13,955 research outputs found

    Bayesian analysis of spatially distorted cosmic signals from Poissonian data

    Full text link
    Reconstructing the matter density field from galaxy counts is a problem frequently addressed in current literature. Two main sources of error are shot noise from galaxy counts and insufficient knowledge of the correct galaxy position caused by peculiar velocities and redshift measurement uncertainty. Here we address the reconstruction problem of a Poissonian sampled log-normal density field with velocity distortions in a Bayesian way via a maximum a posteriory method. We test our algorithm on a 1D toy case and find significant improvement compared to simple data inversion. In particular, we address the following problems: photometric redshifts, mapping of extended sources in coded mask systems, real space reconstruction from redshift space galaxy distribution and combined analysis of data with different point spread functions.Comment: 19 pages, 10 figures, accepte

    Measuring dynamic signals with direct sensor-to-microcontroller interfaces applied to a magnetoresistive sensor

    Get PDF
    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.Postprint (published version

    Frequency-modulated continuous-wave LiDAR compressive depth-mapping

    Get PDF
    We present an inexpensive architecture for converting a frequency-modulated continuous-wave LiDAR system into a compressive-sensing based depth-mapping camera. Instead of raster scanning to obtain depth-maps, compressive sensing is used to significantly reduce the number of measurements. Ideally, our approach requires two difference detectors. % but can operate with only one at the cost of doubling the number of measurments. Due to the large flux entering the detectors, the signal amplification from heterodyne detection, and the effects of background subtraction from compressive sensing, the system can obtain higher signal-to-noise ratios over detector-array based schemes while scanning a scene faster than is possible through raster-scanning. %Moreover, we show how a single total-variation minimization and two fast least-squares minimizations, instead of a single complex nonlinear minimization, can efficiently recover high-resolution depth-maps with minimal computational overhead. Moreover, by efficiently storing only 2m2m data points from m<nm<n measurements of an nn pixel scene, we can easily extract depths by solving only two linear equations with efficient convex-optimization methods
    • …
    corecore