2,845 research outputs found

    Real-Time Global Illumination for VR Applications

    Full text link
    Real-time global illumination in VR systems enhances scene realism by incorporating soft shadows, reflections of objects in the scene, and color bleeding. The Virtual Light Field (VLF) method enables real-time global illumination rendering in VR. The VLF has been integrated with the Extreme VR system for realtime GPU-based rendering in a Cave Automatic Virtual Environment

    Realtime ray tracing and interactive global illumination

    Get PDF
    One of the most sought-for goals in computer graphics is to generate "realism in real time". i.e. the generation of realistically looking images at realtime frame rates. Today, virtually all approaches towards realtime rendering use graphics hardware, which is based almost exclusively on triangle rasterization. Unfortunately, though this technology has seen tremendous progress over the last few years, for many applications it is currently reaching its limits in both model complexity, supported features, and achievable realism. An alternative to triangle rasterizations is the ray tracing algorithm, which is well-known for its higher flexibility, its generally higher achievable realism, and its superior scalability in both model size and compute power. However, ray tracing is also computationally demanding and thus so far is used almost exclusively for high-quality offline rendering tasks. This dissertation focuses on the question why ray tracing is likely to soon play a larger role for interactive applications, and how this scenario can be reached. To this end, we discuss the RTRT/OpenRT realtime ray tracing system, a software based ray tracing system that achieves interactive to realtime frame rates on todays commodity CPUs. In particular, we discuss the overall system design, the efficient implementation of the core ray tracing algorithms, techniques for handling dynamic scenes, an efficient parallelization framework, and an OpenGL-like low-level API. Taken together, these techniques form a complete realtime rendering engine that supports massively complex scenes, highley realistic and physically correct shading, and even physically based lighting simulation at interactive rates. In the last part of this thesis we then discuss the implications and potential of realtime ray tracing on global illumination, and how the availability of this new technology can be leveraged to finally achieve interactive global illumination - the physically correct simulation of light transport at interactive rates.Eines der wichtigsten Ziele der Computer-Graphik ist die Generierung von "Realismus in Echtzeit\u27; — die Erzeugung von realistisch wirkenden, computer- generierten Bildern in Echtzeit. Heutige Echtzeit-Graphikanwendungen werden derzeit zum überwiegenden Teil mit schneller Graphik-Hardware realisiert, welche zum aktuellen Stand der Technik fast ausschliesslich auf dem Dreiecksrasterisierungsalgorithmus basiert. Obwohl diese Rasterisierungstechnologie in den letzten Jahren zunehmend beeindruckende Fortschritte gemacht hat, stößt sie heutzutage zusehends an ihre Grenzen, speziell im Hinblick auf Modellkomplexität, unterstützte Beleuchtungseffekte, und erreichbaren Realismus. Eine Alternative zur Dreiecksrasterisierung ist das "Ray-Tracing\u27; (Stahl-Rückverfolgung), welches weithin bekannt ist für seine höhere Flexibilität, seinen im Großen und Ganzen höheren erreichbaren Realismus, und seine bessere Skalierbarkeit sowohl in Szenengröße als auch in Rechner-Kapazitäten. Allerdings ist Ray-Tracing ebenso bekannt für seinen hohen Rechenbedarf, und wird daher heutzutage fast ausschließlich für die hochqualitative, nichtinteraktive Bildsynthese benutzt. Diese Dissertation behandelt die Gründe warum Ray-Tracing in näherer Zukunft voraussichtlich eine größere Rolle für interaktive Graphikanwendungen spielen wird, und untersucht, wie dieses Szenario des Echtzeit Ray-Tracing erreicht werden kann. Hierfür stellen wir das RTRT/OpenRT Echtzeit Ray-Tracing System vor, ein software-basiertes Ray-Tracing System, welches es erlaubt, interaktive Performanz auf heutigen Standard-PC-Prozessoren zu erreichen. Speziell diskutieren wir das grundlegende System-Design, die effiziente Implementierung der Kern-Algorithmen, Techniken zur Unterstützung von dynamischen Szenen, ein effizientes Parallelisierungs-Framework, und eine OpenGL-ähnliche Anwendungsschnittstelle. In ihrer Gesamtheit formen diese Techniken ein komplettes Echtzeit-Rendering-System, welches es erlaubt, extrem komplexe Szenen, hochgradig realistische und physikalisch korrekte Effekte, und sogar physikalisch-basierte Beleuchtungssimulation interaktiv zu berechnen. Im letzten Teil der Dissertation behandeln wir dann die Implikationen und das Potential, welches Echtzeit Ray-Tracing für die Globale Beleuchtungssimulation bietet, und wie die Verfügbarkeit dieser neuen Technologie benutzt werden kann, um letztendlich auch Globale Belechtung — die physikalisch korrekte Simulation des Lichttransports — interaktiv zu berechnen

    Active Simultaneous Localization and Mapping in Unstructured Environment with a Quadrotor

    Get PDF
    An agent performing Simultaneous Localization and Mapping (SLAM) constructs a map of the environment while estimating its location at the same time. SLAM algorithms primarily focus on finding the best estimate of the location of the agent, and by extension, that of the landmarks in the environment, given observations from sensors. These algorithms do not typically address how an agent should explore an unknown environment to build a map efficiently. This ability for active exploration is important for autonomous robots to work in unknown, unstructured environments such as forests or caves. This paper proposes an active SLAM system that allows an agent to explore its surroundings, using visual-inertial data from an RGBD camera. We formalize this problem as taking actions that maximize the amount of information obtained from the scene. At each time step, a utility function that computes the incremental information gain is used to take actions. We conduct experiments using an Intel RealSense camera mounted on a custom-built quadrotor and show that we can explore indoor environments (while restricting the actions to choosing new viewpoints in SO(3) for practical reasons)

    Ray tracing techniques for computer games and isosurface visualization

    Get PDF
    Ray tracing is a powerful image synthesis technique, that has been used for high-quality offline rendering since decades. In recent years, this technique has become more important for realtime applications, but still plays only a minor role in many areas. Some of the reasons are that ray tracing is compute intensive and has to rely on preprocessed data structures to achieve fast performance. This dissertation investigates methods to broaden the applicability of ray tracing and is divided into two parts. The first part explores the opportunities offered by ray tracing based game technology in the context of current and expected future performance levels. In this regard, novel methods are developed to efficiently support certain kinds of dynamic scenes, while avoiding the burden to fully recompute the required data structures. Furthermore, todays ray tracing performance levels are below what is needed for 3D games. Therefore, the multi-core CPU of the Playstation 3 is investigated, and an optimized ray tracing architecture presented to take steps towards the required performance. In part two, the focus shifts to isosurface raytracing. Isosurfaces are particularly important to understand the distribution of certain values in volumetric data. Since the structure of volumetric data sets is diverse, op- timized algorithms and data structures are developed for rectilinear as well as unstructured data sets which allow for realtime rendering of isosurfaces including advanced shading and visualization effects. This also includes tech- niques for out-of-core and time-varying data sets.Ray-tracing ist ein flexibles Bildgebungsverfahren, das schon seit Jahrzehnten für hoch qualitative, aber langsame Bilderzeugung genutzt wird. In den letzten Jahren wurde Ray-tracing auch für Echtzeitanwendungen immer interessanter, spielt aber in vielen Anwendungsbereichen noch immer eine untergeordnete Rolle. Einige der Gründe sind die Rechenintensität von Ray-tracing sowie die Abhängigkeit von vorberechneten Datenstrukturen um hohe Geschwindigkeiten zu erreichen. Diese Dissertation untersucht Methoden um die Anwendbarkeit von Ray-tracing in zwei verschiedenen Bereichen zu erhöhen. Im ersten Teil dieser Dissertation werden die Möglichkeiten, die Ray- tracing basierte Spieletechnologie bietet, im Kontext mit aktueller sowie zukünftig erwarteten Geschwindigkeiten untersucht. Darüber hinaus werden in diesem Zusammenhang Methoden entwickelt um bestimmte zeitveränderliche Szenen darstellen zu können ohne die dafür benötigen Datenstrukturen von Grund auf neu erstellen zu müssen. Da die Geschwindigkeit von Ray-tracing für Spiele bisher nicht ausreichend ist, wird die Mehrkern- CPU der Playstation 3 untersucht, und ein optimiertes Ray-tracing System beschrieben, das Ray-tracing näher an die benötigte Geschwindigkeit heranbringt. Der zweite Teil beschäftigt sich mit der Darstellung von Isoflächen mittels Ray-tracing. Isoflächen sind insbesonders wichtig um die Verteilung einzelner Werte in volumetrischen Datensätzen zu verstehen. Da diese Datensätze verschieden strukturiert sein können, werden für gitterförmige und unstrukturierte Datensätze optimierte Algorithmen und Datenstrukturen entwickelt, die die Echtzeitdarstellung von Isoflächen erlauben. Dies beinhaltet auch Erweiterungen für extrem große und zeitveränderliche Datensätze

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19

    Semantic Validation in Structure from Motion

    Full text link
    The Structure from Motion (SfM) challenge in computer vision is the process of recovering the 3D structure of a scene from a series of projective measurements that are calculated from a collection of 2D images, taken from different perspectives. SfM consists of three main steps; feature detection and matching, camera motion estimation, and recovery of 3D structure from estimated intrinsic and extrinsic parameters and features. A problem encountered in SfM is that scenes lacking texture or with repetitive features can cause erroneous feature matching between frames. Semantic segmentation offers a route to validate and correct SfM models by labelling pixels in the input images with the use of a deep convolutional neural network. The semantic and geometric properties associated with classes in the scene can be taken advantage of to apply prior constraints to each class of object. The SfM pipeline COLMAP and semantic segmentation pipeline DeepLab were used. This, along with planar reconstruction of the dense model, were used to determine erroneous points that may be occluded from the calculated camera position, given the semantic label, and thus prior constraint of the reconstructed plane. Herein, semantic segmentation is integrated into SfM to apply priors on the 3D point cloud, given the object detection in the 2D input images. Additionally, the semantic labels of matched keypoints are compared and inconsistent semantically labelled points discarded. Furthermore, semantic labels on input images are used for the removal of objects associated with motion in the output SfM models. The proposed approach is evaluated on a data-set of 1102 images of a repetitive architecture scene. This project offers a novel method for improved validation of 3D SfM models
    • …
    corecore