
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Summer Program for Undergraduate Research
(SPUR) Wharton Undergraduate Research

9-15-2022

Active Simultaneous Localization and Mapping in Unstructured Active Simultaneous Localization and Mapping in Unstructured

Environment with a Quadrotor Environment with a Quadrotor

Siming He
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/spur

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
He, S. (2022). "Active Simultaneous Localization and Mapping in Unstructured Environment with a
Quadrotor," Summer Program for Undergraduate Research (SPUR). Available at
https://repository.upenn.edu/spur/41

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/spur/41
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/spur
https://repository.upenn.edu/spur
https://repository.upenn.edu/wharton_undergraduate
https://repository.upenn.edu/spur?utm_source=repository.upenn.edu%2Fspur%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fspur%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/spur/41?utm_source=repository.upenn.edu%2Fspur%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/spur/41
mailto:repository@pobox.upenn.edu

Active Simultaneous Localization and Mapping in Unstructured Environment with Active Simultaneous Localization and Mapping in Unstructured Environment with
a Quadrotor a Quadrotor

Abstract Abstract
An agent performing Simultaneous Localization and Mapping (SLAM) constructs a map of the
environment while estimating its location at the same time. SLAM algorithms primarily focus on finding
the best estimate of the location of the agent, and by extension, that of the landmarks in the environment,
given observations from sensors. These algorithms do not typically address how an agent should explore
an unknown environment to build a map efficiently. This ability for active exploration is important for
autonomous robots to work in unknown, unstructured environments such as forests or caves.

This paper proposes an active SLAM system that allows an agent to explore its surroundings, using
visual-inertial data from an RGBD camera. We formalize this problem as taking actions that maximize the
amount of information obtained from the scene. At each time step, a utility function that computes the
incremental information gain is used to take actions. We conduct experiments using an Intel RealSense
camera mounted on a custom-built quadrotor and show that we can explore indoor environments (while
restricting the actions to choosing new viewpoints in SO(3) for practical reasons).

Keywords Keywords
Active Exploration, Simultaneous Localization and Mapping, Autonomous Robot, Quadrotor

Disciplines Disciplines
Electrical and Computer Engineering

This working paper is available at ScholarlyCommons: https://repository.upenn.edu/spur/41

https://repository.upenn.edu/spur/41

Active Simultaneous Localization and Mapping in Unstructured

Environment with a Quadrotor

Siming He1

Abstract— An agent performing Simultaneous Localization

and Mapping (SLAM) constructs a map of the environment

while estimating its location at the same time. SLAM algorithms

primarily focus on finding the best estimate of the location

of the agent, and by extension, that of the landmarks in the

environment, given observations from sensors. These algorithms

do not typically address how an agent should explore an

unknown environment to build a map efficiently. This ability

for active exploration is important for autonomous robots to

work in unknown, unstructured environments such as forests or

caves. This paper proposes an active SLAM system that allows

an agent to explore its surroundings, using visual-inertial data

from an RGBD camera. We formalize this problem as taking

actions that maximize the amount of information obtained from

the scene. At each time step, a utility function that computes

the incremental information gain is used to take actions. We

conduct experiments using an Intel RealSense camera mounted

on a custom-built quadrotor and show that we can explore

indoor environments (while restricting the actions to choosing

new viewpoints in SO(3) for practical reasons).

Index Terms— Active Exploration, Simultaneous Localization

and Mapping, Autonomous Robot, Quadrotor

I. INTRODUCTION

The problem of SLAM mainly considers constructing a
map of the environment while localizing the agent based
on sensor data. However, SLAM algorithms do not address
how an agent can actively gather sensor data to construct a
detailed map. The capability of active exploration is impor-
tant in many applications. For example, home robots need to
have spatial awareness by exploring the environment before
performing any tasks. Similarly, to understand forest ecology
and assess carbon sequestration by the forests, we need
robots to actively explore forests and estimate the number
of trees, volume and species of each tree in the forests.

Researchers have investigated this active SLAM problem
using various methods. The classical method is Next-Best-
View planning: an agent samples potential actions, calculates
the expected gain of each action and finally select the best
action to execute [1]. Recently, belief-space planning and
deep reinforcement learning are also used for active SLAM
[1]. In this paper, we design a Next-Best-View planning sys-
tem that samples and identifies the best action from SO(3).
The system uses Kimera [2] and Voxblox [3] for SLAM

*This work is funded by the Wharton Summer Program of Undergraduate
Research

*Advisor: Professor Pratik Chaudhari, Electrical and Systems Engi-
neering department and the GRASP Robotics Laboratory, University of
Pennsylvania

1Siming He is a Wharton and SEAS Undergraduate student
in Statistics and Computer Science, University of Pennsylvania
siminghe@wharton.upenn.edu

and signed distance field (SDF) construction. The output of
Kimera and Voxblox is then used in a planner to get the next
best action. Then, we conduct experiments on a quadrotor
and reflect on the challenges appeared during experiments.
The quadrotor percepts the environment through a RealSense
D435i camera and is controlled through a PID controller. The
experiment result shows that the system is able to explore
the environment. It also shows that future improvement is
needed to incorporate localization and semantic uncertainty
into utility functions, generalize the sample space from
SO(3) to SE(3), predict the utility of unseen region, and
optimize planning strategy. In section II, SLAM and Active
SLAM problems are introduced and formulated. In section
III and IV, we show the details of our system design and
our experiments. In the end, we summarize this paper by
discussing the pros and cons of the system and outlining
possible future improvements.

II. BACKGROUND

A typical autonomous robot performs three basic tasks: 1)
sense and model the world, 2) plan accordingly and control
itself to interact with the world, 3) learn how to sense, plan,
and control from data or feedback collected in a closed-loop
system. SLAM mainly focuses on perception and learning in
perception while active SLAM builds on SLAM and is able
to intelligently plan and control itself. We will firstly discuss
the problem of SLAM and then show how active SLAM can
be built based on SLAM.

A. Simultaneous Localization and Mapping

In a SLAM system, an agent localizes itself and con-
struct a map of the environment at the same time. The
word ”Simultaneous” is highlighted because localization and
mapping cannot be done separately. An agent cannot know
the location of landmarks and cannot build an accurate global
map without understanding its location. Similarly, without
understanding the environment, an agent cannot know where
it is in the environment.

In a SLAM problem, we want to estimate the most likely
robot locations X = {x0, x1, · · · , xT } for timestep 0 to T

and landmarks locations ⇥ = {✓0, ✓1, · · · , ✓n} given robot
odometry data U = {u0, u1, · · · , uT } and robot measure-
ments Z = {z0, z1, · · · , zT }. Each z

t 2 Z contains a set
of observations {zt0, zt1, · · · } of landmarks {✓t0, ✓t1, · · · } 2
P(⇥). To estimate robot locations, we have a motion model

P (xt | xt�1, ut�1) ⇠ N(m(xt�1, ut�1),⌃t) (1)

2

where m is a function to calculate xt from xt�1 and ut�1.
In addition, we have an observation model

P (ztk | xt, ✓
t
k) ⇠ N(l(xt, ✓

t
k), St) (2)

where l is a function to calculate z
t
k from xt and ✓

t
k. Overall,

it is a smoothing problem of the joint belief distribution
(Details in APPENDIX-A):

Bel(X,⇥) = P (X,⇥ | Z,U)

/ P (x0) ·
TY

i=1

P (xi | xi�1, ui�1)

·
nY

i=0

P (✓i)
TY

j=0

P (zj | xj , ✓i) · 1zj (✓i) (3)

where 1z(✓) is an indicator function that equals to 1 if z

is an observation of ✓ and 0 otherwise. Hence, the joint
belief can be represented as a graphical model as in Fig.
1 and we can use graph-based optimization. GTSAM [4]

Fig. 1: Graphical Model of Joint Belief of States

is a library that can efficiently construct and optimize such
graphs. GTSAM uses factor graphs to model the smoothing
problem [4]. A factor graph is a bipartite graph where
variables are random variables we want to estimate and
factors are probabilistic constraints on the variables [4]. We
can convert the above graph formulation into a factor graph
formulation. We have two types of probabilistic constraints:
binary motion factor fi(xi, xi�1;ui�1) and binary measure-
ment factor gi(xi, ✓

i
k; z

i
k) based on Eq. (1) and Eq. (2)

respectively. Hence, we have

Bel(X,⇥) = f
0(x0) ·

nY

i=0

g
0(✓i) ·

TY

i=1

fi(xi�1, xi;ui�1)

·
nY

i=0

TY

j=0

gj(xj , ✓i; z
j) · 1zj (✓i) (4)

where f
0(·) and g

0(·) are unitary factors that represent priors
about robot and landmarks locations. Therefore, we get the
factor graph in Fig. 2. Hence, SLAM problems can be
formulated as a maximum a posteriori estimation of the

Fig. 2: Factor Graph of Joint Belief of States

factor graph, i.e.

X
⇤
,⇥⇤ = argmaxX,⇥ log f(X,⇥)

= argmaxX,⇥

TX

i=1

M
T⌃�1

i�1M +
nX

i=0

TX

j=0

L
T
SjL (5)

where M = xi�m(xi�1, vi�1) and L = ✓i�l
0(xj , zi) where

l
0 is the inverse observation model of l. This estimation can

be solved using the Gauss–Newton method or the Levenberg-
Marquardt method [4].

Kimera SLAM library [2] adopted in our system uses IMU
on-manifold preintegration [5] to get motion factors. Kimera
[2] gets measurement factors by using Shi-Tomasi Corner
Detection [6] to identify good landmarks, using Lucas-
Kanade method [7] to calculate the motion of landmarks
between frames, and using RANSAC [8] to verify the match-
ing of landmarks in different frames. It also uses DBoW2
library [9] for loop-closure detection and loop-closure motion
factors. The output factor graph is optimized by using iSAM
structureless vision model in GTSAM toolbox [2],[4],[5].

B. Environment Representation

A dense point cloud is generated from RGBD data of the
RealSense D435i Camera. We want to discretize the point
cloud into some voxel world representation where voxel
(smallest cube) in 3D space corresponds to pixel (smallest
square) in 2D space.

In occupancy grid representation, each voxel is a binary
random variable which shows the probability of the voxel
being occupied. A point cloud is used to update the proba-
bility of each voxel being occupied through a binary Bayes
filter. Another type of representation is signed distance field
in which each voxel contains a distance from the voxel to
the surface. Truncated signed distance field (TSDF) contains
the distance from the voxel to the surface along the ray from
the viewpoint to the voxel. The distance is calculated by

d(x, p, s) = kp� xksign((p� x) · (p� s)) (6)

where x, p, s 2 R3 are the center position of the voxel, the
position of the point in the point cloud, and the position of
the sensor respectively. It is called truncated SDF because we
truncate the field and only voxels near the surface are kept
(Fig. 3). The reason of truncating the field is that TSDF is
used for describing the surface of the environment and voxels
outside the truncated region are not useful. Euclidean signed
distance field (ESDF) contains the distance from the voxel

3

Fig. 3: TSDF truncated at 25 centimeters around the surface
Red voxels are outside and blue voxels are inside the surface.

to the closest surface and is used for obstacle avoidance.
Signed distance field is a better representation of accurate
maps since the distances allow interpolating the surface.

In our system, Voxblox [3] is used to get TSDF from
point cloud for mapping. Voxel hashing [10] is used to save
memory when constructing a map at scale. TSDF in Voxblox
is different from the definition above because the distance in
its TSDF is an estimation of the shortest distance from the
surface. The estimation is

Di+1(x, p, s) =
Wi(x)Di(x) + w(x, p)d(x, p, s)

Wi(x) + w(x, p)
(7)

where w(x, p) = 1
z2 for voxels near and outside the sur-

face, z is the depth measurement of p, and Wi+1(x, p) =
min(Wi(x) + w(x, p),Wmax) [3]. This estimation is good
as the error reduced down below a quarter of the voxel
size with p = 0.95 as the number of observations increases
[3]. The weight Wi is similar to log odds since both log
odds update and w(x, p) update is inversely proportional to
some power of z as shown in APPENDIX-B. The increase
in weight means the increase of certainty about the voxel.

C. Active SLAM

Active SLAM can be formulated as a Partially Observ-
able Markov Decision Process (POMDP) which contains

(S,A, T,R, �,⌦, O):

S : set of states X ⇥⇥

A : set of actions of the agent
⌦ : set of observations U ⇥ Z

� : discount factor
T (s0, r0, s, a) = P (St+1 = s

0
, Rt+1 = r

0 | St = s,At = a)

R(s, a) = E(Rt+1 | St = s,At = a)

O(s, z) = P (Zt+1 = z | St+1 = s)

Since we already have the SLAM algorithms that estimate
the belief about states, we can convert the POMDP into a
belief MDP:

B : Bel(x) = P (X,⇥ | Z,U)

TB(b
0
, r

0
, b, a) = P (Bt+1 = b

0
, Rt+1 = r

0 | Bt = b, At = a)

=
X

z2⌦

P (b0, r0 | b, a, z) · P (z | b)

P (z | b) =
X

s02S

O(s, z) ·
X

s2S

T (s0, r0, s, a) · Bel(s)

RB(b, a) =
X

s2S

Bel(s) ·R(s, a)

with A and � same as the ones in POMDP. We want
to find a policy ⇡

⇤(b) that generates a sequence of ac-
tions {at, at+1, · · · , at+k} from belief states such thatPk

i=0 RB(Bel(st+i), at+i) is maximized. In a belief MDP,
TB(b0, r0, b, a) can be considered as a world model that
predicts the future belief states and rewards. In our problem,
RB(b, a) can be considered as a competence map that
predicts the map’s competence/accuracy/certainty at given
belief states [12]. An active SLAM system constantly learns
the world model, the competence map, and the policy based
on real-world data [12], [13] as demonstrated in Fig. 4.
Hence, the choices of model, competence map, and policy

Fig. 4: Active SLAM System

are important for active SLAM.

4

III. SYSTEM DESIGN

A. Assumptions

The implementation of the whole system in Fig. 4 is too
complicated for this paper. Hence, we made some assump-
tions to simplify the system:

• An agent has perfect knowledge of its pose i.e. there is
no need to consider the quality of localization during
exploration.

• An agent can only change its roll, pitch, and yaw at a
fixed location (x, y, z).

• Sampling and going to the next-best-view is a good
exploration strategy.

• Unseen regions are considered to have the same infor-
mation gain.

We discuss why some of the assumptions don’t work well
and how to improve them in section V. Such surface-based
next-best-view methods are used in several past research
about active exploration. Papers [14], [15], [16], [17] all
create some utility functions based on information gain of
voxels and cost of movement. They sample viewpoints,
evaluate them by the utility functions to decide the next best
view, and move to the next best view.

Fig. 5: Voxelblox TSDF Output

B. System

1) SLAM: Kimera-VIO [2] is used for SLAM given
stereo camera data from Intel RealSense Depth Camera
D435i.

2) Environment Representation: Dense point could data
from RealSense D435i is converted to TSDF and ESDF
by Voxblox library [3]. Fig. 5 visualizes the surface of
the voxel representation of EuRoC V101easy visual-
inertial data [18] where redder color means higher
certainty of the voxel.

3) Ray Tracing: Firstly, we define three types of voxels
that we are interested in based on the definition in
[14]. New Voxels are voxels in regions that haven’t
been explored. Frontier Voxels are voxels that are on
the surface of any explored objects with any New
Voxels as neighbors. Surface Voxels are voxels that
are on the surface of any explored objects and are
not Frontier Voxels. Then, we use an efficient voxel
traversal algorithm for ray tracing [19] to get all
voxels that are in the current viewpoint. To speed

up the process, we avoided tracing rays that hit the
same voxel by checking ray and axis-aligned bounding
box intersection [20]. A detailed explanation of this
optimization is covered in APPENDIX-C.

4) Utility Function: We design a utility function similar
to the past papers [14], [15], [16], [17]:

Usurf (V) =
X

v2Vsurface

(
wnew(v)

wnew(v) +W (v)
) (8)

Ufront(V) = |Vfrontier| · c1 (9)
Unew(V) = |Vnew| · c2 (10)

U(V) =
Usurf (V) + Ufront(V) + Unew(V)

(|dY aw|+ |dP itch|) · |V | (11)

where V is the set of voxels in the viewpoint,
Vsurface, Vfrontier, Vnew are the sets of surface, fron-
tier, and new voxels respectively, |dY aw|, |dP itch| are
the change of yaw and pitch from the current viewpoint
to the goal viewpoint, w(v) is the same in Eq. 7, c1, c2
are constants which are set to 0.1 in this paper.

5) Sampling: We sample yaw uniformly from [0, 2⇡] and
sample pitch uniformly from [�⇡

6 ,
⇡
6] twenty times at

each time step. Then, we pick the next viewpoint as
the sampled viewpoint with the highest utility gain.

6) PID Controller: The goal viewpoint is the input of
the PID Controller which outputs and sends roll, yaw,
pitch, and throttle values to the flight controller of the
drone.

IV. EXPERIMENT
A. Ray Tracing Results

Fig. 6 shows the result of ray tracing. The red pyramid
represents the viewpoint and field of view. Cyan voxels,
purple voxels, and yellow voxels are respectively surface,
new, and frontier voxels visible from the viewpoint. Since
the depth measurement error increases with distance, I limit
the maximum distance of ray tracing to 2.5 meters. Such a
maximum distance bounds the depth measurement error and
runtime of ray tracing. After speeding up ray tracing through
the method in APPENDIX-C, the ray tracing time in Fig. 6
is reduced by 52.13%.

B. Information gain

As shown in Fig. 7, different viewpoints have different
information gain where redder color means higher gain. We
observe that viewpoints that contain more voxels within 2.5
meters have higher information gain. Moreover, viewpoint
B has higher information gain than viewpoint A, i.e. a
viewpoint that contains voxels with higher uncertainty has
higher information gain. Specifically, let VA and VB be the
sets of voxels visible at viewpoint A and B. VA �VB is the
set of voxels in R and VB�VA is the set of voxels in R

0. We
observe that VA�VB has more certainty than VB�VA since
region R is redder than R

0 in Fig. 7. Therefore, VB should
have higher information gain than VA which is aligned with
the observation.

5

Fig. 6: Ray Tracing Result at Given Viewpoint

Fig. 7: Information Gain at Different Viewpoint

C. Exploration with Drone

The PiDrone [21] is used as the actual robot to do explo-
ration and mapping. In addition to the sensors of PiDrone,
we mount Intel RealSense Depth Camera D435i on the drone
to collect stereo and depth image data. Fig. 8 (a) shows the
PiDrone during exploring and mapping and Fig. 8 (b) shows
the mapping result. Fig. 9 shows the cumulative map surface
gain and number of voxels during our experiment. The
surface gain is the increase of weight of all surface voxels at
the current viewpoint. The gain jumps up twice in the plot,
possibly because the drone is mapping the area of windows
which has high uncertainty. The log number of voxels seen
at each viewpoint shows that the number of surface voxels
is approximately the same as the drone rotating at a constant
speed. The number of frontier voxels and new voxels changes
when exploring different areas. After 150 seconds, there is
almost no frontier and new voxel because all voxels have

(a) Exploration by Drone

(b) Mapping Result

Fig. 8: Exploration and Mapping

been explored. The gain is still increasing after 150 seconds
because the explored map is improving as the agent re-visits
the areas but the gain is lower.

V. CONCLUSION

In this paper, we implement an active SLAM system and
test it on a drone. The experiment results show that the
system is able to explore the environment and construct a
map. However, we can see in Fig. 8 (b) that the map is still
not very detailed and accurate and improvements are needed
in the future. During explorations, the sampled next-best-
views are sometimes not good as we can see in Fig. 9. These
problems are mainly caused by some of the assumptions we
made in Section III A. Hence, we need to change some of
the assumptions in the future:

1) Our assumption that the agent has perfect knowledge
of its pose is unrealistic since the actual robot is not
able to know its exact location. Moreover, localization
uncertainty needs to be considered in exploration since
localization error could be larger than depth measure-
ment error. Poor localization would cause inaccurate
mapping results.

2) In this paper, we only consider the change of roll, yaw,
and pitch with a fixed robot location. It is a good

6

Fig. 9: Gains and Voxels at Each Timestep

simplification which reduces the state space that we
sample from. However, with a fixed location, an agent
is not able to move closer or to different angles to
construct a more detailed and accurate map. We need
to sample both rotation and translation and use ESDF
for SE(3) trajectory planning to avoid collisions.

3) After expanding the state space to include different
locations, methods of sampling would become a chal-
lenge because a small amount of samples would cause
non-optimal planning and a large amount of samples
would increase the time of sampling. One solution
would be sampling around the frontier [14], [15], [16],
[17] which is likely to have high information gain.
However, with this solution, an agent is not able to re-
explore explored areas that might have high informa-
tion gain. Another solution would predict regions with
high uncertainty and sample more from these regions.

4) A viewpoint may have low cumulative information
gain but a set of voxels in the viewpoint has high
information gain. In this case, we need a method to
know that such a viewpoint may also be worth visiting.

5) Next-best-view sampling is sub-optimal even if we
have a good sampling method. Other planning and con-
trol methods may be considered for better exploration
results.

6) Unexplored regions have a fixed information gain in
this system. It is not a good approximation since
it doesn’t show which unexplored region to go to
especially in larger state space. Prediction of unseen
regions or information gain of unseen regions would
be needed.

7) This system only cares about constructing a geometric
map. It would be important to construct a hybrid
map that contains both geometric and semantic details,

i.e. we need to incorporate semantic information and
uncertainty into the belief state space.

REFERENCES

[1] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L.
Carlone, and J. A. Castellanos, ”A Survey on Active Simultaneous
Localization and Mapping: State of the Art and New Frontiers,”
arXiv:2207.00254 [cs.RO].

[2] A. Rosinol, M. Abate, Y. Chang and L. Carlone, ”Kimera: an Open-
Source Library for Real-Time Metric-Semantic Localization and Map-
ping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020.

[3] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
”Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-
Board MAV Planning,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2017.
[4] F. Dellaert, ”Factor Graphs and GTSAM: A Hands-on Introduction,”

Technical Report number GT-RIM-CPR-2012-002.
[5] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, ”On-Manifold

Preintegration for Real-Time Visual–Inertial Odometry,” in IEEE

Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017, doi:

10.1109/TRO.2016.2597321.
[6] J. Shi and C. Tomasi, ”Good features to track,” in IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 1994, pp. 593–600.
[7] J. Bouguet, ”Pyramidal implementation of the Lucas Kanade feature

tracker,” in Intel Corporation, Microprocessor Research Labs, 2000.
[8] B. Horn, ”Closed-form solution of absolute orientation using unit

quaternions,” J. Opt. Soc. Amer., vol. 4, no. 4, pp. 629–642, Apr 1987.
[9] D. Gálvez-López and J. D. Tardós, ”Bags of binary words for fast

place recognition in image sequences,” in IEEE Transactions on

Robotics, vol. 28, no. 5, pp. 1188–1197, October 2012.
[10] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, ”Real-

Time 3D Reconstruction at Scale Using Voxel Hashing,” in ACM

Transactions on Graphics (TOG), vol. 32, no. 6, p. 169, 2013.
[11] M. S. Ahn, H. Chae, D. Noh, H. Nam, and D. W. Hong, ”Analysis

and Noise Modeling of the Intel RealSense D435 for Mobile Robots,”
in 2019 16th International Conference on Ubiquitous Robots (UR),

pp. 707-711.
[12] S. B. Thrun and K. Möller, ”Active Exploration in Dynamic Environ-

ments,” 1992.
[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, ”Planning and

acting in partially observable stochastic domains,” Artificial Intelli-

gence, Volume 101, Issues 1–2, 1998, Pages 99-134.
[14] Y. Kompis, L. Bartolomei, R. Mascaro, L. Teixeira and M. Chli,

”Informed Sampling Exploration Path Planner for 3D Reconstruction
of Large Scenes,” in IEEE Robotics and Automation Letters, vol. 6,

no. 4, pp. 7893-7900, Oct. 2021, doi: 10.1109/LRA.2021.3101856.
[15] L. M. Schmid, M. Pantic, R. Khanna, L. Ott, R. Y. Siegwart, and J.

I. Nieto, ”An Efficient Sampling-Based Method for Online Informa-
tive Path Planning in Unknown Environments,” IEEE Robotics and

Automation Letters, 2020, vol. 5, pp. 1500-1507.

[16] R. Border, J. D. Gammell, P. Newman, ”Surface Edge Explorer (SEE):
Planning Next Best Views Directly from 3D Observations,” IEEE

Press, 10.1109/ICRA.2018.8461098.
[17] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova and R. Siegwart,

”Receding Horizon ”Next-Best-View” Planner for 3D Exploration,”
2016 IEEE International Conference on Robotics and Automation

(ICRA), 2016, pp. 1462-1468, doi: 10.1109/ICRA.2016.7487281.
[18] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,

M. Achtelik and R. Siegwart, ”The EuRoC micro aerial vehi-
cle datasets,” International Journal of Robotic Research, DOI:

10.1177/0278364915620033, 2016.
[19] J. Amanatides and A. Woo, ”A Fast Voxel Traversal Algorithm for

Ray Tracing,” In Eurographics ’87, 1987, pp. 3-10.
[20] A. Williams, S. Barrus, R. Keith, and M. P. Shirley, ”An efficient

and robust ray-box intersection algorithm,” Journal of Graphics Tools,

2003, vol. 10, p.54.
[21] I. Brand, J. Roy, A. Ray, J. Oberlin and S. Oberlix, ”PiDrone: An

Autonomous Educational Drone Using Raspberry Pi and Python,”
2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2018, pp. 1-7, doi: 10.1109/IROS.2018.8593943.

7

APPENDIX
A. Decompose Belief of States

Bel(X,⇥) = P (X,⇥ | Z,U)

= P (⇥ | X,Z,U) · P (X | Z,U)

= P (x0, · · · , cT | z0, · · · , zT , u0, · · · , uT)

·
nY

i=0

P (✓i | x0, · · · , xT , z
0
, · · · , zT)

/ P (x0) ·
TY

i=1

P (xi | xi�1, ui�1)

·
nY

i=0

P (z0, · · · , zT | x1, · · · , xT , ✓i)P (✓i)

/ P (x0) ·
TY

i=1

P (xi | xi�1, ui�1)

·
nY

i=0

P (✓i)
TY

j=0

P (zj | xj , ✓i) · 1zj (✓i)

B. Log Odds Update and Weight Update

The log odds is

L(dt | zt) = log

✓
fN(dt,�)(dt)

1� fN(dt,�)(dt)

◆
� = az

2
t + bz

t + c

/ d
2
t

z4t

+
d
2
t

z4t � z5t

The � used in the calculation is based on the noise model
of RealSense Depth Camera which is quadratic as a function
of distance [11]. It is indeed similar to the weight update of
Wt in Eq. (7).

C. Speeding Up Ray Tracing Algorithm

Since the accuracy of depth measurement decreases as
distance increases, we only care about voxels that are less
than 2.5 meters from the viewpoint. Another advantage of
setting this maximum distance is that it bounds the runtime
i.e. a fixed number of voxels would be traversed in the worst

case. We call the plane that is 2.5 meters away the end plane.
We sample rays from viewpoint to every voxel on the end
plane. Then, we do ray tracing to find all hitted voxels. One
observation is that several neighboring rays would be highly
likely to hit the same voxel especially when the voxel is
closer to the viewpoint. In this case, we waste time tracing all
the neighboring rays without getting any new hitted voxel. To
solve this problem, for each ray, we check if the ray intersects
with any voxels hitted by its neighboring rays. There is at
most eight neighbors to check. It takes much less time than
traversing through the voxels (50 voxels if the hitted voxel
is 2.5 meters from the viewpoint) for ray tracing. Another
two observations are 1) a ray can only hit the same voxel
of its neighbors if not hit a new voxel, 2) if a ray intersects
with a voxel of its neighbor, it must hit such voxel. A 2D
example is shown in the following figure.

Fig. 10: 2D Ray Tracing Example
l1 is the traced ray and we know from l1 that the green voxel v is

occupied. Before we trace l2, we check voxel v hitted by its
neighbor l1. Since l2 and v intersect, we can skip tracing l2.

8

	Active Simultaneous Localization and Mapping in Unstructured Environment with a Quadrotor
	Recommended Citation

	Active Simultaneous Localization and Mapping in Unstructured Environment with a Quadrotor
	Abstract
	Keywords
	Disciplines

	tmp.1663247242.pdf.1qtqY

