572 research outputs found

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Higher-order CFD and Interface Tracking Methods on Highly-Parallel MPI and GPU systems

    Get PDF
    A computational investigation of the effects on parallel performance of higher-order accurate schemes was carried out on two different computational systems: a traditional CPU based MPI cluster and a system of four Graphics Processing Units (GPUs) controlled by a single quad-core CPU. The investigation was based on the solution of the level set equations for interface tracking using a High-Order Upstream Central (HOUC) scheme. Different variants of the HOUC scheme were employed together with a 3rd-order TVD Runge-Kutta time integration. An increase in performance of two orders of magnitude was seen when comparing a single CPU core to a single GPU with a greater increase at higher orders of accuracy and at lower precision

    Heterogeneous Computing on Mixed Unstructured Grids with PyFR

    Get PDF
    PyFR is an open-source high-order accurate computational fluid dynamics solver for mixed unstructured grids that can target a range of hardware platforms from a single codebase. In this paper we demonstrate the ability of PyFR to perform high-order accurate unsteady simulations of flow on mixed unstructured grids using heterogeneous multi-node hardware. Specifically, after benchmarking single-node performance for various platforms, PyFR v0.2.2 is used to undertake simulations of unsteady flow over a circular cylinder at Reynolds number 3 900 using a mixed unstructured grid of prismatic and tetrahedral elements on a desktop workstation containing an Intel Xeon E5-2697 v2 CPU, an NVIDIA Tesla K40c GPU, and an AMD FirePro W9100 GPU. Both the performance and accuracy of PyFR are assessed. PyFR v0.2.2 is freely available under a 3-Clause New Style BSD license (see www.pyfr.org).Comment: 21 pages, 9 figures, 6 table

    Implementation of a High Throughput 3GPP Turbo Decoder on GPU

    Get PDF
    Turbo code is a computationally intensive channel code that is widely used in current and upcoming wireless standards. General-purpose graphics processor unit (GPGPU) is a programmable commodity processor that achieves high performance computation power by using many simple cores. In this paper, we present a 3GPP LTE compliant Turbo decoder accelerator that takes advantage of the processing power of GPU to offer fast Turbo decoding throughput. Several techniques are used to improve the performance of the decoder. To fully utilize the computational resources on GPU, our decoder can decode multiple codewords simultaneously, divide the workload for a single codeword across multiple cores, and pack multiple codewords to fit the single instruction multiple data (SIMD) instruction width. In addition, we use shared memory judiciously to enable hundreds of concurrent multiple threads while keeping frequently used data local to keep memory access fast. To improve efficiency of the decoder in the high SNR regime, we also present a low complexity early termination scheme based on average extrinsic LLR statistics. Finally, we examine how different workload partitioning choices affect the error correction performance and the decoder throughput.Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    GPU Accelerated Scalable Parallel Decoding of LDPC Codes

    Get PDF
    This paper proposes a flexible low-density parity-check (LDPC) decoder which leverages graphic processor units (GPU) to provide high decoding throughput. LDPC codes are widely adopted by the new emerging standards for wireless communication systems and storage applications due to their near-capacity error correcting performance. To achieve high decoding throughput on GPU, we leverage the parallelism embedded in the check-node computation and variable-node computation and propose a parallel strategy of partitioning the decoding jobs among multi-processors in GPU. In addition, we propose a scalable multi-codeword decoding scheme to fully utilize the computation resources of GPU. Furthermore, we developed a novel adaptive performance-tuning method to make our decoder implementation more flexible and scalable. The experimental results show that our LDPC decoder is scalable and flexible, and the adaptive performance-tuning method can deliver the peak performance based on the GPU architecture.Renesas MobileSamsungNational Science Foundatio

    Dwarfs on Accelerators: Enhancing OpenCL Benchmarking for Heterogeneous Computing Architectures

    Full text link
    For reasons of both performance and energy efficiency, high-performance computing (HPC) hardware is becoming increasingly heterogeneous. The OpenCL framework supports portable programming across a wide range of computing devices and is gaining influence in programming next-generation accelerators. To characterize the performance of these devices across a range of applications requires a diverse, portable and configurable benchmark suite, and OpenCL is an attractive programming model for this purpose. We present an extended and enhanced version of the OpenDwarfs OpenCL benchmark suite, with a strong focus placed on the robustness of applications, curation of additional benchmarks with an increased emphasis on correctness of results and choice of problem size. Preliminary results and analysis are reported for eight benchmark codes on a diverse set of architectures -- three Intel CPUs, five Nvidia GPUs, six AMD GPUs and a Xeon Phi.Comment: 10 pages, 5 figure

    A Performance-Portable SYCL Implementation of CRK-HACC for Exascale

    Full text link
    The first generation of exascale systems will include a variety of machine architectures, featuring GPUs from multiple vendors. As a result, many developers are interested in adopting portable programming models to avoid maintaining multiple versions of their code. It is necessary to document experiences with such programming models to assist developers in understanding the advantages and disadvantages of different approaches. To this end, this paper evaluates the performance portability of a SYCL implementation of a large-scale cosmology application (CRK-HACC) running on GPUs from three different vendors: AMD, Intel, and NVIDIA. We detail the process of migrating the original code from CUDA to SYCL and show that specializing kernels for specific targets can greatly improve performance portability without significantly impacting programmer productivity. The SYCL version of CRK-HACC achieves a performance portability of 0.96 with a code divergence of almost 0, demonstrating that SYCL is a viable programming model for performance-portable applications.Comment: 12 pages, 13 figures, 2023 International Workshop on Performance, Portability & Productivity in HP

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd
    corecore