
Computers and Fluids 120 (2015) 173–186

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Heterogeneous computing on mixed unstructured grids with PyFR

F.D. Witherden∗, B.C. Vermeire, P.E. Vincent

Department of Aeronautics, Imperial College London, SW7 2AZ United Kingdom

a r t i c l e i n f o

Article history:

Received 3 October 2014

Revised 17 July 2015

Accepted 21 July 2015

Available online 31 July 2015

Keywords:

High methods

Flux reconstruction

Heterogeneous computing

Cylinder flow

a b s t r a c t

PyFR is an open-source high-order accurate computational fluid dynamics solver for unstructured grids. In

this paper we detail how PyFR has been extended to run on mixed element meshes, and a range of hard-

ware platforms, including heterogeneous multi-node systems. Performance of our implementation is bench-

marked using pure hexahedral and mixed prismatic-tetrahedral meshes of the void space around a circular

cylinder. Specifically, for each mesh performance is assessed at various orders of accuracy on three different

hardware platforms; an NVIDIA Tesla K40c GPU, an Intel Xeon E5-2697 v2 CPU, and an AMD FirePro W9100

GPU. Performance is then assessed on a heterogeneous multi-node system constructed from a mix of the

aforementioned hardware. Results demonstrate that PyFR achieves performance portability across various

hardware platforms. In particular, the ability of PyFR to target individual platforms with their ‘native’ lan-

guage leads to significantly enhanced performance cf. targeting each platform with OpenCL alone. PyFR is

also found to be performant on the heterogeneous multi-node system, achieving a significant fraction of the

available FLOP/s. Finally, each mesh is used to undertake nominally fifth-order accurate long-time simula-

tions of unsteady flow over a circular cylinder at a Reynolds number of 3900 using a cluster of NVIDIA K20c

GPUs. Long-time dynamics of the wake are studied in detail, and results are found to be in excellent agree-

ment with previous experimental/numerical data. All results were obtained with PyFR v0.2.2, which is freely

available under a 3-Clause New Style BSD license (see www.pyfr.org).

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

o

s

c

C

c

w

b

f

h

t

a

t

K

I

a

t

l

W

a

i

f

s

v

[

c

4

C

p

a

i

a

c

t

p

s

i

h

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
. Introduction

There is an increasing desire amongst industrial practitioners

f computational fluid dynamics (CFD) to perform scale-resolving

imulations of unsteady compressible flows within the vicinity of

omplex geometries. However, current generation industry-standard

FD software—predominantly based on first- or second-order ac-

urate Reynolds Averaged Navier–Stokes (RANS) technology—is not

ell suited to the task. Henceforth, over the past decade there has

een significant interest in the application of high-order methods

or mixed unstructured grids to such problems. Popular examples of

igh-order schemes for mixed unstructured grids include the discon-

inuous Galerkin (DG) method, first introduced by Reed and Hill [1],

nd the spectral difference (SD) methods originally proposed under

he moniker ‘staggered-gird Chebyshev multidomain methods’ by

opriva and Kolias in 1996 [2] and later popularised by Sun et al. [3].

n 2007 Huynh [4] proposed the flux reconstruction (FR) approach;

unifying framework for high-order schemes on unstructured grids

hat incorporates both the nodal DG schemes of [5] and, at least for a

inear flux function, any SD scheme. In addition to offering high-order
∗ Corresponding author. Tel.: +44 02075945108.

E-mail address: freddie.witherden08@imperial.ac.uk, freddie@witherden.org (F.D.

itherden).

t

e

r

a

T

ttp://dx.doi.org/10.1016/j.compfluid.2015.07.016

045-7930/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article unde
ccuracy on unstructured mixed grids, FR schemes are also compact

n space, and thus when combined with explicit time marching of-

er a significant degree of element locality. This locality makes such

chemes extremely good candidates for acceleration using either the

ector units of modern CPUs or graphics processing units (GPUs)

6–8]. There exist a variety of approaches for writing accelerated

odes. These include directive based methodologies such as OpenMP

.0 and OpenACC, and language frameworks such as OpenCL and

UDA. We contend, however, that at the time of writing no single ap-

roach is performance portable across all major hardware platforms,

nd that codes desiring cross-platform portability must therefore

ncorporate support for multiple approaches. Further, there is also

growing interest from the scientific community in heterogeneous

omputing whereby multiple platforms are employed simultaneously

o solve a problem. The promise of heterogeneous computing is im-

roved resource utilisation on systems with a mix of hardware. Such

ystems are becoming increasingly common.

PyFR is a high-order FR code for solving the Euler and compress-

ble Navier–Stokes equations on mixed unstructured grids [8]. Writ-

en in the Python programming language PyFR incorporates back-

nds for C/OpenMP, CUDA, and OpenCL. It is therefore capable of

unning on conventional CPUs, as well as GPUs from both NVIDIA

nd AMD, as well as heterogeneous mixtures of the aforementioned.

he objective of this paper is to demonstrate the ability of PyFR to
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/82381947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.compfluid.2015.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.07.016&domain=pdf
http://www.pyfr.org
http://creativecommons.org/licenses/by/4.0/
mailto:freddie.witherden08@imperial.ac.uk
mailto:freddie@witherden.org
http://dx.doi.org/10.1016/j.compfluid.2015.07.016
http://creativecommons.org/licenses/by/4.0/

174 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

C

U

T

w

r

i

w

t

i

I

c

p

�
a

t

x

x

a

J

J

T

t

fl

u

f̃

q

a

a

s

s

o

s

a

s

w

V
	

e

perform high-order accurate unsteady simulations of flow on mixed

unstructured meshes using a heterogeneous hardware platform—

demonstrating the concept of ‘heterogeneous computing from a ho-

mogeneous codebase’. Specifically, performance of our implementa-

tion is benchmarked using pure hexahedral and mixed prismatic-

tetrahedral meshes of the void space around a circular cylinder on

three different hardware platforms; an NVIDIA Tesla K40c GPU, an

Intel Xeon E5-2697 v2 CPU, and an AMD FirePro W9100 GPU. Perfor-

mance is then assessed on a heterogeneous multi-node system con-

structed from a mix of the aforementioned hardware. Finally, each

mesh is used to undertake nominally fifth-order accurate long-time

simulations of unsteady flow over a circular cylinder at a Reynolds

number of 3900, and accuracy is assessed.

The paper is structured as follows. The flux reconstruction ap-

proach is presented in Section 2 with a unified description of DG

correction functions being given in Section 3. In Section 4 we pro-

vide an overview of the PyFR codebase. Details of the cylinder test

case are given in Section 5. Single node performance is assessed in

Section 6 while heterogeneous multi-node performance is consid-

ered in Section 7. The accuracy of PyFR for the cylinder test case is

evaluated in Section 8. Finally, in Section 9 conclusions are drawn.

2. Flux reconstruction

For a detailed overview of the multidimensional flux reconstruc-

tion approach the reader is referred to Witherden et al. [8] and the

references therein. In this section we shall describe the approach

within the context of the three dimensional Navier–Stokes equa-

tions. Throughout this section a convention in which dummy indices

on the right hand side of an expression are summed. For example

i jk = Ai jlBilk ≡ ∑
l Ai jlBilk where the limits are implied from the sur-

rounding context. All indices are assumed to be zero-based. In con-

servative form the three dimensional Navier–Stokes equations can be

expressed as

∂uα

∂t
+ ∇ · fα = 0, (1)

where α is the field variable index, u = u(x, t) =
{
ρ,ρvx, ρvy, ρvz, E

}
is the solution, ρ is the mass density of the fluid, v = (vx, vy, vz)T is

the fluid velocity vector, and E is the total energy per unit volume. For

a perfect gas the pressure, p, and total energy can be related by the

ideal gas law

E = p

γ − 1
+ 1

2
ρ‖v‖2, (2)

where γ = cp/cv. The flux can be written as fα = fα(u,∇u) = f(inv) −
f(vis) where the inviscid terms are given by

f(inv) =

⎧⎪⎪⎨
⎪⎪⎩

ρvx ρvy ρvz

ρv2
x + p ρvyvx ρvzvx

ρvxvy ρv2
y + p ρvzvy

ρvxvz ρvyvz ρv2
z + p

vx(E + p) vy(E + p) vz(E + p)

⎫⎪⎪⎬
⎪⎪⎭, (3)

and the viscous terms are given according to

f(vis) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 0
Txx Tyx Tzx

Txy Tyy Tzy

Txz Tyz Tzz

viTix + �∂xT viTiy + �∂yT viTiz + �∂zT

⎫⎪⎪⎬
⎪⎪⎭. (4)

In the above we have defined � = μcp/Pr where μ is the dynamic

viscosity and Pr is the Prandtl number. The components of the stress-

energy tensor are given by

Ti j = μ(∂iv j + ∂ jvi) − 2
μδi j∇ · v. (5)
3

sing the ideal gas law the temperature can be expressed as

= 1

cv

1

γ − 1

p

ρ
, (6)

ith partial derivatives thereof being given according to the quotient

ule.

To solve this system using flux reconstruction we start by rewrit-

ng Eq. (1) as a first order system

∂uα

∂t
+ ∇ · fα(u, q) = 0, (7a)

qα − ∇uα = 0, (7b)

here q is an auxiliary variable.

Take E to be the set of supported element types in R
3; for PyFR

hese are hexahedra, prisms and tetrahedra. Consider using these var-

ous elements types to construct a conformal mesh of a domain �.

nside of each element, �en, we require that

∂uenα

∂t
+ ∇ · fenα = 0, (8a)

qenα − ∇uenα = 0. (8b)

It is convenient, for reasons of both mathematical simplicity and

omputational efficiency, to work in a transformed space. We accom-

lish this by introducing, for each element type, a standard element
ˆ

e which exists in a transformed space, x̃ = (x̃0, x̃1, x̃2)
T . Next, we

ssume the existence of a mapping function for each element such

hat

i = Meni(x̃), x = Men(x̃),

˜i = M−1
eni

(x), x̃ = M−1
en (x),

long with the relevant Jacobian matrices

en = Jeni j = ∂Meni

∂ x̃ j

, Jen = detJen,

−1
en = J−1

eni j
= ∂M−1

eni

∂x j

, J−1
en = detJ−1

en = 1

Jen
.

hese definitions provide us with a means of transforming quantities

o and from standard element space. Taking the transformed solution,

ux, and gradients inside each element to be

˜enα = ũenα(x̃, t) = Jen(x̃)uenα(Men(x̃), t), (9a)

enα = f̃enα(x̃, t) = Jen(x̃)J−1
en (Men(x̃))fenα(Men(x̃), t), (9b)

˜ enα = q̃enα(x̃, t) = J
T
en(x̃)qenα(Men(x̃), t), (9c)

nd letting ∇̃ = ∂/∂ x̃i, it can be readily verified that

∂uenα

∂t
+ J−1

en ∇̃ · f̃enα = 0, (10a)

q̃enα − ∇̃uenα = 0, (10b)

s required.

We next proceed to associate a set of solution points with each

tandard element. For each type e ∈ E take {x̃
(u)
eρ } to be the cho-

en set of points where 0 ≤ ρ < N
(u)
e (℘), and ℘ is the polynomial

rder. These points can then be used to construct a nodal basis

et {	(u)
eρ (x̃)} with the property that 	

(u)
eρ (x̃

(u)
eσ) = δρσ . To obtain such

set we first take {ψeσ (x̃)} to be an orthonormal basis which

pans a selected order ℘ polynomial space defined inside �̂e. Next

e compute the elements of the generalised Vandermonde matrix

eρσ = ψeρ(x̃
(u)
eσ). With these a nodal basis set can be constructed as

(u)
eρ (x̃) = V−1

eρσ ψeσ (x̃). Along with the solution points inside of each

lement we also define a set of flux points on ∂�̂e. We denote the flux

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 175

p

L

v

a

o

f

s

fl

u

w

t

t

C

w

e

o

t

t

f

n

w

l

q) ,

w

a

t

c

q

q

w

a

f̃

w

t

f

C

n

f

e

b

t

f

F

w

c

F

w

(

F

F

w

o

u

(

w

e

w

e

s

3

t

m

a

t

t

ρ
f

t

[

∇

w

n

e

fi

b

f

a

4

4

t

e

m

C

oints for a particular element type as {x̃
(f)
eρ } where 0 ≤ ρ < N

(f)
e (℘).

et the set of corresponding normalised outward-pointing normal

ectors be given by { ˆ̃n
(f)
eρ }. It is critical that each flux point pair along

n interface share the same coordinates in physical space. For a pair

f flux points eρn and e′ρ′n′ at a non-periodic interface this can be

ormalised as Men(x̃
(f)
eρ) = Me′n′(x̃

(f)
e′ρ′).

The first step in the FR approach is to go from the discontinuous

olution at the solution points to the discontinuous solution at the

ux points

(f)
eσnα = u(u)

eρnα	
(u)
eρ (x̃(f)

eσ), (11)

here u
(u)
eρnα is an approximate solution of field variable α inside of

he nth element of type e at solution point x̃
(u)
eρ . This can then be used

o compute a common solution

α
u(f)

eρnα
= C

α
u(f)

ẽρnα
= (1

2
− β)u(f)

eρnα
+ (1

2
+ β)u(f)

ẽρnα
, (12)

here β controls the degree of up/downwinding. Here we have taken

ρ̃n to be the element type, flux point number and element number

f the adjoining point at the interface. Since grids are unstructured

he relationship between eρn and ẽρn is indirect. This necessitates

he use of a lookup table.

Further, associated with each flux point is a vector correction

unction g
(f)
eρ (x̃) constrained such that

ˆ̃ (f)
eσ · g(f)

eρ (x̃(f)
eσ) = δρσ , (13)

ith a divergence that sits in the same polynomial space as the so-

ution. Using these fields we can express the solution to Eq. (10b) as

˜ (u)
eσnα =

[
ˆ̃n(f)

eρ · ∇̃ · g(f)
eρ (x̃)

{
Cαu(f)

eρnα − u(f)
eρnα

}
+ u(u)

eνnα∇̃	
(u)
eν (x̃)

]
x̃=x̃(u

eσ

(14)

here the term inside the curly brackets is the ‘jump’ at the interface

nd the final term is an order℘− 1 approximation of the gradient ob-

ained by differentiating the discontinuous solution polynomial. We

an now compute physical gradients as

(u)
eσnα = J

−T (u)
eσn q̃(u)

eσnα, (15)

(f)
eσnα = 	

(u)
eρ (x̃(f)

eσ)q(u)
eρnα, (16)

here J
−T (u)
eσn = J

−T
en (x̃

(u)
eσ). Having solved the auxiliary equation we

re now able to evaluate the transformed flux

(u)
eρnα = J(u)

eρnJ
−1 (u)
eρn fα(u(u)

eρn, q(u)
eρn), (17)

here J
(u)
eρn = detJen(x̃

(u)
eρ). This can be seen to be a collocation projec-

ion of the flux. With this it is possible to compute the normal trans-

ormed flux at each of the flux points

f̃ (f⊥)
eσnα = 	

(u)
eρ (x̃(f)

eσ) ˆ̃n(f)
eσ · f̃(u)

eρnα. (18)

onsidering the physical normals at the flux points we see that
(f)
eσn = J

−T (f)
eσn

ˆ̃n
(f)
eσ where J

−T (f)
eσn = J

−T
en (x̃

(f)
eσ), which is the outward

acing normal vector in physical space. The normal vector can also be

xpressed as n
(f)
eσnn̂

(f)
eσn where n

(f)
eσn is the magnitude. As the interfaces

etween two elements conform we must have n̂
(f)
eσn

= −n̂
(f)
ẽσn

. With

hese definitions we are now in a position to specify an expression

or the common normal flux at a flux point pair as

α
f (f⊥)
eσnα

= −F
α

f (f⊥)
ẽσnα

= F
(inv)
α

− F
(vis)
α

, (19)

here F
(inv)
α is obtained by performing a Riemann solve on the invis-

id portion of the flux and
(vis)
α

= n̂(f)
eσn

·
{
(1

2
+ β)f(vis)

eσnα
+ (1

2
− β)f(vis)

ẽσnα

}
+ τ(u(f)

eσnα
− u(f)

ẽσnα
),

(20)

ith τ being a penalty parameter. The common normal fluxes in Eq.

19) can now be taken into transformed space via

α f̃ (f⊥)
eσnα = J(f)

eσnn(f)
eσnFα f (f⊥)

eσnα, (21)

α
f̃ (f⊥)
ẽσnα

= J(f)
ẽσn

n(f)
ẽσn

F
α

f (f⊥)
ẽσnα

, (22)

here J
(f)
eσn = detJen(x̃

(f)
eσ).

It is now possible to compute an approximation for the divergence

f the continuous flux. The procedure is directly analogous to the one

sed to calculate the transformed gradient in Eq. (14)

∇̃ · f̃)(u)
eρnα =

[
∇̃ · g(f)

eσ (x̃)
{
Fα f̃ (f⊥)

eσnα − f̃ (f⊥)
eσnα

}
+ f̃(u)

eνnα · ∇̃	
(u)
eν (x̃)

]
x̃=x̃(u)

eρ

, (23)

hich can then be used to obtain a semi-discretised form of the gov-

rning system

∂u(u)
eρnα

∂t
= −J−1 (u)

eρn (∇̃ · f̃)(u)
eρnα, (24)

here J
−1 (u)
eρn = detJ−1

en (x̃
(u)
eρ) = 1/J

(u)
eρn.

This semi-discretised form is simply a system of ordinary differ-

ntial equations in t and can be solved using one of a number of

chemes.

. Correction functions

The nature of a given FR scheme is determined by the form of

he associated vector correction function [4, 9]. Here we present our

ethodology for obtaining the correction function corresponding to

nodal DG scheme inside of an arbitrary domain. When considering

he correction function associated with a flux point, g
(f)
eρ (x̃), it is of-

en more convenient to use a face-local numbering scheme in which

↔(ij) where i denotes the face number and j the local index on this

ace. Let {�̃ei} refer to faces of the reference element �̂e. With these

he divergences of the DG correction functions can be expressed as

10, 11]

· g(f)
e(i j)

(x̃) = ψek(x̃)

∫
�̃ei

ˆ̃n · g(f)
e(i j)

(s̃)ψek(s̃) ds̃ (25)

= ψek(x̃)

∫
�̃ei

	ei j(s̃)ψek(s̃) ds̃, (26)

here ˆ̃n is the outward pointing unit normal vector, and 	ei j(s̃) is the

odal basis function associated with point j on face i of the reference

lement e. In the second step we have utilised the fact that Eq. (13)

xes ˆ̃n · g
(f)
e(i j)

(s̃) at each of the flux points on the face permitting it to

e substituted for an equivalent nodal basis function. Heretofore this

ormulation has only been employed for simplex elements—triangles

nd tetrahedra—however it is valid for any element type.

. PyFR

.1. Overview

Key functionality of PyFR v0.2.2 is summarised in Table 1. We note

hat PyFR achieves platform portability via use of an innovative ‘back-

nd’ infrastructure.

The majority of operations within an FR time-step can be cast as

atrix multiplications of the form

← c1AB + c2C, (27)

176 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

Table 1

Key functionality of PyFR v0.2.2.

Dimensions 2D, 3D

Elements Triangles, quadrilaterals, hexahedra,

tetrahedra, prisms

Spatial orders Arbitrary

Time steppers Euler, RK4, RK45

Precisions Single, double

Platforms CPUs, NVIDIA GPUs, AMD GPUs

Inter-node communication MPI

Governing systems Euler, compressible Navier–Stokes

Table 2

Dimensions of the volume-to-surface interpolation operator matrix at or-

ders℘= 1, 2, 3, 4 for tetrahedral, prismatic, and hexahedral element types.

Matrix dimensions

Type ℘= 1 ℘= 2 ℘= 3 ℘= 4

Tet 4 × 12 10 × 24 20 × 40 35 × 60

Pri 6 × 18 18 × 39 40 × 68 75 × 105

Hex 8 × 24 27 × 54 64 × 96 125 × 150

t

l

4

c

f

l

b

r

t

C

a

m

4

a

O

a

w

v

r

d

4

i

r

q

f

n

5

5

i

i

n

R

w

a

r

o

R

s

s

o

fi

o

where c1,2 ∈ R are scalar constants, A is a constant operator matrix,

and B and C are row-major state matrices. Within the taxonomy

proposed by Goto et al. [12] the multiplications fall into the block-

by-panel (GEBP) category. The specific dimensions of the operator

matrices are a function of both the polynomial order ℘ used to rep-

resent the solution in each element of the domain, and the element

type. A breakdown of these dimensions for the volume-to-surface in-

terpolation operator matrix associated with Eq. (11) can be found in

Table 2. In PyFR platform portability of the matrix multiply operations

is achieved by deferring to the GEMM family of subroutines provided

by a Basic Linear Algebra Subprograms (BLAS) library for the target

platform.

All other operations involved in an FR time-step are point-wise,

concerning themselves solely with data at an individual solution/flux

point. In PyFR platform portability of these point-wise operations is

achieved via use of a bespoke domain specific language based on the

Mako templating engine [13]. Mako specifications of point-wise oper-

ations are converted into backend-specific low-level code for the tar-

get platform at runtime, which is then compiled, linked and loaded

into PyFR.

4.2. C/OpenMP backend

The C/OpenMP backend can be used to target CPUs from a range

of vendors. The BLAS implementation employed by PyFR for the

C/OpenMP backend must be specified by the user at runtime. Both

single- and multi-threaded libraries are supported. When a single-

threaded library is specified PyFR will perform its own parallelisa-

tion. Given a state matrix B of dimension (K, N) the decomposi-

tion algorithm splits B into Nt slices of dimension (K, N/Nt) where

Nt is the number of OpenMP threads. Each thread then multiplies

its slice through by A to yield the corresponding slice of C. A vi-

sualisation of this approach is shown in Fig. 1. For the block-by-

panel multiplications encountered in FR this strategy has been found
Fig. 1. How matrix multiplications are paralle
o consistently outperform those employed by multi-threaded BLAS

ibraries.

.3. CUDA backend

The CUDA backend can be used to target NVIDIA GPUs of compute

apability 2.0 or later. PyCUDA [14] is used to invoke the CUDA API

rom Python. Matrix-multiplications are performed using the cuBLAS

ibrary which ships as part of the CUDA distribution. The cuBLAS li-

rary is exclusively column-major. Nevertheless it is possible to di-

ectly multiply two row-major matrices together by utilising the fact

hat

= AB ⇒ C
T = (AB)T = B

T
A

T , (28)

nd observing the effect of passing a row-major matrix to a column-

ajor subroutine is to implicitly transpose it.

.4. OpenCL backend

The OpenCL backend can be used to target CPUs and GPUs from

range of vendors. The PyOpenCL package [14] is used to interface

penCL with Python. OpenCL natively supports runtime code gener-

tion. BLAS support is provided via the open source clBLAS library,

hich is primarily developed and supported by AMD. For GPU de-

ices clBLAS utilises auto-tuning in order to effectively target a wide

ange of architectures. Performance is heavily dependent on the un-

erlying OpenCL implementation.

.5. Distributed memory systems

To scale out across multiple nodes PyFR utilises the Message Pass-

ng Interface (MPI). By construction the data exchanged between MPI

anks is independent of the backend being used. A natural conse-

uence of this is that different MPI ranks can transparently utilise dif-

erent backends—hence enabling PyFR to run on heterogenous multi-

ode systems.

. Cylinder test case

.1. Overview

Flow over a circular cylinder has been the focus of various exper-

mental and numerical studies [15, 16, 21, 22, 23, 24, 25]. Character-

stics of the flow are known to be highly dependent on the Reynolds

umber Re, defined as

e = u∞D

ν
, (29)

here u∞ is the free-stream fluid speed, D is the cylinder diameter,

nd ν is the fluid kinematic viscosity. Roshko [17] identified a stable

ange between Re = 40 and 150 that is characterised by the shedding

f regular laminar vortices, as well as a transitional range between

e = 150 and 300, and a turbulent range beyond Re = 300. These re-

ults were subsequently confirmed by Bloor [18], who identified a

imilar set of regimes. Later, Williamson [19] identified two modes

f transition from two dimensional to three dimensional flow. The

rst, known as Mode-A instability, occurs at Re ≈ 190 and the sec-

nd, known as Mode-B instability, occurs at Re ≈ 260. The turbulent
lised in the C/OpenMP backend of PyFR.

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 177

(a) Hexahedral, far-field. (b) Prism/tetrahedral, far-field.

(c) Hexahedral, wake. (d) Prism / tetrahedral, wake.

Fig. 2. Cutaways through the two meshes.

r

l

r

a

0

W

i

w

i

L

t

(

y

t

5

s

s

T

[

s

o

[

T

e

w

m

b

r

t

t

5

e

s

a

B

s

℘

m

Table 3

Approximate memory requirements of PyFR for

the two cylinder meshes.

Device memory / GiB

Mesh ℘= 1 ℘= 2 ℘= 3 ℘= 4

Hex 0.8 2.1 4.1 7.3

Pri/tet 1.1 2.6 4.7 7.7

T

℘

n

y

d

℘

o

t

f

n

o

t

m

c

m

5

i

s

s

f

[

w

[

q

t

R

n

e

w

ange beyond Re = 300 can be further sub-classified into the shear-

ayer transition, critical, and supercritical regimes as discussed in the

eview by Williamson [20].

In the present study we consider flow over a circular cylinder

t Re = 3900, and an effectively incompressible Mach number of

.2. This case sits in the shear-layer transition regime identified by

illiamson [20], and contains several complex flow features, includ-

ng separated shear layers, turbulent transition, and a fully turbulent

ake. This test case has been the focus of a number of previous stud-

es, both experimental and numerical [21, 22, 23, 24, 25]. Recently,

ehmkuhl et al. [26] demonstrated that the wake profile for this

est case can be classified as one of two modes, a low-energy mode

Mode-L) and a high-energy mode (Mode-H). Specifically, via anal-

sis of a very long period simulation (over 2000 convective times),

hey showed that the wake fluctuates between these two modes.

.2. Domain

In the present study we use a computational domain with dimen-

ions [−9D, 25D]; [−9D, 9D]; and [0, πD] in the stream-, cross-, and

pan-wise directions, respectively. The cylinder is centred at (0, 0, 0).

he span-wise extent was chosen based on the results of Norberg

21], who found no significant influence on statistical data when the

pan-wise dimension was doubled from πD to 2πD. Indeed, a span

f πD has been used in the majority of previous numerical studies

22, 23, 24], including the recent DNS study of Lehmkuhl et al. [26].

he stream-wise and cross-wise dimensions are comparable to the

xperimental and numerical values used by Parnaudeau et al. [25],

hose results will be directly compared with ours. The overall do-

ain dimensions are also comparable to those used for DNS studies

y Lehmkuhl et al. [26]. The domain is periodic in the span-wise di-

ection, with a no-slip isothermal wall boundary condition applied at

he surface of the cylinder, and Riemann invariant boundary condi-

ions applied at the far-field.

.3. Mesh

The domain was meshed in two ways. The first mesh consisted of

ntirely structured hexahedral elements, whilst the second was un-

tructured, consisting of prismatic elements in the near wall bound-

ry layer region, and tetrahedral elements in the wake and far-field.

oth meshes employed quadratically curved elements, and were de-

igned to fully resolve the near wall boundary layer region when

= 4. Specifically, the maximum skin friction coefficient was esti-

ated a priori as C ≈ 0.075 based on the LES results of Breuer [23].
f
he height of the first element was then specified such that when

= 4 the first solution point from the wall sits at y+ ≈ 1, where

on-dimensional wall units are calculated in the usual fashion as

+ = uτ y/ν with uτ =
√

Cf /2u∞.

The hexahedral mesh had 104 elements in the circumferential

irection, and 16 elements in the span-wise direction, which when

= 4 achieves span-wise resolution comparable to that used in previ-

us studies; as discussed by Breuer [23] and the references contained

herein. The prism/tetrahedral mesh has 116 elements in the circum-

erential direction, and 20 elements in the span-wise direction, these

umbers being chosen to help reduce face aspect ratios at the edges

f the prismatic layer; which facilitates transition to the fully unstruc-

ured tetrahedral elements in the far-field. In total the hexahedral

esh contained 119, 776 elements, and the prism/tetrahedral mesh

ontained 79, 344 prismatic elements and 227, 298 tetrahedral ele-

ents. Both meshes are shown in Fig. 2.

.4. Methodology

The compressible Navier–Stokes equations, with constant viscos-

ty, were solved on each of the two meshes shown in Fig. 2. A DG

cheme was used for the spatial discretisation, a Rusanov Riemann

olver was used to calculate the inviscid fluxes at element inter-

aces, and the explicit RK45[2R+] scheme of Carpenter and Kennedy

27] was used to advance the solution in time. No sub-grid model

as employed, hence the approach should be considered ILES/DNS

28, 29], as opposed to classical LES. The approximate memory re-

uirements of PyFR for these simulations with different ℘ are de-

ailed in Table 3. The total required floating point operations per

K45[2R+] time-step with different℘are detailed in Fig. 3. When run-

ing with ℘= 1 both meshes require ∼ 1.5 × 1010 floating point op-

rations per time-step. This number can be seen to increase rapidly

ith ℘.

178 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

Table 4

Baseline attributes of the three hardware platforms. For the

NVIDIA Tesla K40c GPU Boost was left disabled and ECC was en-

abled. The Intel Xeon E5-2697 v2 was paired with four DDR3-

1600 DIMMs with Turbo Boost enabled.

Platform

K40c W9100 E5-2697

Arithmetic / GFLOP/s

Theoretical peak 1430 2620 280

Reference peak 1192 890 231

Memory bandwidth / GB/s

Theoretical peak 288 320 51.2

Reference peak 190 261 37.1

Thermal design power / W 235 275 130

Memory / GB 12 16

Clock / MHz 745 930 3000

Transistors / Billion 7.1 6.2 4.3

b

E

b

D

t

C

6. Single-node performance

6.1. Overview

In this section we will analyse performance of PyFR on an Intel

Xeon E5-2697 v2 CPU, an NVIDIA Tesla K40c GPU, and an AMD FirePro

W9100 GPU. These are the individual platforms used to construct the

multi-node heterogeneous system employed in Section 7.

6.2. Hardware specifications

Various attributes of the E5-2697, K40c, and W9100 are detailed

in Table 4. The theoretical peaks for double precision arithmetic

and memory bandwidth were obtained from vendor specifications.

However, in practice it is usually only possible to obtain these the-

oretical peak values using specially crafted code sequences. Such

sequences are almost always platform specific and seldom perform

useful computations. Consequently, we also calculate and tabulate

reference peaks. Reference peaks for double precision arithmetic are

defined here as the maximum number of giga floating point oper-

ations per second (GFLOP/s) obtained while multiplying two large

double precision row-major matrices using DGEMM from an appro-

priate BLAS library. Reference peaks for memory bandwidth are de-

fined here as the rate, in gigabytes per second (GB/s), that data can
Fig. 3. Computational effort required for the 119, 776 element hexahedral mesh and the

Fig. 4. Sustained performance of PyFR in GFLOP/s for the various pieces of hardware. The ba

vendor is suffixed. As the NVIDIA OpenCL platform is limited to 4 GiB of memory no results a
e copied between two one gigabyte buffers. Reference peaks for the

5-2697 were obtained using DGEMM from the Intel Math Kernel Li-

raries (MKL) version 11.1.2, and with the E5-2697 paired with four

DR3-1600 DIMMs (with Turbo Boost enabled). Reference peaks for

he K40c were obtained using DGEMM from cuBLAS as shipped with

UDA 6, with GPU Boost disabled and ECC enabled. Reference peaks
mixed mesh with 79, 344 prismatic elements and 227, 298 tetrahedral elements.

ckend used by PyFR is given in parentheses. For the OpenCL backend the initial of the

re available for ℘= 3, 4.

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 179

Table 5

Time to evaluate ∇ · f normalised by the total number of DOFs in the simu-

lation which for the three dimensional Navier–Stokes equation is defined as

five times the total number of solution points.

Time per DOF / 10−9 s

Mesh Platform ℘= 1 ℘= 2 ℘= 3 ℘= 4

Hex E5-2697 (OpenCL I) 32.31 53.04 75.96 106.61

E5-2697 (OpenCL A) 35.48 49.75 79.40 119.76

E5-2697 (C/OpenMP) 32.14 28.87 27.74 31.95

K40c (OpenCL N) 6.51 7.92

K40c (CUDA) 6.93 5.05 4.88 6.17

W9100 (OpenCL A) 4.17 4.08 5.00 7.43

Pri/tet E5-2697 (OpenCL I) 46.09 60.28 53.07 104.03

E5-2697 (OpenCL A) 40.37 41.41 53.88 78.17

E5-2697 (C/OpenMP) 46.32 40.68 36.74 35.53

K40c (OpenCL N) 12.82 11.15

K40c (CUDA) 12.94 10.40 8.61 8.18

W9100 (OpenCL A) 8.72 7.35 7.11 7.52

Table 6

Partition weights for the multi-node heterogeneous simulation.

E5-2697: W9100: K40c

Mesh ℘= 1 ℘= 2 ℘= 3 ℘= 4

Hex 3: 27: 23 3: 27: 24 4: 24: 26 4: 24: 28

Pri/tet 5: 33: 17 5: 33: 17 5: 30: 20 5: 27: 23

f

v

w

c

i

f

m

t

e

r

o

t

i

a

(a) Structured hexahedral.

(b) Unstructured prism/tetrahedral.

Fig. 6. Instantaneous surfaces of iso-density coloured by velocity magnitude.

I

s

s

b

i

K

l

1

m

t

F

a

or the W9100 were obtained using DGEMM from clBLAS v2.0 with

ersion 1411.4 of the AMD APP OpenCL runtime.

We note that on the K40c ECC is implemented in software, and

hen enabled error-correction data is stored in global memory. A

onsequence of this is that when ECC is enabled there is a reduction

n available memory and memory bandwidth. This partially accounts

or the discrepancy observed between the theoretical and reference

emory bandwidths for the K40c. We also note that for the K40c and

he E5-2697, reference peaks for double precision arithmetic are in

xcess of 80% of their theoretical values. However, for the W9100 the

eference peak for double precision arithmetic is only 34% of its the-

retical value. This value is not significantly improved via the auto-

uning utility that ships with clBLAS. It is hoped that this figure will

mprove with future releases of clBLAS.

Finally, as an aside, we note that the number of ‘cores’ avail-

ble on each platform have been deliberately omitted from Table 4.
ig. 5. Sustained performance of PyFR on the multi-node heterogeneous system for each mes

nd the sum of the E5-2697 (C/OpenMP), K40c (CUDA), and W9100 (OpenCL A) bars in Fig. 4.
t is our contention that the term is both ill-defined and routinely

ubject to abuse in the literature. For example, the E5-2697 is pre-

ented by Intel as having 12 cores, whereas the K40c is described

y NVIDIA as having 2880 ‘CUDA cores’. However, whereas the cores

n the E5-2697 can be considered linearly independent those in the

40c can not. The rough equivalent of a CPU core in NVIDIA par-

ance is a ‘streaming multiprocessor’, or SMX, of which the K40c has

5. Additionally, the E5-2697 has support for two-way simultaneous

ultithreading—referred to by Intel as Hyper-Threading – permitting

wo threads to execute on each core. At any one instant it is therefore
h with℘= 1, 2, 3, 4. Lost FLOP/s represent the difference between the achieved FLOP/s

180 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

Fig. 7. Averaged wake profiles for Mode-H compared with the numerical results of Lehmkuhl et al. [26].

Fig. 8. Averaged wake profiles for Mode-L compared with the numerical results of Lehmkuhl et al. [26] and experimental results of Parnaudeau et al. [25].

t

c

p

s

s

s

b

m

a

O

c

b

p

f

e

a

b

D

possible to have up to 24 independent threads resident on a single

E5-2697. The AMD equivalent of a CUDA core is a ‘stream processor’

of which the W9100 has 2816. This is not to be confused with the

aforementioned streaming multiprocessor of NVIDIA; for which the

AMD equivalent is a ‘Compute Unit’. Practically, both CUDA cores and

stream processors are closer to the individual vector lanes of a tradi-

tional CPU core. Given this minefield of confusing nomenclature we

have instead opted to simply state the peak floating point capabilities

of the hardware.

6.3. Results and discussion

By measuring the wall clock time required for PyFR to take 500

RK45[2R+] time-steps, and utilising the operation counts per time-

step detailed in Fig. 3, one can calculated the sustained performance

of PyFR in GFLOP/s when running with the meshes detailed in Section

5.3 with ℘= 1, 2, 3, 4.

Sustained performance of PyFR for the various hardware plat-

forms is shown in Fig. 4. From the figure it is clear that the computa-
ional efficiency of PyFR increases with the polynomial order. This is

onsistent with higher order simulations having an increased com-

ute intensity per degree of freedom. This additional intensity re-

ults in larger operator matrices that are better suited to the tiling

chemes employed by BLAS libraries. The OpenCL implementation

hipped by NVIDIA as part of CUDA only supports the use of 32-

it memory pointers. As such a single context is limited to 4 GiB of

emory, cf. Table 3. It was therefore not possible to perform the third

nd fourth order simulations for either of the two meshes using the

penCL backend with the K40c.

The Intel and AMD implementations of OpenCL, when used in

onjunction with clBLAS, are only competitive with the C/OpenMP

ackend when ℘= 1 for the hexahedral mesh, and ℘= 1, 2 for the

rism/tetrahedral mesh. This is also the case when comparing per-

ormance between the CUDA backend and the NVIDIA OpenCL back-

nd on the K40c. Prior analysis by Witherden et al. [8] suggests that

t these orders a reasonable proportion of the wall clock time will

e spent in the bandwidth-bound point-wise kernels as opposed to

GEMM. On account of being bandwidth-bound such kernels do not

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 181

-1.0

-0.5

0.0

0.5

1.0

0 50 100 150

C
p

Data set

PyFR pri/tet

PyFR hex

Lehmkuhl et al.

Ma et al.

Fig. 9. Averaged pressure coefficient for Mode-H compared with the numerical results of Ma et al. [22] and Lehmkuhl et al. [26].

-1.0

-0.5

0.0

0.5

1.0

0 50 100 150

C
p

Data set

PyFR pri/tet

PyFR hex

Lehmkuhl et al.

Norberg et al.

Fig. 10. Averaged pressure coefficient for Mode-L compared with the numerical results of Lehmkuhl et al. [26] and experimental results of of Norberg et al. [21] (from Kravchenko

and Moin [24]).

e

t

l

n

a

t

b

fi

w

h

a

1

t

p

h

t

o

c

Table 7

Comparison of quantitative values with experimental and DNS

results.

Mode-H Mode-L

−Cpb θ s/° −Cpb θ s/°

PyFR Pri/tet 0.974 87.13 0.882 86.90

PyFR Hex 0.987 88.28 0.880 87.71

Parnaudeau et al. [25] 88.00

Lehmkuhl et al. [26] 0.980 88.25 0.877 87.80

Norberg et al. [21, 24] 0.880

i

r

u

i

v

t

xtensively test the optimisation capabilities of the compiler. By the

ime ℘= 4 both implementations of OpenCL on the E5-2697 are de-

ivering between one third and one quarter of the performance of the

ative backend. This highlights the lack of performance portability

ssociated with OpenCL in this context, confirming our initial con-

ention that, at the time of writing, performance portability can only

e achieved effectively via native paradigms. Further, it also justi-

es the approach to multi-platform computing that has been adopted

ithin PyFR.

Performance of the K40c culminates at 649 GFLOP/s for the ℘= 4

exahedral mesh. This represents some 45% of the theoretical peak

nd 54% of the reference peak. By comparison the E5-2697 obtains

32 GFLOP/s for the same simulation equating to 47% and 57% of the

heoretical and reference peaks, respectively. Performance does im-

rove slightly to 140 GFLOP/s for the ℘= 4 prism/tetrahedral mesh,

owever. On this same mesh at ℘= 4 the W9100 can be seen to sus-

ain 657 GFLOP/s of throughput. Although, in absolute terms, this

bservation represents the highest sustained rate of throughput it

orresponds to just 25% of the theoretical peak. However, working
n terms of realisable peaks, we find PyFR obtaining some 74% of the

eference value.

The wall clock time required per degree of freedom (DOF) to eval-

ate ∇ · f for each simulation can be seen in Table 5. The DOF count is

nclusive of the factor of five arising from there being five distinct field

ariables at each solution point. This quantity can be used to evaluate

he efficiency of PyFR relative to other codes. With the exception of

182 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

x / D = 1.06

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

-2 -1 0 1 2

y / D

u /
u

PyFR pri/tet

PyFR hex

Lehmkuhl et al.

Ma et al.

x / D = 1.54

x / D = 2.02

Fig. 11. Time-span-average stream-wise velocity profiles for Mode-H compared with the numerical results of Lehmkuhl et al. [26] and Ma et al. [22].

w

p

p

t

h

w

s

t

a

i

c

m

t

c

a

n

t

e

t

t

i

p

p

a

f

e

OpenCL on the E5-2697 we see that the time per DOF reaches a min-

ima for the hexahedral mesh at ℘= 3. This shows that as ℘ is raised

from one to three the increasing number of floating point operations

required to update each DOF is being offset by the improving effi-

ciency of PyFR. The pattern is similar for the prism/tetrahedral mesh

except that for the E5-2697 (C/OpenMP) and the K40c (CUDA) the

minima is at ℘= 4.

7. Multi-node heterogeneous performance

7.1. Overview

Having determined the performance characteristics of PyFR on

various individual platforms, we will now investigate the ability of

PyFR to undertake simulations on a multi-node heterogeneous sys-

tem containing an Intel Xeon E5-2697 v2 CPU, an NVIDIA Tesla K40c

GPU, and an AMD FirePro W9100 GPU. The experimental set up and

methodology is the same as the single-node case.

7.2. Mesh partitioning

In order to distribute a simulation across the nodes of the het-

erogeneous system it is first necessary to partition the mesh. High

quality partitions can be readily obtained using a graph partitioning

package such as METIS [30] or SCOTCH [31].

When partitioning a mixed element mesh for a homogeneous clus-

ter it is necessary to suitably weight each element type according to

its computational cost. This cost depends both upon the platform on
hich PyFR is running and the order at which the simulation is being

erformed. In principle it is possible to measure this cost; however in

ractice the following set of weights have been found to give satisfac-

ory results across most polynomial orders and platforms

ex : pri : tet = 3 : 2 : 1,

here larger numbers indicate a greater computational cost. One

ubtlety that arises here, is that from a graph partitioning standpoint

here is no penalty associated with placing a sole vertex (element) of

given weight inside of a partition. Computationally, however, there

s a very real penalty incurred from having just a single element of a

ertain type inside of the partition. It is therefore desirable to avoid

esh partitions where any one partition contains less than around a

housand elements of a given type. An exception is when a partition

ontains no elements of such a type—in which case zero overheads

re incurred.

When partitioning a mesh with one type of element for a heteroge-

eous cluster it is necessary to weight the partition sizes in line with

he performance characteristics of the hardware on each node. How-

ver, in the case of a mixed element mesh on a heterogeneous cluster

he weight of an element is no longer static but rather depends on

he partition that it is placed in—a significantly richer problem. Solv-

ng such a problem is currently beyond the capabilities of most graph

artitioning packages. Accordingly, mixed element meshes that are

artitioned for heterogeneous clusters often exhibit inferior load bal-

ncing than those partitioned for homogeneous systems. Moreover,

or consistent performance it is necessary to dedicate a CPU core to

ach accelerator in the system. The amount of useful computation

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 183

x / D = 1.06

x / D = 2.02

x / D = 1.54

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

-2 -1 0 1 2

y / D

u/
u

PyFR pri/tet

PyFR hex

Lehmkuhl et al.

Parnaudeau et al.

Fig. 12. Time-span-average stream-wise velocity profiles for Mode-L compared with the numerical results of Lehmkuhl et al. [26] and experimental results of Parnaudeau et al.

[25].

t

d

p

w

e

s

a

T

7

s

1

t

t

2

H

s

t

t

℘

f

t

a

e

8

(

t

m

i

b

w

t

M

m

e

m

s

i

b

i

l

c

l

F

h

t

t

hat can be performed by the host CPU is therefore reduced in accor-

ance with this.

Given the single-node performance numbers of Fig. 4 it com-

orts to pair the E5-2697 with the C/OpenMP backend, the K40c

ith the CUDA backend, and the W9100 with the OpenCL back-

nd, in order to achieve optimal performance. Employing the re-

ults of Fig. 4, in conjunction with some light experimentation,

set of partitioning weights were obtained and are tabulated in

able 6.

.3. Results and discussion

Sustained performance of PyFR on the multi-node heterogeneous

ystem for each of the meshes detailed in Section 5.3 with ℘=
, 2, 3, 4 is shown in Fig. 5. Under the assumptions of perfect parti-

ioning and scaling one would expect the sustained performance of

he heterogeneous simulation to be equivalent to the sum of the E5-

697 (C/OpenMP), K40c (CUDA), and W9100 (OpenCL A) bars in Fig. 4.

owever, for reasons outlined in the preceding paragraphs these as-

umptions are unlikely to hold. Some of the available FLOP/s can

herefore be considered as ‘lost’. For the hexahedral mesh the frac-

ion of lost FLOP/s varies from 22.5% when ℘= 1–8.7% in the case of

= 4. With the exception of ℘= 1 the fraction of lost FLOP/s are a

ew percent higher for the mixed mesh. This is understandable given

he additional complexities associated with mixed mesh partitioning

nd can likely be improved upon by switching to order-dependent

lement weighting factors.
. Accuracy

In this section we present instantaneous and time-span-averaged

henceforth referred to as averaged) results obtained using a clus-

er of 12 NVIDIA K20c GPUs at ℘= 4, the design resolution for both

eshes. Both simulations are run for 1000 convective times, allow-

ng the flow to fluctuate between Mode-H and Mode-L as identified

y Lehmkuhl et al. [22, 26]. A moving window time-average with a

idth of 100 convective times is used to extract both modes from

he long-period simulation. This yields four datasets including both

ode-H and Mode-L for both the hexahedral and prism/tetrahedral

eshes. Both modes are then compared with results from previous

xperimental and numerical studies, where either one or both of the

odes were observed [21, 22, 25, 26].

Instantaneous surfaces of iso-density are shown in Fig. 6 for both

imulations at similar phases of the shedding cycle. We observe lam-

nar flow at the leading edge of the cylinder for both test cases, tur-

ulent transition near the separation points, and fully turbulent flow

n the wake region. These are the characteristic features of the shear-

ayer transition regime, as described by Williamson [20]. The wake is

omposed of large vortices, alternately shedding off of the upper and

ower surfaces of the cylinder, and smaller scale turbulent structures.

Plots of the averaged stream-wise wake profiles are shown in

igs. 7 and 8 for Mode-H and Mode-L, respectively. Both the hexa-

edral and prism/tetrahedral meshes show excellent agreement with

he numerical results of Lehmkuhl et al. [26] for both modes and with

he experimental results of Parnaudeau et al. [25], which is available

184 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

x / D = 1.06

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-2 -1 0 1 2

y / D

v/
u

PyFR pri/tet PyFR hex Lehmkuhl et al.

x / D = 1.54

x / D = 2.02

Fig. 13. Time-span-average cross-stream velocity profiles for Mode-H compared with the numerical results of Lehmkuhl et al. [26].

2

u

i

r

e

d

fi

s

m

P

s

t

m

9

e

h

t

t

S

o

N

A

h

for Mode-L. The Mode-H cases exhibit relatively shorter separation

bubbles and the Mode-L cases have characteristic inflection points in

the wake profile near x/D ≈ 1.

Plots of the averaged pressure coefficient Cp on the surface of the

cylinder are shown in Figs. 9 and 10 for both extracted modes and

both meshes. The Mode-H results are shown alongside the Mode-H

numerical results of Lehmkuhl et al. [26] and the results from Case I

of Ma et al. [22]. The Mode-L results are shown alongside the Mode-L

numerical results of Lehmkuhl et al. [26] and the experimental results

of Norberg et al. at a similar Re = 4020 [21], which were extracted

from Kravchenko and Moin [24]. Both modes have similar pressure

coefficient distributions at the leading face of the cylinder, while the

Mode-H case has stronger suction on the trailing face adjacent to the

separation bubble. Both modes extracted using both meshes show

excellent agreement with their corresponding reference data sets.

The averaged pressure coefficient at the base of the cylinder Cpb,

and the averaged separation angle θ s measured from the leading

stagnation point are tabulated in Table 7 for both modes and meshes.

These are shown along with measurements from the experimental

results of Norberg et al. [21], experimental data from Parnaudeau

et al. [25], and DNS data from Lehmkuhl et al. [26] for both modes.

Both measured quantities agree well with the reference data sets for

both modes and meshes. The difference in separation angle is less

than ∼ 1° between the current and reference results. The pressure co-

efficient at base of the cylinder shows that the high-energy Mode-H

case has stronger recirculation in the wake, characterised by greater

suction at the wall adjacent to the recirculation bubble.
Plots of averaged stream-wise velocity at x/D = 1.06, 1.54, and

.02 are shown in Figs. 11 and 12 for the Mode-H and Mode-L sim-

lations, respectively. These results are shown alongside the exper-

mental results of Parnaudeau et al. [25] for Mode-L, the numerical

esults of Ma et al. [22] for Mode-H, and the DNS results of Lehmkuhl

t al. [26] for both modes. Both the prism/tetrahedral and hexahe-

ral mesh simulations show the characteristic V-shaped velocity pro-

le for Mode-H at x/D = 1.06. They also show the characteristic U-

haped profile for Mode-L, also at x/D = 1.06. Both modes on both

eshes agree well with both their corresponding reference data sets.

lots of averaged cross-wise velocity at x/D = 1.06, 1.54, and 2.02 are

hown in Figs. 13 and 14, also for the Mode-H and Mode-L simula-

ions. These cross-wise velocity profiles also show excellent agree-

ent with their corresponding reference data sets.

. Conclusions

We have detailed the extension of PyFR to run on mixed

lement meshes, and a range of hardware platforms, including

eterogeneous multi-node systems. Performance of our implementa-

ion was benchmarked using pure hexahedral and mixed prismatic-

etrahedral meshes of the void space around a circular cylinder.

pecifically, for each mesh performance was assessed at vari-

us orders of accuracy on three different hardware platforms; an

VIDIA Tesla K40c GPU, an Intel Xeon E5-2697 v2 CPU, and an

MD FirePro W9100 GPU. Performance was then assessed on a

eterogeneous multi-node system constructed from a mix of the

F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186 185

x / D = 1.06

x / D = 1.54

x / D = 2.02

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-2 -1 0 1 2

y / D

v
/u

PyFR pri/tet

PyFR hex

Lehmkuhl et al.

Parnaudeau et al.

Fig. 14. Time-span-average cross-stream velocity profiles for Mode-L compared with the numerical results of Lehmkuhl et al. [26] and experimental results of Parnaudeau et al. [25].

a

p

t

‘

g

b

a

u

t

u

w

l

A

S

G

p

I

S

c

d

a

d

R

forementioned hardware. Results demonstrated that PyFR achieves

erformance portability across various hardware platforms. In par-

icular, the ability of PyFR to target individual platforms with their

native’ language leads to significantly enhanced performance cf. tar-

eting each platform with OpenCL alone. PyFR was also found to

e performant on the heterogeneous multi-node system, achieving

significant fraction of the available FLOP/s. Finally, each mesh was

sed to undertake nominally fifth-order accurate long-time simula-

ions of unsteady flow over a cylinder at a Reynolds number of 3900

sing a cluster of NVIDIA K20c GPUs. Long-time dynamics of the

ake were studied in detail, and results were found to be in excel-

ent agreement with previous experimental/numerical data.

cknowledgements

The authors would like to thank the Engineering and Physical

ciences Research Council for their support via a Doctoral Training

rant, an Early Career Fellowship (EP/K027379/1), and the Hyper Flux

roject (EP/M50676X/1). The authors would also like to thank AMD,

ntel, and NVIDIA for hardware donations.

upplementary material

Data Statement: Data relating to the results in this manuscript

an be downloaded as Electronic Supplementary Material un-

er a CC-BY-NC-ND 4.0 license. Supplementary material associ-
ted with this article can be found, in the online version, at

oi:10.1016/j.compfluid.2015.07.016.

eferences

[1] ReedWH, HillTR. Triangular mesh methods for the neutron transport equation.
1973. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory.

[2] Kopriva David A, Kolias John H. A conservative staggered-grid Chebyshev
multidomain method for compressible flows. J Comput Phys 1996;125(1):244–

61.
[3] Sun Yuzhi, Wang Zhi Jian, Liu Yen. High-order multidomain spectral difference

method for the Navier-Stokes equations on unstructured hexahedral grids. Com-

mun Comput Phys 2007;2(2):310–33.
[4] Huynh HT. A flux reconstruction approach to high-order schemes including dis-

continuous Galerkin methods. AIAA Pap 2007;4079:2007.
[5] Hesthaven Jan S, Warburton Tim. Nodal discontinuous Galerkin methods: algo-

rithms, analysis, and applications, 54.. New York: Springer Verlag; 2008.
[6] Klöckner Andreas, Warburton Tim, Bridge Jeff, Hesthaven Jan S. Nodal

discontinuous Galerkin methods on graphics processors. J Comput Phys

2009;228(21):7863–82.
[7] Castonguay Patrice, Williams David M, Vincent Peter E, Lopez Manuel,

Jameson Antony. On the development of a high-order, multi-gpu enabled,
compressible viscous flow solver for mixed unstructured grids. AIAA Pap

2011;3229:2011.
[8] Witherden FD, Farrington AM, Vincent PE. PyFR: an open source framework for

solving advection-diffusion type problems on streaming architectures using the
flux reconstruction approach. Comput Phys Commun 2014;185(11):3028–40.

[9] Vincent PE, Castonguay P, Jameson A. A new class of high-order energy stable flux

reconstruction schemes. J Sci Comput 2011;47(1):50–72.
[10] Castonguay P, Vincent P, Jameson A. A new class of high-order energy stable flux

reconstruction schemes for triangular elements. J Sci Comput 2011;51(1):224–56.
[11] Williams DM, Jameson A. Energy stable flux reconstruction schemes for

advection-diffusion problems on tetrahedra. J Sci Comput 2013;59(3):721–59.

http://dx.doi.org/10.1016/j.compfluid.2015.07.016
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0001
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0002
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0003
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0003
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0004
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0005
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0006
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0007
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0008
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0009
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0010
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0010

186 F.D. Witherden et al. / Computers and Fluids 120 (2015) 173–186

[

[

[

[

[

[12] Goto Kazushige, Geijn Robert A. Anatomy of high-performance matrix multipli-
cation. ACM Trans Math Softw 2008;34(3):12.

[13] BayerMichael. Mako: templates for python. 2013.
[14] Klöckner Andreas, Pinto Nicolas, Lee Yunsup, Catanzaro Bryan, Ivanov Paul,

Fasih Ahmed. Pycuda and pyopencl: a scripting-based approach to gpu run-time
code generation. Parallel Comput 2012;38(3):157–74.

[15] Vermeire BC, Nadarajah S. Adaptive IMEX time-stepping for ILES using the cor-
rection procedure via reconstruction scheme. AIAA Pap 2013;2687:2013.

[16] Vermeire BC, Nadarajah S. Adaptive IMEX schemes for high-order unstructured

methods. J Comput Phys 2015;280:261–86.
[17] RoshkoAnatol. On the development of turbulent wakes from vortex streets. 1953.

Technical report no. NACA TR 1191, California Institute of Technology.
[18] Bloor MS. The transition to turbulence in the wake of a circular cylinder. J Fluid

Mech 1964;19:290–304.
[19] Williamson CHK. The existence of two stages in the transition to three dimen-

sionality of a cylinder wake. Phys Fluids 1988;31:3165–8.

[20] Williamson CHK. Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech
1996;28:477–539.

[21] Norberg C. Ldv measurements in the near wake of a circular cylinder. Int J Numer
Methods Fluids 1998;28(9):1281–302.

[22] Ma X, Karamanos GS, Karniadakis GE. Dynamics and low-dimensionality of a tur-
bulent near wake. J Fluid Mech 2000;310:29–65.
23] Breuer M. Large eddy simulation of the subcritical flow past a circular cylinder.
Int J Numer Methods Fluids 1998;28(9):1281–302.

[24] Kravchenko AG, Moin P. Numerical studies of flow over a circular cylinder at red =
3900. Phys Fluids 2000;12:403–17.

25] Parnaudeau Philippe, Carlier Johan, Heitz Dominique, Lamballais Eric. Experi-
mental and numerical studies of the flow over a circular cylinder at reynolds

number 3900. Phys Fluids 2008;20(8):085101–085101-14.
26] Lehmkuhl O, Rodriguez I, Borrell R, Oliva A. Low-frequency unsteadiness in the

vortex formation region of a circular cylinder. Phys Fluids 2013;25(8):3165–8.

[27] Kennedy Christopher A, Carpenter Mark H, Lewis RMichael. Low-storage, explicit
runge–kutta schemes for the compressible navier–stokes equations. Appl Numer

Math 2000;35(3):177–219.
28] Vermeire BC, Cagnone JS, Nadarajah S. ILES using the correction procedure via

reconstruction scheme. AIAA Pap 2013;1001:2013.
29] Vermeire BC, Nadarajah S, Tucker PG. Canonical test cases for high-order unstruc-

tured implicit large eddy simulation. AIAA Pap 2014;0935:2014.

[30] Karypis George, Kumar Vipin. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J Sci Comput 1998;20(1):359–92.

[31] Pellegrini François, Roman Jean. Scotch: a software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs. High-

Performance Computing and Networking. Springer; 1996. p. 493–8.

http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0011
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0011
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0011
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0012
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0013
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0013
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0013
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0014
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0014
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0014
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0015
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0015
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0016
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0016
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0017
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0017
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0018
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0018
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0019
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0020
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0021
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0022
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0023
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0024
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0025
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0026
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0027
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0028
http://refhub.elsevier.com/S0045-7930(15)00250-9/sbref0028

	Heterogeneous computing on mixed unstructured grids with PyFR
	1 Introduction
	2 Flux reconstruction
	3 Correction functions
	4 PyFR
	4.1 Overview
	4.2 C/OpenMP backend
	4.3 CUDA backend
	4.4 OpenCL backend
	4.5 Distributed memory systems

	5 Cylinder test case
	5.1 Overview
	5.2 Domain
	5.3 Mesh
	5.4 Methodology

	6 Single-node performance
	6.1 Overview
	6.2 Hardware specifications
	6.3 Results and discussion

	7 Multi-node heterogeneous performance
	7.1 Overview
	7.2 Mesh partitioning
	7.3 Results and discussion

	8 Accuracy
	9 Conclusions
	 Acknowledgements
	 Supplementary material
	 References

