 

FEM calculations 2.30, 

                                                      Tk∇−=q                                                     (2.29) 

                                        ( ) 22ˆ εηρ &efv TkTc +∇=∇⋅v                                        (2.30) 

 

§2.5.1 Effect of the Boundary Conditions  

In ref. [24] it has been shown that the effective elongational viscosity ηef 

measured using the semi-hyperbolically converging die technique is an accurate 

approximation of the true elongational viscosity under full-slip boundary conditions 

(assumption 4). In this study we tested the effect of assumption 4 on the temperature 

profiles by performing a set of FEM calculations in which the momentum and heat 

equations were solved simultaneously as a coupled system of partial differential 

equations. The full-slip boundary conditions were replaced by no-slip boundary 

conditions, and the resulting velocity profiles were used to define the convection term 

on the left side of equation 2.30. In this case, the radial and axial components of the 

velocity field will differ significantly from equations 2.15 and 2.16 respectively, as 

shown in ref. [24]. In figure 2.10, the axial temperature profiles obtained using the full-

slip and no-slip boundary conditions are presented for the HDPE melt at Tin = 190°C  
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Figure 2.10: Effect of the applied boundary conditions on the calculated axial 
temperature profiles for the HDPE melt at Tin = 190°C and 134 −= sε& . 
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and 134 −= sε& . It is clear from figure 2.10 that changing the boundary conditions has a 

significant effect on the temperature profile, mainly because the convection term was 

altered. However, introducing no-slip at the wall seems to lower the temperature profile. 

Therefore, we conclude that the boundary conditions used in this study (assumption 4) 

cannot be responsible for the deviations observed in figures 2.8 and 2.9, given the 

opposite behavior observed.  

In equation 2.30, we are left with two possible causes that may be responsible 

for the deviations observed in Figures 2.8 and 2.9. First, the thermal conductivity, k may 

not be a constant with the degree of orientation; second, the third assumption made 

above (eq. 2.26) may not be valid. In §2.5.2, the thermal conductivity effect on the 

solution of equation 2.30 will be investigated. In §2.5.6, the PEE assumption (eq. 2.26) 

will be removed and the relative importance of the two consequences of equation 2.26 

will be discussed in detail. 

 

§2.5.2 Effect of the Thermal Conductivity  

Let us focus our attention now on the thermal conductivity k. While the thermal 

conductivity of polymeric materials at equilibrium is isotropic (i.e., has the same value 

in all directions), it is generally accepted that for deformed polymers, the thermal 

conductivity becomes anisotropic [29, 34-43]. This phenomenon can be explained if we 

examine the way thermal energy is conducted in oriented polymeric materials. In a 

polymeric material subjected to deformation, the chains become stretched out and 

partially aligned with each other. Kinetic theory suggests that the propagation of the 
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thermal vibrations is accomplished more efficiently along the backbone of the chain, 

because it consists of strong covalent bonds. The van der Waals interactions established 

between side chains are weaker and longer ranged, which will make it more difficult for 

the thermal vibrations to propagate in a direction perpendicular to the polymer chains.  

Experimentally, it has been shown that the thermal conductivity in the direction 

parallel to the direction of deformation ( ||k ) increases with degree of orientation, while 

the thermal conductivity perpendicular to the direction of deformation ( ⊥k ) decreases. 

This phenomenon is highly sensitive to temperature and to the physical state of the 

polymer. For example, it has been measured that when solid high-density polyethylene 

is subjected to uniaxial extension at room temperature with draw ratios λ between 1 and 

25, ⊥k suffers a reduction of up to 50% with respect to the isotropic value accompanied 

by a simultaneous increase in ||k  of up to 2000%, approaching the value for stainless 

steel [29]. In polymer melts subjected to shear or extensional flows, the extent to which 

the two components of the anisotropic thermal conductivity tensor change is much 

lower. Notable is the work of Venerus and co-workers, in which they developed a non-

invasive method for measuring the anisotropic thermal conductivity in polymer melts 

under static or dynamic conditions through Forced Rayleigh Light Scattering (FRLS) 

[37, 39-42, 44]. Decreases in ⊥k  of up to 10% and increases in ||k  of up to 20% were 

observed during shear [37, 39, 40, 42, 44] and extensional [40] flows. In an effort to 

relate the anisotropic thermal conductivity tensor to the extra stress tensor, van den 
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Brule suggested a linear relation between the two tensors using a simple network model 

for polymer liquids [45]: 

                                  ( ) τδ tisoCk=− kk tr
3
1                                            (2.31) 

where kiso is the isotropic thermal conductivity and Ct is the so called “stress-thermal 

coefficient”. Equation 2.31 is the formulation of the “stress-thermal law”, which is 

analogous to the stress-optical law relating the refractive index tensor to the extra stress 

tensor. Subsequent research has found the stress-thermal law to be valid for a wide 

range of polymers and deformations [35, 39, 40, 42, 44]. 

With that in mind, we proceeded to test the effect of changing the thermal 

conductivity in our FEM calculations. Following the recipe reported in literature, we 

have set ⊥k = 0.9·kiso and ||k = 1.2·kiso for HDPE at Tin = 190°C, at a strain rate where 

deviation from the calculated temperature profile was observed ( 134 −= sε& ). It is 

important to point out though that we can only make qualitative assessments at this 

point, given that the stress-thermal coefficient for HDPE under uniaxial elongational 

flow has not yet been reported. We have purposely chosen the most extreme situation 

reported in literature (10% decrease in ⊥k  and 20% increase in ||k ) in order to prove our 

point. As detailed in [24], the extra stress tensor is constant throughout the entire spatial 

domain; therefore the stress-thermal law may prove to be valid in this case as well. 

However, it has been inferred that the level of orientation achieved within the Hencky 

dies increases steadily with axial position z [24, 28]. If we assume that the anisotropic 

thermal conductivity is related to the internal degree of orientation, then a more refined 
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expression for the thermal conductivity as a function of axial position could be 

introduced. Therefore, we would not expect a quantity that is dependent on the degree 

of orientation to reach a plateau value either. As we shall see later on, an exact 

expression to relate the thermal conductivity tensor to the axial position is not needed, 

and useful conclusions can be inferred from the general trends observed. 

In our FEM analysis, we have the ability to specify an anisotropic form for the 

thermal conductivity. In this specific case, when cylindrical coordinates have been used, 

the anisotropic thermal conductivity is defined by two values: the perpendicular 

component (krr) and the parallel component (kzz).  

In Figure 2.11 we show the axial temperature profiles in terms of the 

temperature change with respect to the inlet temperature for the two cases when the 

isotropic thermal conductivity (k_isotropic) and the anisotropic thermal conductivity 

(k_anisotropic) were considered for the HDPE melt. The system conditions are T = 

190°C and 134 −= sε& . We observed that even in the most extreme case considered, 

changing the thermal conductivity from isotropic to anisotropic has a minimal impact 

on the calculated temperature profiles. The profiles in Figure 2.11 were calculated using 

constant values for krr and kzz with respect to axial position. As detailed above, we 

would expect those values to change gradually from kiso at the die entrance to a specific 

value towards the exit, which will make the difference shown in Figure 2.11 even less 

pronounced.  

It is clear from Figure 2.11 that the thermal conductivity cannot be responsible 

for the deviations shown in Figures 2.8 and 2.9. Moreover, it is shown that even if the  
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Figure 2.11: Effect of anisotropy in thermal conductivity on the axial temperature 
profile. 
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anisotropy in k does have an impact in our measurements, it is going to be minimal and 

in the opposite direction (i.e., it tends to decrease the temperature profile, rather than 

increase it in order to approach the experimentally measured temperature profile).  

This conclusion is very important in our analysis, because by process of 

elimination, the only remaining cause for the deviations shown in Figures 2.8 and 2.9 is 

the third assumption (eq. 2.26) made to derive equation 2.30. Eliminating this 

assumption has two consequences: first, the heat capacity can no longer be independent 

of the degree of orientation; second, the extra term on the right side of equation 1.17 is 

potentially important, and can no longer be neglected. This result disproves the validity 

of PEE under the high strain-rate experimental conditions employed in this study. 

 

§2.5.3 The Conformation Tensor Evolution Equations 

Using the UCMM, Beris and Edwards wrote down the time and space evolution 

equations for the conformation tensor [20]: 

                                  ( ) αβαβαβ δ
λλ TK

Tk
cc B+−=

1(                                        (2.32) 

where αβc(  is the upper-convected time derivative of the αβ component of the 

conformation tensor (eq. 1.13), λ is the relaxation time, K(T) is the chain spring constant 

and αβδ  is the Kronecker delta. The upper-convected time derivative is defined as 

αγαββγαβαβγγ
αβ

αβ vcvccv
t

c
c ∇−∇−∇+

∂

∂
=(                          (2.33) 
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In Cartesian coordinates, the velocity gradient field developed in the Hencky die 

corresponding to a uniaxial extension is written as: 

                                         
⎟
⎟
⎟
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−

−
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ε
ε
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00
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002/

v                                        (2.34) 

where ε&  is the elongation rate. In this case, the fluid is extended in the z direction, 

while it is being contracted in the x and y directions. Consequently, equation 2.33 can be 

rewritten for the diagonal components of the conformation tensor as: 

                                                     xx
xx

xx c
t

c
c ε&( +

∂
∂

=                                              (2.35)   

                                                     yy
yy

yy c
t

c
c ε&( +

∂

∂
=                                              (2.36) 

                                                     zz
zz

zz c
t

cc ε&( 2−
∂
∂

=                                             (2.37) 

Obviously, the off-diagonal components of the conformation tensor are zero. If we 

rewrite equation 2.32 in terms of the normalized conformation tensor, and combine it 

with equations 2.35 through 2.37, we get the following system of partial differential 

equations for the diagonal components of the normalized conformation tensor: 

                                              
λλ

ε 11~
+⎟

⎠
⎞

⎜
⎝
⎛ −−=

∂
∂

&xx
xx c
t

c
                                         (2.38) 
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Integrating, and using equation 2.4 for the definition of the Hencky strain number εH, 

the following analytical solution is found to this system of equations (eqns. 2.38 

through 2.40): 
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where z is the axial position inside the die channel, L is the centerline length of the die 

channel and tR is the residence time of a fluid particle in the die [24]. 

Using the single-mode Giesekus model, Beris and Edwards wrote down the 

conformation tensor evolution equations as [20]: 

                          ( )( )( )γβγβαγαγαβ δβδβ
λ

−+−−= ccc ~~11(                               (2.43) 

where β is an empirical constant between 0 and 1 (0≤ β ≤1). Clearly, when β = 0, the 

UCMM is recovered (equation 2.32). For β > 0, equation 2.43 is quadratic in terms of 

the conformation tensor components, which makes it more difficult to be solved 

analytically. However, equation 2.43 can easily be solved numerically using a fourth 

order Runge-Kutta method. The parameter β is not known a priori, and is typically 

determined by fitting experimental data. In this study, the single-mode Giesekus model 

will be used to refine the UCMM predictions. 
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§2.5.4 Relaxation Time Measurements 

Up to this point, we have everything we need in order to evaluate the normalized 

conformation tensor components as a function of axial position and strain rate, except 

for the relaxation time λ. The relaxation times were measured following the procedure 

described in §2.2.5. In Figure 2.12 we present a typical result for the evaluation of the 

relaxation time. The material used was HDPE, at 190°C.  

In the case of the LDPE melt, the relaxation time is smaller than the reciprocal 

of the highest frequency that can be attained on ARES (102 s-1) in the entire range of 

temperatures considered (120°C – 170°C). Below 120°C the LDPE samples were no 

longer in the molten state, making it impossible for the prescribed gap between the 

upper and lower plated to be achieved. Even for this case, when the relaxation time was 

too low for the apparatus to capture it, relatively accurate estimates can be made from 

the measured data. In this case it is useful to examine the ratio of the two dynamic 

moduli and make a prediction beyond the range of the apparatus as to what would be 

the frequency where the ratio would reach a value of unity. This procedure is illustrated 

in Figure 2.13. For HDPE, the crossover frequency measurements were taken at 200°C, 

210°C and 220°C. For LDPE, the measurements were taken at 120°C, 130°C, 140°C, 

150°C, 165°C and 170°C. In Figure 2.14, the complete results for the relaxation time 

measurements are given for both polymers. Note that for LDPE, the presented results 

are estimates using the procedure described in Figure 2.13. The temperature 

functionality of the relaxation times has been successfully fitted to an exponential 

function (eq. 2.44), which is also shown in Figure 2.14 for both polymers: 
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Figure 2.12: Dynamic moduli G’ and G” (left axis) and dynamic viscosity η* (right 
axis) for the HDPE melt at T = 190°C. 
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Figure 2.13: Details of the method for estimating the crossover frequency outside the 
range of ARES for LDPE at T=120°C. 
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Figure 2.14: Temperature dependence of the relaxation times for LDPE and HDPE. 
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                                          ⎟
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⎞

⎜
⎝
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T
BAexpλ                                                 (2.44) 

where A and B are fitting constants. As expected, the relaxation time for both polymers 

is decreasing with temperature. Moreover, the relaxation times measured for HDPE are 

about two orders of magnitude larger than the ones estimated for LDPE.  

This is not at all surprising, given the larger molecular weight of HDPE compared to 

LDPE (see Table 2.1). The exponential function fitting parameters in equation 2.44 are 

given in Table 2.3 below.  

 

§2.5.5 Conformation Tensor Predictions inside the Die Channel 

With the measured relaxation time λ, the diagonal components of the 

conformation tensor can be easily calculated using equations 2.41 and 2.42 for the 

UCMM, and by numerically integrating equation 2.43 for the single-mode Giesekus 

model. In this case it is useful to use the trace of the conformation tensor as the general 

descriptor for the degree of orientation achieved, 

                                         ( ) zzyyxx ccc ~~~~tr ++=c                                            (2.45) 

 

Table 2.3 Relaxation Time Exponential Fitting Parameters for HDPE and LDPE 

Polymer A B 

HDPE 4.422738×10-3 1.753809×103 

LDPE 1.898411×10-7 4.043431×103 
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As previously shown, the strain rate inside the die channel is independent of either axial 

or radial position, under the full-slip boundary condition assumption. Therefore, we 

would not expect any radial dependence of the conformation tensor either. However, as 

we have seen in §2.4.1, there are significant radial temperature gradients inside the die 

channel, which will definitely have an impact on the radial dependence of the relaxation 

time. According to equations 2.41, 2.42 and 2.43, the conformation tensor has an 

explicit dependence on the relaxation time; therefore it will also have a dependence on 

the radial position. For reasons of simplicity, we will consider the relaxation time as a 

constant throughout the entire spatial domain, with the value calculated for the 

temperature of the fluid at the die inlet. Under this assumption, the conformation tensor 

will only be a function of axial position z.  

In Figure 2.15, the calculated ( )c~tr  is given for the HDPE melt as a function of 

axial position at Tin = 190°C for selected elongation rates considered in the experiment. 

For clarity, it is convenient to normalize ( )c~tr  with the value calculated at the exit (z = 

25 mm). In Figure 2.16, the ( )c~tr  values calculated at the die exit (z = 25mm) from the 

UCMM are given for the HDPE melt for all inlet temperatures and elongation rates. 

First, in the case of UCMM we notice that the degree of orientation only 

approaches a constant value at the lowest elongation rates. As the elongation rate 

increases, the “degree of orientation” profiles shown in Figure 2.15a) change towards a 

steady increase with axial position, which becomes increasingly abrupt as the strain rate 

increases. In the case of the single-mode Giesekus model (Figure 2.15b), we notice the 

same qualitative behavior as in the UCMM case at the lowest strain-rates. At high  
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Figure 2.15: Axial dependence of the degree of orientation for the HDPE melt at          
T = 190°C: UCMM a); Single-mode Giesekus model b). 
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Figure 2.16: Strain rate dependence of ( )c~tr  at the die exit for the HDPE melt at            
Tin = 190°C, 210°C and 230°C from the UCMM. 
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strain-rates, the parameter β acts to limit the growth of ( )c~tr  towards a constant value. 

As we shall see later, the value of the parameter β that predicted the closest agreement 

with the experimental measurements is β = 0.0065. Perhaps the most important result of 

this analysis is the amazing qualitative agreement found between Figures 2.16 and 2.8. 

The trace of the conformation tensor (i.e., the degree of orientation) becomes important 

virtually in the same region in the strain-rate spectrum where we observed the 

deviations in Figure 2.8. Furthermore, the influence of the temperature seems to be 

preserved as well, and the same qualitative behavior with respect to temperature is 

observed in both figures. This new theoretical evidence seems to indicate a definite 

correlation between the degree of orientation and the region in the strain-rate spectrum 

where PEE is not obeyed. It is worth emphasizing that the data in Figure 2.16 was 

generated using the rather simplistic UCMM and the measured relaxation times. 

Therefore, the relaxation time may prove itself useful in predicting the region where the 

orientation effects in the energy balance of the system become important. 

To emphasize the points made in the previous paragraph, the data in Figures 2.8 

and 2.16 are shown together on the same plot in Figure 2.17. The trace of the 

conformation tensor is given on the left y-axis and is represented by the filled symbols, 

while the difference between the measured and the calculated temperature changes 

shown in Figure 2.8 represented by the open symbols is shown on the right y-axis. The 

diamond, square and triangle symbols represent data at inlet temperatures of 190°C, 

210°C and 230°C respectively. The purpose of Figure 2.17 is to emphasize the almost  
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Figure 2.17: Correlation between the degree of orientation developed in the die and the 
deviation of the measured temperature increase from the theoretical prediction. 
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perfect correlation mentioned above, which was predicted by means of the UCMM and 

relaxation times alone. 

 

§2.5.6 The Complete Form of the Temperature Equation 

Let us have another look at the complete form of the temperature equation 1.17. 

If we rewrite it for an incompressible fluid at steady-state, we get 

                    ( ) ( ) ( )vcv
c

v ∇+∇=∇⋅
∂
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ˆ 2

,

τρρ TkUTc
VT

v                     (2.46) 

Now, we shall focus our attention on the second term on the left side of equation 2.46. 

In Cartesian coordinates, considering the case of uniaxial elongational flow produced by 

the Hencky dies and z the direction of the elongation, ( cv ∇⋅ ) becomes 

                                  

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂

∂
∂
∂

=∇⋅

z
cv

z
c

v

z
c

v

zz
z

yy
z

xx
z

00

00

00

cv                               (2.47) 

For the same flow situation, the off-diagonal components of the conformation tensor are 

zero, and ( c∂∂ /Û ) is 
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Performing the double-dot product in the second term on the left side of equation 2.46, 

we get: 
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Typically, the conformation tensor component in the direction of the flow (czz) is 

several orders of magnitude larger than the other two diagonal components in the high 

flow rate regimes. Furthermore, the diagonal components of the conformation tensor 

normal to the direction of flow will asymptotically approach zero quite rapidly as a 

function of axial position z; therefore the first two terms inside the parentheses on the 

right side of equation 2.49 will be several orders of magnitude smaller relative to the 

third, and can be neglected. Combining equations 2.46 and 2.49, we can write an 

appropriate form for the temperature evolution equation, 
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Comparing this equation to the traditional form derived using PEE (for example 

equation 2.13), we notice the appearance of the extra heat generation term inside the 

square parentheses on the right side of equation 2.50. Normally, the minus sign in front 

of that term would indicate a heat loss, but as we shall see in our simulation results (see 

§3.3.2), the internal energy of the melt is decreasing with increasing degree of 

orientation. Therefore, the derivative zzcU ∂∂ /ˆ  will always be negative, making the 

extra term a generation term. Indeed, our experiments indicated that the traditional 

temperature equation 2.13 under-predicted the measured temperature profiles; therefore 



 67

the consistency with the present theory is preserved. Using equation 2.50, two 

corrections can be made to the traditional temperature equation. The first correction will 

involve introducing the conformation tensor functionality into the heat capacity 

(equation 1.18). In what follows, this correction will be referred to as “correction 1”. 

The second correction will involve introducing the conformation dependence on the 

internal energy into the heat generation term. This will be referred to as “correction 2”. 

Next, the relative importance of these two corrections will be discussed. 

Using the same FEM procedure described in Section 2.4, the new temperature 

distribution equation 2.50 can be introduced and solved under the same conditions 

described therein. Having the functional forms for the conformation tensor components 

with respect to axial position completely defined (eqns. 2.41 and 2.42), we can easily 

evaluate the “conformational part” of the heat capacity (eq. 1.18) and the axial gradient 

of czz ( zczz ∂∂ / ). The only missing piece of the puzzle is zzcU ∂∂ /ˆ . Using UCMM, 

Dressler et al. [1, 2] derived the following functional form for the internal energy 

density of a fluid particle: 

                              ( ) ( ) ( )ctr
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⎝
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−=
T
TKTTKu ρα                                   (2.51) 

where u is the internal energy density of a fluid particle. At high degrees of orientation, 

the diagonal component of the conformation tensor in the direction of the deformation 

(czz) will be several orders of magnitude larger than the other two, which will make it 

identifiable with the trace of the conformation tensor ( )ctr . Consequently, the derivative 
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of the internal energy with respect to czz will be approximately equal to the derivative 

with respect to ( )ctr . Mathematically, this statement can be expressed as 
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Combining equations 2.52 and 2.51 and transforming to proper dimensions, we get the 

following for the derivative of the internal energy with respect to czz from equation 2.50: 
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Combining equations 2.53, 3.15 and 3.17, we get 
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For this analysis, the value for B is taken as the experimentally measured one by Flory 

for a polyethylene melt [46] (B = − 1.45) (see §3.3.1 for details). Equations 2.51 

thorough 2.54 will also apply to the single-mode Giesekus model, since it shares the 

same Hamiltonian with the UCMM [20]. However, in the case of the single-mode 

Giesekus model, the conformation tensor components and their derivative with respect 

to axial position will be different from the UCMM, as given by equation 2.43. With the 

extra generation term in equation 2.50 completely defined, a new set of FEM 

calculations have been performed in order to determine the relative magnitude of 

corrections 1 and 2 mentioned above. First, let us examine the total heat capacity (eq. 

1.18) as a function of axial position for the HDPE melt at Tin = 190°C. In Figure 2.18, 

the total heat capacity with the UCMM conformation tensor is shown for selected 

strain-rates. We observe a reduction in the heat capacity of up to 18% at the die exit for  
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Figure 2.18: The total heat capacity predicted by UCMM for the HDPE melt at  
Tin = 190°C. 
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the highest strain-rate. The axial position functionality can then be embedded into the 

modeling equation 2.50 in the FEM code. This will account for correction 1 defined 

above. Next, the extra heat generation term can be input into the FEM software as given 

by equations 2.54 and 2.42 for the UCMM. In the case of the single-mode Giesekus 

model, the derivative of the internal energy with respect to czz will also be given by 

equation 2.54, while the numerical solution to equation 2.43 will be used to obtain the 

derivative of czz with respect to axial position z. In Figure 2.19, we present the 

temperature changes due to viscous heating calculated using the traditional temperature 

equation 2.13 (no correction), the measured temperature changes and the calculated 

temperature profiles by adding corrections 1 and 2 to the traditional temperature 

equation for the HDPE melt at Tin = 190°C. 

Even though the predicted heat capacity changes are quite significant (see 

Figure 2.18), correcting for the conformational part of the heat capacity yields results 

that are virtually indistinguishable from the ones calculated the traditional way. By 

contrast, including the extra generation term into the temperature equation yields a 

significant improvement over the previous results that are in improved quantitative 

agreement with the measured values. However, as we see clearly from Figure 2.19, 

adding correction 2 from the UCMM yields a slight over-prediction of the measured 

values. Using the single-mode Giesekus model and different values for the parameter β, 

an iterative procedure has been employed in order to match the measured temperature 

profiles. The value of β that yielded the best predictions was β = 0.0065. It is worth 

emphasizing that for β = 0, the UCMM is recovered. The value found from our  
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Figure 2.19: Relative effects of correcting for the conformational part of the heat 
capacity (correction 1) and for the extra heat generation term (correction 2) in the 
calculated temperature profiles for the HDPE melt at Tin = 190°C. 
 

 

 

 



 72

calculations of 0.0065 is not too far from zero, which substantiates the fact that the 

correction needed for the UCMM was minimal. 

 

2.6 Concluding Remarks 

 

In this chapter, we have established that the assumption of PEE is not 

universally valid, as previously believed. We have shown clear experimental evidence 

that the assumption of PEE is not valid for both polymers studied at high strain rates. 

Furthermore, it has been shown that temperature and molecular architecture have a 

profound effect on the measured temperature profiles relative to the predicted ones.  

This statement has two major consequences with far reaching implications. First, 

the classical temperature evolution equation 1.12 used so far in nearly every 

engineering analysis of non-isothermal polymer flows only seems to be valid for low 

deformation rates. For wider ranges of deformation rates when significant orientation is 

present, a more general form of the temperature evolution equation is needed (eq. 1.17), 

which contains additional terms accounting for internal structural contributions to the 

internal energy. However, as shown in Section 1.3, under appropriate flow conditions, 

these terms can vanish. In the case of elongational flow generated inside the Hencky 

dies investigated in this chapter, the fluid is not homogeneous in terms of internal 

orientation ( 0≠∇c ), thus the second term on the left side of equation 1.17 is non-zero. 

As we have shown in §2.5.6, the extra term accounting for internal orientation is 

significant, therefore it should be included in a complete analysis. Furthermore, we have 



 73

proposed a recipe for estimating that term using molecular theory. Second, the constant 

volume heat capacity ceases to be a constant with respect to deformation rate at high 

degrees of orientation. This behavior needs to be incorporated into the temperature 

evolution equation as well. However, we have shown that incorporating the structural 

information into the heat capacity has a negligible effect on the predicted temperature 

profiles. This statement may not be true if a different flow situation is modeled. For 

example, if there is significant orientation present, but there are no orientation gradients 

in the fluid (i.e., the flow is homogeneous), then the heat capacity will drop to a fraction 

of its equilibrium value throughout the entire spatial domain. In this case, the heat 

capacity will have a more significant impact on the predicted temperature profiles.  

In Chapter 3, molecular simulation will be used to help us get a better 

understanding of the reasons why PEE is not universally valid for polymer melts. To 

this end, a series of detailed atomistic simulations of long linear alkanes under non-

equilibrium conditions will be performed in order to establish the relationship between 

the internal energy and the internal degree of orientation.  

 

 

 

 

 

 

 



 74

Chapter 3 

 

Molecular Simulation of Oriented Polymer Melts 

 

  

3.1 Introduction 

 

From an experimental perspective, studying the structure-property relationships 

in a polymeric material is not always an easy task. Over the past three decades, 

computer simulation techniques have been developed as useful tools to aid researchers 

in understanding many problems concerning the dynamic, structural and 

thermodynamic properties of physical systems.  

Computer simulation techniques can be divided into four major categories: 

quantum methods, in which the length scales involved are sub-atomic and the time 

scales involved are sub-femtosecond; molecular level methods, in which the length 

scales are on the order of nanometers, and time scales are on the order of nanoseconds; 

mesoscale methods, which employ time scales on the order of microseconds and length 

scales on the order of micrometers; and continuum methods, in which finite element 

techniques are used to model macroscopic time and length scales. All of these methods 

are inter-related and complementary to each other, and are designed to investigate 
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different aspects of a particular problem. For example, quantum methods involve 

solving Schrödinger’s equation for a particular group of atoms, and are generally used 

to generate interaction potential functions that are further used in the molecular level 

methods. Molecular Dynamics (MD) and Monte-Carlo (MC) simulation techniques are 

the most widely used methods to investigate properties at the molecular level and were 

originally developed to study simple fluids, or low molecular weight compounds. This 

was due in part to the limited availability and performance of computational resources 

at the time. Simulating systems of up to a few thousand particles over a few 

nanoseconds was very challenging to most supercomputers available in the 1960’s and 

1970’s. Nowadays, computers have developed tremendously and billion particle 

simulations have been achieved.  

In general, relatively small systems are required to generate thermodynamic 

properties of small molecular weight compounds. This is not the case for polymer 

systems. Unlike small molecule compounds, polymers exhibit a wide spectrum of time 

and length scales characterizing their dynamic behavior and internal structure. This is 

the source of many challenges to be overcome when simulating polymeric systems. 

With the rapid advancements of computational capabilities and the development of new, 

accurate algorithms, molecular simulation of polymeric systems is becoming 

increasingly available. While generating structural and thermodynamic properties for 

polymeric systems at equilibrium is relatively easy and employs the use of relatively 

short chains, simulating such systems under flow conditions is still under development. 

While there has been a large amount of effort dedicated to studying polymeric systems 
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under shear flow (see for example [47-49]), studying polymeric systems under 

elongational flow is still in the developmental stage. Notable is the work of Baig and 

coworkers, in which a theoretically sound nonequilibrium molecular dynamics (NEMD) 

algorithm for simulating planar elongational flow of n-alkane systems of up to 128 

carbon atoms was developed [50, 51].  

Typically, MD methods are used when dynamic information such as viscosity or 

diffusion coefficients is needed. Given the large relaxation times of polymeric systems, 

simulation times on the order of tens of nanoseconds are often required to sample such 

properties. On the other hand, when static properties such as internal conformation, 

density or internal energy are needed, nonequilibrium Monte Carlo (NEMC) methods 

emerged as a very useful tool for efficiently sampling such properties away from 

equilibrium for systems inaccessible to NEMD [52-57]. 

Recently, Mavrantzas and co-workers developed a novel molecular simulation 

framework for simulating long chain alkane systems away from equilibrium [53-57] 

based upon a very efficient Monte-Carlo algorithm developed earlier by Pant and 

Theodorou [52]. The focal point of this algorithm is the so called “end-bridging” move, 

which allows chains to be broken and reformed according to a prescribed chemical 

potential. This introduces polydispersity in the system in the sense that chain lengths are 

uniformly distributed within a pre-defined interval, and around a pre-defined average 

value. The computational efficiency was evaluated for this algorithm by simulating 

alkane systems up to 500 carbon atoms in length. It was concluded that the end-bridging 

algorithm is a least two orders of magnitude faster in equilibrating long chain systems 
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than any other molecular simulation method known at the time. Surprisingly, it was also 

shown that the algorithm was faster as the average length of the simulated chains 

increased. This is somewhat counterintuitive, but its explanation lies at the very heart of 

the algorithm. The longer the chains, the more options there are for them to break and 

recombine, thus the greater acceptance ratio of the end-bridging move. 

The non-equilibrium version of this algorithm was developed for simulating 

oriented alkane melts under an applied uniaxial orienting field. This was accomplished 

by defining a set of thermodynamic conjugate variables (the conformation tensor c and 

the “orienting field” α) [53]. Later, a different approach has been taken in order to 

develop a similar thermodynamic framework called GENERIC MC [56]. This time, the 

conjugate variables were introduced as proper Lagrange multipliers, and a slightly 

different form for the “orienting field” α was derived, which eliminated unwanted 

density fluctuations observed using the original form. 

In this chapter, we use the same procedure to simulate systems with average 

chain lengths between 24 and 78 carbon atoms, at temperatures between 300K and 

450K, with applied “orienting fields” of varying strength. We are greatly indebted to 

Dr. Vlasis Mavrantzas for lending us the NEMC source codes. 

 

3.2 Simulation Methodology 

 

In a typical Monte-Carlo algorithm, the initial configuration is defined by a set 

of Cartesian coordinates defining the position in space of every interaction site (or 
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atom). The algorithm starts by randomly picking an atom or group of atoms and 

applying a random displacement to them. Then, the energy of the new system is 

evaluated, and the move is accepted or rejected with a probability that is dependent on 

temperature and the energy of the new system. The art in a Monte-Carlo simulation lies 

in the choice of the type of move, as well as the proportion of moves attempted.  

In the NEMC procedure used in this work, the following mix of attempted 

moves was used: reptations, 10%; rotations, 2%; flips, 6%; intra-chain bridges, 32%; 

end-bridges, 49%; volume fluctuations, 1%. These moves, as well as the choice of 

percentages from the total number of attempted moves have been discussed in detail 

previously [53, 54]. In the course of a simulation, the total number of chains N, the total 

number of particles n, the pressure b, the temperature T and the relative chemical 

potential μ* are kept constant (the NnbTμ* ensemble).  

 

§3.2.1 Thermodynamic Considerations 

Following the definition of the conformation tensor c (eq. 1.13), it is more 

convenient to work in terms of the normalized confirmation tensor c~ : 

                                            ccc μ==
0

2
3~

R
                                                 (3.1) 

where 
0

2R is the mean-squared end-to-end distance, taken as an ensemble average 

over all chains at equilibrium and μ is the normalization factor. Clearly, by definition, 

the normalized conformation tensor c~ at equilibrium is the identity matrix I. At this 
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point, it is postulated that the Helmholtz free energy function governing the oriented 

melt has a direct dependence on c~ : 
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where ρ is the mass density, T is the temperature and Nch is the number of chains.  

Then, the “orienting field” α is introduced as the thermodynamic conjugate 

variable to c~ : 
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In equation (3.3), the orienting field α is defined at constant density ρ. However, the 

NEMC simulations are performed at constant pressure b, therefore it is more useful to 

define a new thermodynamic potential function (the Gibbs free energy function) by 

performing a Legendre transformation of the Helmholtz free energy with respect to 

V/Nch and c~ : 
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where G is the Gibbs free energy function, M is the number average molecular weight 

of the chains, NA is Avogadro’s number and c~:αTkB  is the term accounting for the 

energy of the imposed field.  

We now have the definition of a thermodynamic potential function in terms of 

our control quantities (b,T and α). It immediately follows that 
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where ][γδα represents all other components of the orienting field tensor α except γδα . 

Our ultimate goal in these simulations is to evaluate the change in the Helmholtz 

free energy with respect to the quiescent melt. To this end, equation 3.4 presents itself 

as very useful. By performing simulations with applied orienting fields of varying 

strength, the conformation tensor can be easily calculated and the Gibbs free energy can 

then be evaluated via a simple thermodynamic integration:  
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Combining equations 3.4 and 3.6, the following is obtained for the change in Helmholtz 

free energy: 
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Moreover, the internal energy U/Nch can be evaluated directly from simulation by 

evaluating the total interaction energy between selected pairs of sites in the system 

according to prescribed interaction functions, which make up the so-called “force field”. 

 

§3.2.2 Potential Model Details 

The force field used in this study is the Siepmann-Karaborni-Smit (SKS) force 

field [58], which was specifically parameterized to fit experimental thermodynamic data 

for alkane systems. In the SKS description, there are two types of interactions present in 
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the system: bonded interactions and non-bonded interactions. The CH2 groups that form 

the molecular chain are collapsed into a single interaction site, by using the so-called 

“united atom” approach. This approach is possible given the relative small size of the 

hydrogen atoms when compared to the carbon atoms. It is well known in the simulation 

community that the computational expense is proportional to the second power of the 

number of sites in the system [59]. By collapsing the CH2 group into a single interaction 

site, the total number of particles in the system is reduced by a factor of three, yielding a 

reduction of about one order of magnitude in the computational expense, without any 

loss in accuracy. From this point on, we will refer to the CH2 sites as “atoms”. 

Typically, the total potential energy function in a molecular level simulation is 

given as 

                           bondednontorsionanglebond UUUUU −+++=                                (3.8) 

where Ubond, Uangle and Utorsion represent the “bonded” interactions while Unon-bonded 

represents the “non-bonded” interactions and may include van der Waals terms, 

coulombic terms etc.  

In equation 3.8, Ubond represents the covalent bond-stretching interaction (Fig. 

3.1a) and is typically represented by a harmonic spring with an equilibrium length r0. In 

the SKS description, this term is omitted and the covalent chemical bonds are modeled 

as rigid rods 1.54Å in length. Uangle describes the angle bending interaction between two 

covalent bonds (Figure 3.1b) and is given by a harmonic potential around an 

equilibrium value θ0, 
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Figure 3.1: Schematic representations of bond stretching interaction a); angle bending 
interaction b); torsion interaction c). 
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           ( )2
02

1 θθθ −= kU angle                                              (3.9) 

where kθ is the harmonic spring constant. The torsional potential Utorsion is described by 

a function proposed by Jorgensen and co-workers [60], 

                                                ( )∑
=

Φ=
3

0

cos
k

k
ktorsion aU                                           (3.10) 

where ak are constants and Φ is the dihedral angle depicted in Figure 3.1c). 

The non-bonded interactions are given by a 12-6 Lennard-Jones (LJ) interaction 

potential (eq. 3.11). Non-bonded interactions occur between atoms on the same chain 

separated by mode than three covalent bonds, and between all atoms belonging to 

separate chains. For computational cost reduction, the non-bonded potential is truncated 

for distances grater than a specified cutoff radius (rcut) [59]. In this study, a cutoff radius 

of 2.8·σ was chosen [53, 56]. 
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In Table 3.1, the summary of the force field as well as the parameters for each 

type of interaction is presented.  

With the interaction potentials defined, the total potential energy over the course 

of a simulation run can be calculated as an ensemble average over all configurations. 

Since the simulations are performed at constant temperature, there would be no change 

in kinetic energy; the change in the internal energy of an oriented configuration with 

respect to equilibrium will be given by the difference between the average total 

potential energy of the oriented system and the average total potential energy of the 
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Table 3.1. Details of the Potential Model Used in the Simulations 
Type Functional Form Parameters 
Ubond Rigid r=r0 r0 = 1.54Å 
Uangle ( )2

02
1 θθθ −k  

kθ/kB=62500 K/rad2 
θ0=114o 

Utorsion ( )∑
=

Φ
3

0

cos
k

k
ka  

a0/kB = 1010 K 
a1/kB = 2019 K 
a2/kB = 136.4 K 
a3/kb = - 3165 K 

Unon-bonded 
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system at equilibrium: 
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This equation will not only allow us to calculate the change in the total internal energy, 

but also it will allow us to calculate individual contributions from different types of 

interactions present (see equation 3.8). 

  

§3.2.3 Simulated System Details 

Using the Monte-Carlo procedure described above, four different systems of 

linear alkane chains of increasing average molecular weight have been considered. The 

average chain lengths for the four systems are as follows: system 1, with an average 

chain length of 24 carbon atoms; system 2, with an average chain length of 36 carbon 

atoms; system 3, with an average chain length of 50 carbon atoms; system 4, with an 

average chain length of 78 carbon atoms. From this point onward, these systems will be 
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referred to as C24, C36, C50 and C78 respectively. One of the most appealing aspects of 

the end-bridging algorithm is the ability to generate polydisperse systems of controlled 

molecular weight distribution. As in refs. [53, 56], the molecular weights for the 

systems considered in this study were uniformly distributed between MW5.0 ⋅  

and MW⋅5.1 , corresponding to polydispersity indices of ≈ 1.09 (see Table 3.2). For 

example, for the C24 system the chain lengths were uniformly distributed between 12 

and 36 carbon atoms. For all systems, the input configurations were initially well 

equilibrated using an Equilibrium Molecular Dynamics (EMD) code, DL_POLY_2.0 

[61]. The equilibration was performed at a constant temperature of 500K under constant 

pressure conditions (1 atm.) for a period of 2.5 ns. The well-equilibrated configurations 

thus obtained were then input into the NEMC code as initial configurations for each 

run. The applied orienting field α employed was in the form proposed by Mavrantzas 

and Öttinger [56], and corresponds to a uniaxial extensional field in the x direction: 

                              
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

2/00
02/0
00

xx

xx

xx

α
α

α
α                                     (3.13) 

 
Table 3.2. Molecular Aspects of the Simulated Systems 

System 
N 

(total number of 
chains) 

n 
(total number of 

particles) 

MWDI 
(distribution 

interval) 

PI 
(polydispersity 

index) 
C24 100 2400 12 – 36 1.0902 
C36 64 2304 18 – 54 1.0953 
C50 49 2450 25 – 75 1.0866 
C78 40 3120 39 – 117 1.0854 
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Clearly, the magnitude of αxx uniquely defines the “strength” of the orienting field. 

Therefore, αxx will be used from this point on as a basis to relate various physical 

properties to the strength of the orienting field. For all systems, simulations were carried 

out with αxx ranging from 0.0 (equilibrium case) to 0.7 in 0.1 increments. To investigate 

temperature effects, separate runs were performed at 300K, 350K, 400K and 450K for 

all systems and field strengths considered. In Table 3.2, the molecular aspects of the 

systems considered are presented in terms of average chain lengths, distribution 

intervals, number of chains, number of atoms and polydispersity indices.  

 

3.3 Results and Discussion 

 

§3.3.1 The Mean-Squared End-to-end Distance 

First, let us look at the simulated equilibrium properties. Perhaps the most useful 

quantity that can be evaluated from the equilibrium simulations is the mean-squared 

end-to-end distance 
0

2R . This quantity will let us define two other useful parameters, 

which will be extensively used in our analysis; namely, the conformation tensor 

normalization factor μ (see equation 3.1) and the overall chain spring constant K(T) [1, 

2]. These quantities are defined as 
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As detailed in ref. [20], K(T) originated from early statistical models of chain 

molecules, and was taken as a linear function of temperature (i.e., μ was taken as 

independent of temperature) under the assumption that the internal free energy of an 

ensemble of polymer chains was purely entropic in nature. Later, this assumption was 

removed, and an energetic component to the free energy was identified based upon the 

nonlinearity of K(T) with temperature [1, 2]. Moreover, the same study identified a 

“conformational component” to the heat capacity (see equation 1.18), which came as 

the first theoretical suggestion that the heat capacity of a polymer melt changes with 

degree of orientation.  

Let us now examine the behavior of the mean-squared end-to-end distance with 

respect to chain length and temperature. Following a similar procedure as in ref. [53], 

0

2R  can be calculated from one simulation for the entire molecular weight 

distribution interval. In Figure 3.2, 
0

2R  is given for all four systems investigated at 

450K as a function of chain length. Notice the seamless overlap in the regions where 

chains having the same length are found in two adjacent systems. The scatter found in 

the C78 system data is attributed to poor statistical sampling in the calculation of the 

ensemble average. The C78 system contains only 40 chains, while the molecular weight 

interval spans over 78 carbon atoms. By contrast, the C24 system contains 100 chains, 

while the molecular weight interval spans over 24 carbon atoms, resulting in much 

better statistics. Mavrantzas and Theodorou fitted the equilibrium mean-squared end-to-

end distance data to a polynomial expression with very good results [53]: 
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Figure 3.2: Equilibrium mean-squared end-to-end distance at T=450K. 
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where Cx is the “characteristic ratio”, X is the number of carbon atoms in a chain, b is 

the C-C bond length in Å (1.54Å) and αi (i = 0 - 3) are fitting constants. In Table 3.3, 

the fitting constants derived from the equilibrium simulations in this study are given, 

along with the published ones from the previous study [53]. However, in the previous 

study, only data from the C24 and C78 systems were used at a single temperature (450K). 

In this study, the 
0

2R  data in the overlap regions was averaged, and the average value 

was considered in the polynomial fitting. 

As pointed out in ref. [53], α0 is the characteristic ratio at infinite chain length 

C∞. The value reported in this study at 400K is slightly lower than the one previously 

reported [53], and closer to C∞ = 7.8 ± 0.4 measured for polyethylene using neutron 

diffraction at 413K [62, 63].  

 

 

Table 3.3. Characteristic Ratio Fitting Parameters 
Temperature α0 α1 α2 α3 

450K 8.8427 -77.9066 521.951 -2141.85 
400K 8.6677 -30.5968 -681.681 6030.121 
350K 9.219 -9.298 -1573.36 13064.89 
300K 11.9351 -183.756 2022.19 -9320.51 

450K [53] 9.1312 -75.1865 315.742 -500.3518 
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In Figure 3.3, the results of the polynomial fits in terms of 
0

2R  are plotted against 

chain length (X). We observe a very close agreement between our own results and those 

previously published. Furthermore, we observe a strong temperature effect in 
0

2R  in 

the sense that as the temperature is lowered, 
0

2R  increases. In most cases this aspect 

has been overlooked before, and
0

2R  (or
0

2/3 R=μ ) was taken as independent of 

temperature, with some exceptions [2, 64]. The temperature dependence of μ was 

introduced by Gupta and Metzner [64] into an extra term in their constitutive equation 

to account for non-isothermal effects. Under isothermal conditions, their model reduces 

to the UCMM. By contrast to our simulation results, they report an increase 

in
0

2R with increasing temperature. However, we found that the functional form for μ 

fitted our simulation data very well, except for the opposite behavior observed: 

                                                 ( )1+−= BTνμ                                                   (3.17) 

where ν and B are fitting constants. Gupta and Metzner pointed out that B is a number 

greater than –1, and ν is a positive constant. With B greater than –1, μ will decrease with 

decreasing temperature and 
0

2R  will increase with temperature. Our simulation 

results seem to suggest the opposite effect (see Figure 3.3). However, our simulation 

results are in good quantitative agreement with data reported by Flory [46] for cross-

linked polyethylene at 140°C ( 13

0

2 101.1/ln −−⋅−=∂∂ KTR ). If we combine equations 

3.14 and 3.17 and take the derivative with respect to temperature, we obtain B = – 1.45 

from Flory’s data.   
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Figure 3.3: 
0

2R  polynomial fits using equation 3.16 and the fitting parameters in 

Table 3.3. 
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  In Figure 3.4, the temperature exponent B resulting from fitting the data in 

Figure 3.3 is plotted against chain length. We observe that the temperature exponent 

extrapolates to B = 1 at zero chain length (i.e., no temperature dependence in μ). The 

temperature exponent B decreases with increasing chain length, and seems to asymptote 

a constant value of 1.62 for very high chain lengths, not too far from the reported 

experimental value (see previous paragraph).  

 

§3.3.2 Energy Balances for the Oriented Systems 

The equilibrium simulations provided two very important bits of information 

that are useful in the next step in our analysis: first, they provided the normalizing 

coefficient μ and its temperature dependence, which will be used further for calculating 

the normalized conformation tensor for the oriented systems; second, they provided the 

reference for calculating the change in internal energy of the oriented structures (eq. 

3.12). Furthermore, it was shown that 
0

2R  is indeed dependent on temperature, and 

corrections to existing data [53] need to be made in order to calculate the correct 

normalized conformation tensors.  

Next, we proceeded to examine these systems with the orienting field turned on. 

First, we needed to make sure that there are no system-size effects influencing the 

results. It is well known that highly oriented polymer chains may develop unphysical 

artifacts introduced by interactions between extended images of the same chain. 
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Figure 3.4: The temperature exponent B with respect to chain length. 
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These artifacts are known to induce “premature crystallization”, and can be 

eliminated by increasing the system size. To test the system-size effect, we picked the 

C78 system as being the most vulnerable to such artifacts (because it had the largest 

molecular weight). We then generated two additional systems two and four times larger 

than the original system (6240 and 12480 particles respectively) and monitored the 

evolution of all three systems under applied orienting fields with αxx up to 0.7 at T = 

450K. We monitored all relevant quantities (energies, conformation tensor, end-to-end 

vector auto-correlation functions) for symptoms of “premature crystallization”, and 

concluded that within statistical uncertainty, all these quantities converged to the same 

value for a sufficiently large number of iterations. It is worth pointing out that the 

computational toll of a typical Monte-Carlo code is proportional to the second power of 

the number of particles (N2); therefore, by doubling the system size, we would 

essentially need to quadruple the simulation time in order to generate the same statistics. 

Therefore, we concluded that for the range of field strengths employed in this study, 

larger systems would not be necessary. 

Let us now examine the conformation tensor (or more conveniently, its 

normalized form) calculated for the oriented structures. By definition (eq. 3.1), the 

normalized conformation tensor c~  is symmetric and reduces to the unit tensor I at 

equilibrium for any given temperature. When the orienting field is applied, the chains 

will adopt extended conformations, oriented in the direction of the deformation and c~  

will depart from its equilibrium value. In this situation, the degree of extension and 

orientation will be uniquely described by the six independent components of c~ . 
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Following the definition of the orienting field α (eqns. 3.3, 3.5 and 3.13), one would 

expect the off-diagonal components of c~  to be zero as well. Indeed, our simulations 

confirmed the diagonal form of c~ , therefore the trace of c~ (tr( c~ )) will be used to 

quantify the degree of extension and orientation generated by the orienting field in our 

simulations. In Figure 3.5, we examine the molecular weight (Fig. 3.5a) and the 

temperature (Fig. 3.5b) effect on conformation as the strength of the orienting field αxx 

is increased. As expected, we observe an increase of the degree of orientation with 

molecular weight at a particular temperature, given the fact that the relaxation time 

increases with molecular weight (Fig. 3.5a). For the same reason, we observe an 

increase in the degree of orientation with decreasing temperature for a particular 

molecular weight (C36, Fig. 3.5b).   

Having performed the conformation tensor c~  calculations for every molecular 

weight, temperature T and field strength αxx, the Helmholtz free energy ΔA/Nch relative 

to the unperturbed state can now be easily calculated by performing a series of 

thermodynamic integrations (eq. 3.7). Furthermore, the change in internal energy 

ΔU/Nch with respect to equilibrium is readily available directly from simulation, which 

allows us to compare the two quantities directly. 

In Figure 3.6 we present the molecular weight effect on ΔA/Nch and ΔU/Nch at 

450K (Fig. 3.6a) and the temperature effect on the same quantities for the C36 system 

(Fig. 3.6b). First, we observe that ΔA/Nch and ΔU/Nch are of about the same magnitude 

and opposite sign for all cases considered. This suggests that the internal energy is a 

very important component of the free energy in the energetic balance of the system. 
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Figure 3.5: Molecular weight effect on conformation at T = 450K a); temperature effect 
on conformation for the C36 system b). 
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Figure 3.6: Molecular weight influence on the change in internal and Helmholtz free 
energy at T = 450K a); temperature influence on the change in internal and Helmholtz 
free energy for the C36 system b). 
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Furthermore, mirroring the results presented in Fig. 3.5, we see the same behavior in 

terms of the free energy change as a function of both molecular weight and temperature. 

This is not at all surprising, since the change in free energy has an explicit dependence 

on the conformation tensor (see eq. 3.7).  

If we examine the molecular weight behavior of the change in internal energy, 

we see that as the chain length increases, the decrease in internal energy for a given 

temperature and field strength is more pronounced. In our simulations, we have the 

ability to evaluate the inter-molecular and intra-molecular contributions to the non-

bonded energy separately. As we shall see later, the most important contributor to the 

total energy of the system is the intermolecular non-bonded energy. As the molecular 

weight increases, it is easier for the chains to establish favorable side-side interactions, 

generating a more pronounced decrease in the total internal energy. The temperature 

dependence of the internal energy (Fig. 3.6b) can be explained using the same line of 

thought. As the temperature decreases, the relaxation time of the chains will increase, 

thus making it easier for the chains to align and develop side-side interactions for a 

given field strength. 

As mentioned earlier, we have the ability to investigate the individual 

contribution of each type of interaction to the total internal energy (see §3.2.2 – Table 

3.1). According to equation 3.8, the total potential energy is equal to the sum of all 

bonded and non-bonded interactions. In our simulations, the bonded interactions are 

represented by the angle bending and torsion interaction potentials (see Figure 3.1), 

while the non-bonded interactions are represented by the 12-6 LJ pair interaction 
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potential (eq. 3.11). The non-bonded interactions can further be split into two distinct 

contributions: the intra-molecular interactions, in which pairs of atoms belonging to the 

same chain separated by more than three covalent bonds interact through the LJ 

potential; and the inter-molecular interactions, in which all pairs of atoms belonging to 

different chains interact through the same potential. This distinction is important, 

because as it will be shown in Figure 3.7, the two components exhibit opposite behavior 

with respect to degree of orientation. The potential energy balance of the system in 

terms of the change in energy relative to equilibrium can be written as 

                   
ch

inter

ch

intra

ch
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ch

angle

ch
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N
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N
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N
U

N
U

N
U Δ

+
Δ
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+
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Δ

                      (3.18) 

In Figure 3.7, the four energetic components on the right side of equation 3.18 

are given for the C24 system at T = 400K as a function of αxx. As previously mentioned, 

it is clear from Figure 3.7 that the two components of the non-bonded energy are of 

opposite sign and different in magnitude. The orienting field has almost no effect on the 

angle-bending energy, while the torsional energy is decreasing because in the extended 

chains, the lower energy trans dihedral conformations are enhanced. In a previous 

discussion (see Section 1.2) it was mentioned that for a single isolated chain, the 

internal energy of the extended chain does not change significantly with degree of 

extension, thus the purely entropic elastic response. This behavior can easily be 

explained upon close examination of Figure 3.7. 
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Figure 3.7: Individual component contributions to the total internal energy change for 
the C24 system at T = 400K. 
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Unless extreme conditions are applied (i.e., the chain is fully extended, and 

additional energy is put into bending the valence angles), the angle energy does not 

change with degree of extension. With increasing deformation, the dihedral angles on 

the chain will gradually start to adopt the trans conformation (their lowest energy 

configuration), thus reducing the overall torsion energy, while the intra-molecular LJ 

energy will increase due to greater distances between the pairs of atoms in the extended 

configurations. It is clear from Figure 3.7 that the changes in torsional and intra-

molecular potential energies are of about the same magnitude and opposite sign, 

offsetting each other.  

Of course, in a molecular level simulation, the extent to which these energy 

components will change will be sensitive to the potential model used. It has been 

suggested that the potential model used in this study to describe the torsional 

interactions is in fact artificially enhancing the trans conformations, which explains the 

over-prediction of the characteristic ratio at infinite chain length C∞ when compared to 

experiment [53]. A more realistic potential model for the torsional angles would yield a 

smaller decrease in the torsional term at a given extension.  

Another important conclusion to be drawn from the analysis of Figure 3.7 is the 

fact that the most important contributor to the change in total energy is the inter-

molecular LJ energy. This is perhaps the most important conclusion from our 

simulations, and explains why the Purely Entropic Elasticity assumption is not 

applicable to polymer melts. While the total internal energy of a single isolated chain 

may not change with extension (due to the two components discussed above offsetting 
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each other), the internal energy of an ensemble of chains will change significantly, due 

to favorable inter-chain interactions that will lower the overall energy. Macroscopically, 

this will translate into additional energy being generated within the material, increasing 

the temperature of the fluid. Indeed, this aspect is confirmed by our experimental 

observations in which the calculated temperature increase due to viscous heating using 

the PEE assumption is under-predicted by up to a factor of two at the highest strain-

rates (see §2.4.2 – Figures 2.8 and 2.9). 

The change in Helmholtz free energy ΔA/Nch can also be evaluated by using the 

UCMM [1, 2, 56]: 

                       ( )( ) ( )( )cc ~detln
2
13~tr

2
1 TkTk

N
A

BB
ch

−−=
Δ                             (3.19) 

This expression was derived as the elastic contribution to the thermodynamic potential 

of the Hookean dumbbell model with infinite chain extensibility, accounting for the 

internal microstructure [1, 2]. Using equation 3.19, the UCMM change in Helmholtz 

free energy can be calculated directly using the normalized conformation tensor data 

from the simulations, without the need for thermodynamic integration. In Figure 3.8, 

ΔA/Nch is shown for the C78 system at T = 450K calculated via the thermodynamic 

integration method (eq. 3.7) and using the UCMM (eq. 3.19). We observe an excellent 

agreement between the two methods. 
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Figure 3.8: UCMM performance for predicting ΔA/Nch for the C78 system at T = 450K. 
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§3.3.3 Conformation Dependent Heat Capacity 

As mentioned earlier, Dressler and co-workers used the UCMM to derive the 

“conformational component” to the heat capacity [1, 2] (see equation 1.18).  

                              ( ) ( ) ( )( )02

2

trtr
2
1 cc −

∂
∂

−=
T

TKTcconf α                                (3.20) 

The second derivative of the chain spring constant K(T) can be easily evaluated by 

using the conformation tensor normalization factor μ and the temperature exponent B 

obtained by fitting the equilibrium simulation data (see figure 3.4). Combining 

equations 3.15 and 3.17 and taking the second derivative of K(T) with respect to 

temperature, we find 

                                 ( ) ( )
T

kBB
T

TK Bμ1
2

2 +
=

∂
∂                                          (3.21) 

Plugging 3.21 into 3.20 and using  

                                                   ( ) ( )cc tr~tr μ=                                                  (3.22) 

we obtain the following for the conformational part of the heat capacity: 

                                         ( ) ( )( )3~tr1
2
1

−+−= cBBcconf α                                     (3.23) 

With the conformation tensor and the temperature exponent B already available 

from the simulations, the molecular weight dependence of cconf is presented in Figure 

3.9a) and the temperature dependence of cconf is presented in Figure 3.9b). Since cconf 

has a linear dependence on ( )c~tr , the behavior we see in Figure 3.9 is in fact mirroring 

the behavior we observed earlier in Figure 3.5. 
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Figure 3.9: Molecular weight dependence of cconf at T = 450K a); temperature 
dependence of cconf for the C36 system b). 
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The behavior of cconf, coupled with the behavior of the internal energy 

components (see Figure 3.7), provides us with the theoretical bases for the hypotheses 

made in the concluding section of Chapter 2. Even though a rather simplistic model has 

been used to calculate cconf, these results predict the same qualitative trends we saw 

during the experiments. Furthermore, the direct calculation of the internal energy 

change indicates a strong dependence on the degree of orientation. In the concluding 

section of Chapter 2, we identified two possible corrections that would bring agreement 

between the calculated and the measured temperature profiles, which are both 

consequences of the PEE assumption being invalid: first, the heat capacity had to 

decrease at high strain rates; and second, the internal energy had to decrease with c~ . 

The simulation results seem to substantiate both of these corrections. 

 

3.4 Concluding Remarks 

 

The atomistic molecular simulation results presented in this chapter come to 

complement and substantiate the experimental results presented in Chapter 2. 

Furthermore, new molecular insights have been given to explain the trends and the 

deviations from theory observed during the experiments. First, we examined some 

equilibrium properties for the systems investigated. It was shown that the chain spring 

constant K(T) is not a linear function of temperature, as was previously assumed. The 

temperature exponent B was calculated for chain lengths between C12 and C117, and 

excellent agreement with previous experimental measurements and simulation results 
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was found. Later, we used the temperature exponent B in order to calculate the 

“conformational part” of the heat capacity, and the trends observed are in excellent 

qualitative agreement with our own experimental measurements. Examining the 

behavior of the internal energy components, we gained new and useful insights into the 

molecular aspects of PEE, and we indicated the reasons why we expect it to fail in 

describing oriented polymer melts. Qualitatively, we confirmed the two possible 

reasons for the failure of PEE in our experiments.  
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Chapter 4 

 

Structure Formation under Steady-State Isothermal 
Planar Elongational Flow of n-Eicosane:  

A Comparison between Simulation and Experiment 

 

  

This chapter is a revised version of a journal article by the same name published 
in Physical Review Letters in 2006 by T.C. Ionescu, C. Baig, B.J. Edwards, D.J. Keffer, 
and A. Habenschuss: 

 
T.C. Ionescu, C. Baig, B.J. Edwards, D.J. Keffer, and A. Habenschuss: Structure 
formation under steady-state isothermal planar elongational flow of n-eicosane: A 
comparison between simulation and experiment. Physical Review Letters, 2006. 
96(037802). 

 
My contributions to this article include: (1) performing the structural analysis of 

the configurations resulting from nonequilibrium molecular dynamics (NEMD) and 
equilibrium molecular dynamics (EMD) simulations and (2) preparation of the 
published manuscript. In this chapter, by the use of “we” I will refer to all five authors 
of the article. 
 

4.1 Introduction 

 

The crystallization of polymer melts under flow has generated a tremendous 

amount of interest over the years. Understanding crystallization mechanisms, kinetics, 

and crystallite morphologies are just a few of the problems that present an ongoing 

interest among research communities [65-67]. Short and long chain n-alkanes have been 
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extensively used to model the behavior of polyethylene, in particular, and polymers in 

general. In practice, polymers are known to form ordered domains when subjected to 

deformation either in the melt or solid states. In industrial applications such as fiber 

spinning or film blowing, this phenomenon is desired, and a precise control over the 

nucleation rates, crystallite growth, and morphology is critical. From an experimental 

perspective, it is very challenging to investigate the individual phenomena taking place 

during polymer crystallization, given the different length and time scales involved. This 

is why molecular simulation is potentially the ideal tool for investigating these 

processes.  

Crystallization of long chain molecules from quiescent melts is particularly 

difficult to attain with the molecular simulation techniques available today, due to the 

long simulation times and atomistic-level detail needed to observe such phenomena. 

Extensive studies have been dedicated to characterizing melting and crystallization of n-

alkanes under equilibrium conditions using Molecular Dynamics [47, 68-74] or Monte 

Carlo [67, 75, 76] techniques. Even for the relatively short alkane chains, the simulation 

times needed to observe ordered phase formation are on the order of tens of 

nanoseconds, which is prohibitive on most supercomputers today. To this end, 

alternative methods have been proposed in order to enhance the crystallization rates, 

which include crystallization in the presence of a surface [66] or increasing the melting 

point by driving the system away from equilibrium via uniaxial stretching [70, 77, 78] 

or shear flow [47-49].  
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In rheology, there are two major types of flow:  elongational flow and shear 

flow.  For shear flow, there have been several successful attempts at developing 

Nonequilibrium Molecular Dynamics (NEMD) algorithms for simulating rheological 

and structural properties of chain molecules. Phenomena such as shear thickening, 

associated with crystalline structure formation under extreme shear rates, have also been 

reported [47, 49]. For elongational flow, however, the situation is different. It was not 

until recently [50, 51, 79, 80] that a theoretically sound algorithm (called “p-SLLOD”) 

was developed. It was shown that p-SLLOD is suitable for simulating any type of flow 

in general, and planar elongational flow (PEF), in particular. For shear flow, early 

studies employed the SLLOD algorithm [48, 49], but as clearly shown in Ref. [51], p-

SLLOD and SLLOD are equivalent in this flow. 

Some recent studies focused on characterizing the crystallization behavior of 

oriented n-alkane melts [66, 70, 78] by means of uniaxial stretching. It should be noted, 

however, that no rigorous NEMD algorithm capable of steady state simulation was 

employed in any of these studies. The uniaxial stretching was accomplished by applying 

an artificial stress in one preferred direction for a short period of time (usually on the 

order of one nanosecond). By doing this, the Newtonian dynamics were altered and any 

physical quantity measured during this time frame would be subject to doubt. That is 

probably the reason why the authors only applied this stretching technique in order to 

obtain “stretched amorphous configurations”, and all meaningful physical quantities 

were measured after the applied stress was turned off. While providing valuable insight 

upon crystallization mechanisms and kinetics at various temperatures and for various 
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chain lengths after the applied stress stopped, these methods are merely equilibrium 

molecular dynamics simulations using stretched initial configurations. 

 

4.2 Methodology 

 

In the present study, we have employed a proper NEMD algorithm, and the 

transition to the crystalline-like structure was observed during steady-state PEF; 

therefore, the present case is much more relevant to a real physical situation of flow-

induced crystallization at a constant temperature above the melting point.   

Aspects concerning the simulation method and algorithm, as well as the 

potential model used to describe the interactions between the atomistic chains, have 

been presented in great detail in a series of papers [50, 51, 79, 80]. It should be noted, 

however, that the cited work dealt with measuring rheological properties of decane, 

hexadecane, and tertacosane, while in the present study we focus our attention on the 

structural properties of eicosane, and comparison with experimental x-ray diffraction 

data for both the liquid and crystalline states.  

In a typical x-ray diffraction experiment, the quantity measured is the static 

structure factor, s(k). The structure factor is of particular importance to molecular 

simulation, because its Fourier transform gives the total pair correlation function, g(r), 

through the equation            

                         ( ) ( )( ) ( )∫
∞

−
−+=

0

1
0

2 dsin121)( kkrkskrrg ρπ                            (4.1) 
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where k is the wave number and ρ0 is the particle number density. 

The total pair correlation function, g(r), is a quantity readily available from any 

molecular level simulation, and, conversely, it can be transformed to obtain the static 

structure factor through the equation 

                              ( ) ( )( ) ( )∫
∞

−+=
0

0 dsin1
4

1 rkrrgr
k

ks
πρ

                                (4.2)                           

Thus, equations 4.1 and 4.2 allow us to compare directly, structural information 

obtained from simulation and x-ray diffraction experiments. 

 

4.3 Results and Discussion 

 

First, let us examine the liquid structure of n-eicosane predicted by simulation 

under equilibrium conditions. In Figure 4.1, the simulated static structure factor 

computed as the Fourier transform of the total pair correlation function, g(r), (eq. 4.2) is 

shown. We make a distinction here between the total pair correlation function g(r) 

(Figure 4.2a), and the inter-molecular pair correlation function g_inter(r) (Figure 4.2b). 

For g(r), the distance distribution is computed between pairs involving all sites (CH2 

groups) in the system, while for g_inter(r), distances between pairs of sites belonging to 

the same chain were excluded. Consequently, there are two structure factors associated 

with each pair correlation function, the total structure factor, s(k) (Figure 4.3a), and the 

inter-molecular structure factor, s_inter(k) (Figure 4.3b). 
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Figure 4.1: Comparison of the structure factor, s(k), comparison between experiment 
(Ref. [81]) and simulation under quiescent conditions at T = 315 K and ρ = 0.81 g/cm3. 
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Figure 4.2: Simulated structures in terms of: total pair correlation function g(r) a);  
intermolecular pair correlation function g_inter(r) b) at T = 315K and ρ = 0.81 g/cm3. 
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Figure 4.3: Simulated structures in terms of: total static structure factor s(k) 
a);intermolecular static structure factor s_inter(k) b) at T = 315K and ρ = 0.81 g/cm3. 
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The liquid n-eicosane was simulated in the NVT ensemble, where the total 

number of particles, N, the simulation box volume, V, and the temperature, T, are kept 

constant. In Figure 4.1, comparison is made with existing x-ray scattering data for liquid 

n-eicosane [81]. The simulation was performed employing 200 eicosane molecules in 

the cubic box with each side of 48.7 Å at the same state point as the experiment (T = 

315 K and ρ = 0.81 g/cm3). As clearly shown in Figure 4.1, we see an excellent 

agreement between the simulated and experimentally determined liquid structures. 

Let us now examine the structure when the flow field is turned on at steady 

state, at a reduced elongation rate 2/12 )/( εσε m& =1.0. Here, ε&  denotes the elongation 

rate, m mass of the CH2 group, σ  and ε, respectively, the size and energy parameters of 

the CH2 group in the Lennard-Jones potential. It is worth pointing out that the 

temperature and density were maintained constant throughout the flow simulation at T = 

315K and ρ = 0.81 g/cm3, respectively; thus any differences we see are due neither to 

temperature nor density changes, but to structural rearrangements. For the NEMD 

simulation, we employed 648 eicosane molecules using a non-cubic box, since x-and y-

dimensions are contracting and extending with time (after applying the initial 

orientation angle), and chains are aligned and extended in those directions. The box 

dimension (x×y×z in unit of Å) of 90.4×90.4×47.2 was chosen, in particular for x-and y-

dimensions, to be much larger than the fully-stretched chain length with the trans-

conformation of 24.5 Å for C20H42 in order to eliminate any system-size effect. 

In Figures 4.2a) and 4.2b), we present the total and inter-molecular pair 

correlation functions g(r) and g_inter(r) respectively, under quiescent and steady-state  
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flow conditions. In Figure 4.2a), it is readily observed that the peak at 3.16 Å in the 

total pair correlation function for the quiescent melt has completely vanished in the 

elongated structure. This peak is associated with the 1-4 pair distance on the same chain 

in the gauche conformation, and its disappearance is indicative that the chains have 

adopted the all-trans fully extended conformation. This fact is also supported by the 

heightening of the peak at 3.94 Å, which is associated with the 1-4 pair distance on the 

same chain in the trans conformation. On the same note, the 1-2 and 1-3 peaks at 1.54 

Å and 2.58 Å, respectively, also present significant narrowing and increase in height. 

This is a clear indication that the distribution around the respective equilibrium 

distances is narrowed in the elongated state. These facts represent the first indication of 

a transition to a crystalline-like precursor state where the individual molecular chains 

take on conformations very similar to those in the solid phase. Moreover, the narrowing 

of the peaks is indicative of a freezing-out of the low wavelength vibrational degrees of 

freedom, another shift toward a solid phase.  Evidence in the form of the decrease in the 

vibrational energy as a function of elongation rate for decane, hexadecane, and 

tertacosane corroborates this statement [50]. In Fig. 4.2b), one notices that all inter-

molecular peaks have shifted towards lower distances and heightened in the elongated 

state compared to the quiescent melt. This is very important, and is indicative of closer 

lateral packing distances between neighboring chains. As a reminder, both pair 

correlation functions in Fig. 4.2b) were generated under the same temperature and 

density conditions, thus the differences arise solely from structural rearrangements.  
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Mirroring the pair correlation functions (Figures 4.2a and 4.2b), we focus our 

attention now on the total and inter-molecular static structure factors (Figures 4.3a and 

4.3b, respectively). We readily observe the shift of the first peak at k = 1.4 in the 

equilibrium melt structure towards a higher value (k=1.65) in the elongated state. As 

Figure 4.3a) clearly shows, this peak is solely associated with inter-molecular distances, 

and the shift mirrors the shift in the first peak in Fig. 4.2b).  

With the view of comparing the simulated structure factor for the elongated 

structures to the measured one for the crystal, we undertook x-ray scattering 

measurements from n-eicosane in the solid state. The n-eicosane, C20H42, from Aldrich 

[82], was measured at room temperature (melting point 36-38 °C), and the x-ray 

measurements were in reflection geometry using MoKα radiation (λ = 0.71069 Å). The 

range of scattering angles covered the interval 0.16 < k < 16Å-1, where k = (4π/λ)sinθ, 

with 2θ the scattering angle.  Corrections for background, absorption [83], polarization, 

incoherent scattering [84], detector energy discrimination [85], and multiple scattering 

[86] were applied. 

Following the procedure for the analysis of the n-eicosane melt [81], the 

corrected, measured scattering pattern of the crystalline material was normalized to the 

scattering expected from uncorrelated, independent scattering sites CH3 and CH2 . We 

use “united atom” scattering factors for CH3 and CH2 [31], since the simulations were 

performed using united atom sites.    

The structure factor, s(k), for the crystalline material is compared to the melt in 

Fig. 4.4a). The sharp Bragg peaks below k = 6 Å-1 have been indexed in a triclinic unit  
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Figure 4.4: Structure comparison in terms of x-ray diffraction data between liquid (Ref. 
[81]) and crystalline n-eicosane a); structure comparison in terms of total static 
structure factor between x-ray diffraction data for the crystalline n-eicosane and the 
simulated elongated structure b). 
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cell, and the unit cell parameters obtained by least-squares refinement [87] of 22 

reflections are a = 4.322(9) Å, b = 4.799(10) Å, c = 27.43(5) Å, α = 84.98(35)°, β = 

67.48(23)º, γ = 72.03(28)°, V = 499.6 Å3. These are in good agreement with literature 

values [88].  

The dominant contributions to the structure factors at large k (> ~6 Å-1), for both 

the melt and the crystalline material, are from the local intra-molecular structure. These 

intra-molecular contributions consist of correlations between sites within the molecular 

chain; that is, from bonded carbon atoms, C1-C2, C1-(C2)-C3, C1-(C2-C3)-C4, etc. 

These correlations determine the short-range order of the molecular chains, in the sense 

that correlations C1-C4 and higher depend on the internal rotations along the carbon 

chain.  The C1-C2 distance is simply the carbon-carbon bond distance in the chain; the 

C1-C3 distance is determined by the C1-C2 bond distance and the C1-C2-C3 bond 

angle; for the C1-C4 correlation distances we can have values that correspond to trans 

(t) and gauche (g) conformations; for the C1-C5 correlations we can have distances 

corresponding to tt, tg, and gg conformations, and so on. 

  Clearly, for the n-eicosane melt, we should have an equilibrium between the 

trans and gauche conformations determined by the rotational potential of the C-C bond. 

In the case of the crystalline material, the molecular chains are forced into an all-trans 

conformation dictated by the crystal structure. So these differences in the melt and 

crystalline intra-molecular structure will appear in the high-k region of the structure 

factor. Beyond the Bragg peaks, the structure factors for the melt and the crystalline 

material in Fig. 4.4a) differ significantly.  The crystal structure factor shows sharper 
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features at 5 Å-1, 10 Å-1 and 15 Å-1, and overall, all the peaks are asymmetric compared 

to the melt. This is also in quantitative agreement with simulation, as it is readily 

observable in Figures 4.3a) and 4.4b). 

 

4.4 Concluding Remarks 

 

To conclude, the local intramolecular structure has been found to be in very 

good quantitative agreement with the actual crystalline structure of n-eicosane. The 

molecules adopt the all-trans fully stretched conformations, with closer lateral chain 

packing distances. However, we found no evidence of global long-range order, which 

would qualify the elongated structures as a truly crystalline structure. However, the 

excellent agreement between simulation and experiment for k > 5 Å-1 suggests that the 

individual chains have taken on conformations consistent with a precursor structure to 

the crystalline phase.  The lack of global long-range order might be due to the 

simulation technique, where the structure has not been allowed to relax under a constant 

pressure algorithm; i.e., the volume change between the liquid and solid phases has not 

been allowed. Moreover, the applied planar elongational deformation rate might also be 

too low for the long-range order to form; i.e., the simulation is limited at high 

elongational rates by thermostat artifacts. 
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Chapter 5 

 

Conclusions and Directions for Future Work 

 

  

5.1 Summary 

 

The underlying theme of this dissertation was to investigate the nature of the 

elastic energy stored by polymer melts subjected to deformation using experimental 

measurements, molecular theory and simulation. Contrary to common beliefs, our 

model polymer (polyethylene) was found to show strong energetic effects when 

subjected to uniaxial elongational stretching.  

This study may be broken down into three parts. The first part focused on 

extending an existing experimental method for testing the nature of the elastic energy 

stored by a polymer melt, but this time under processing conditions closer to what one 

would expect to find in an industrial setting. The balance equation used to model the 

flow process was derived under less restrictive assumptions than in the original 

experiments (but purposely keeping the Purely Entropic Elasticity assumption). Our 

experimental measurements showed significant deviations from the model equation. 

Next, molecular theory was used to isolate the cause of the deviations observed in the 
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experimental part, and it was concluded that the PEE assumption was solely responsible 

for the differences observed. Moreover, using the Upper-Convected Maxwell Model, 

the PEE assumption was removed and a new form of the temperature equation was 

proposed. This new model equation was found to bring significant improvements over 

the classical form. To further refine the UCMM predictions, the single-mode Giesekus 

model was introduced and its single parameter was adjusted to faithfully reproduce the 

experimental measurements. To the best of our knowledge, we are the first to report 

reliable experimental evidence that the assumption of PEE is not universally valid for 

polymer melts under a wide range of processing conditions.  

The purpose of the second part of the dissertation was to provide molecular level 

insights into the reasons why the assumption of PEE would not be valid for polymer 

melts. To this aim, atomistic molecular simulations of oriented long alkane melts were 

performed using an existing Non-equilibrium Monte-Carlo (NEMC) procedure. First, it 

was found that for the oriented melts, the changes in free and internal energy with 

respect to the quiescent state were similar in magnitude. Next, the internal energy 

change was broken down into its constituents and it was concluded that the most 

important contributor to the overall energetic balance of the system is the “inter-

molecular” non-bonded energy. This aspect has been overlooked in existing theories, 

which described the elastic response of a polymer melt based upon the elastic response 

of single polymer chains.  

The third part of the dissertation was aimed at filling a void in the fundamental 

research of “flow-induced crystallization” phenomena. We were the first to report 
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crystalline-like structure formations under steady-state planar elongational flow of long 

chain molecules. This was accomplished by analyzing the structures generated under 

non-equilibrium conditions via calculations of the x-ray diffraction patterns. The 

simulated structures were then compared to the experimentally determined crystalline 

structure of the same material. The agreement found between the simulated and 

experimentally determined intra-molecular structures was excellent. 

 

 

5.2 Directions for Future Research 

 

The work presented in this study has indeed clarified some important aspects 

concerning the non-isothermal flow of polymer melts. Given the large number of 

industrial applications involving non-isothermal flow of polymeric materials, it is our 

belief that the present study will pave the way for more research in this area. In the 

future, it would be useful to extend the present study to more polymers and processing 

conditions. Also, the effect of the molecular characteristics of the polymers would be 

interesting to investigate, such as molecular weight, polydispersity, branching, stiffness 

etc.  There is room for improvement in the theoretical aspect this work as well. It would 

be interesting to explore more sophisticated viscoelastic models. The UCMM employed 

in this study has been shown in the past to predict the correct properties only at low 

deformation rates. Even so, the UCMM did an excellent job in describing the measured 

temperature profiles.  
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In Chapter 4, it was suggested that one of the possible reasons why long range 

order was not observed during the simulations was the fact that the density was fixed. In 

reality, crystallization is associated with a sudden density increase due to closer packing 

distances between neighboring molecules. Currently, there is a constant pressure 

version of the NEMD algorithm under development in our group, which should be able 

to capture the density change associated with the alignment of the molecules. Moreover, 

in order to bridge the gap between the relatively short chain simulated system and real 

polymers, longer chains need to be investigated. Also, it would be interesting to see x-

ray diffraction experiments that capture the formation of the oriented structures in situ, 

under flowing conditions.   
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Temperature Profile Calculations for Shear Flow in a Capillary Tube 

 

 

Following the same procedure presented in Section 2.4, the FEM analysis was 

performed for shear flow generated in a capillary tube 1 mm in diameter and 25 mm in 

length. The polymer used was LDPE at the same inlet temperature points as in the 

elongational flow case (150°C, 170°C and 190°C). First, the shear viscosity was 

measured using ACER (see Section 2.3, equation 2.11). The temperature dependence of 

the shear viscosity was then determined using equation 2.12. The shear rates at the tube 

wall investigated (see equation 2.9) spanned between 150s-1 and 4500s-1. The modeling 

equation used to determine the spatial temperature distributions was the same as in the 

elongational flow case (equation 2.13), with the following modifications: 

1. The heat generation term: ( ) 2: γητ &shearv =∇                                                (A.1) 

2. The velocity profile: 0=rv ; ⎟⎟
⎠

⎞
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where ηshear is the shear viscosity, γ& is the shear rate, ΔP is the pressure drop along the 

length of the tube, R is the radius of the tube, L is the length of the tube and r is the axial 

position inside the tube. The shear rate was considered constant with respect to axial 

position and variable with respect to radial position, according to 

r
vz

d
d

=γ&                                                        (A.3) 
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In Figure A.1, the temperature profiles in terms of the change with respect to the 

inlet is presented for three selected shear rates for the HDPE melt at Tin = 170°C. We 

observe sharp radial temperature gradients developing towards the exit of the capillary 

tube as the shear rate is increasing, mainly because the heat generation term given by 

equation A.1 is increasing with radial position. Let us examine the case of the highest 

shear rate considered (4500 s-1). For the exit cross-section, the temperature at the center 

is very close to the inlet and wall temperatures. As we move towards the wall, there is a 

temperature increase of over 20°C, followed by a sharp decrease at the wall. This 

behavior is easily explained upon close examination of the individual terms in the heat 

equation. At the center of the channel, the shear rate is zero; therefore the heat 

generation term is also zero. The heat conduction from the hotter domains is 

increasingly compensated by convection of colder fluid from the entrance as the shear 

rate is increased. The sharp radial temperature gradients propagate through the 

measuring device, and the temperature increase due to viscous effects would not be 

accurately captured by this particular experimental design. However, a different design 

in which the fluid coming out of the capillary tube is perfectly mixed would be able to 

capture these viscous heating effects. By contrast, the radial temperature profiles at the 

exit of the Hencky die in the elongational flow case are fundamentally different (see 

Figure 2.6b). Moreover, the velocity profiles at the die exit are different for the two type 

of flow. While in the shear flow case the axial velocity is a strong function of radial 

position (see equation A.2), in the elongational flow case the axial velocity is 

independent of radial position (see equation 2.16). 
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Figure A.1: Temperature profiles in the measuring device for the shear flow of LDPE 
at Tin = 170°C. 
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In Figure A.2, the temperature profiles inside the measuring device are shown 

for the elongational flow case for three selected flow rates for the LDPE melt at Tin = 

170°C. Clearly, in the elongational flow case, the temperature increase is captured much 

more accurately by the tip of the thermocouple than in the shear flow case (Figure A.1). 

Given the different behaviors observed in Figures A.1 and A.2, we decided not to 

pursue the shear flow case any further. However, given the industrial importance of this 

particular type of flow, it would be interesting to improve this experimental design in 

the future and investigate the energetic effects generated through shear flow as well. 
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Figure A.2: Temperature profiles in the measuring device for the elongational flow of 
LDPE at Tin = 170°C. 
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