2,410 research outputs found

    PocketPicker: analysis of ligand binding-sites with shape descriptors

    Get PDF
    Background Identification and evaluation of surface binding-pockets and occluded cavities are initial steps in protein structure-based drug design. Characterizing the active site's shape as well as the distribution of surrounding residues plays an important role for a variety of applications such as automated ligand docking or in situ modeling. Comparing the shape similarity of binding site geometries of related proteins provides further insights into the mechanisms of ligand binding. Results We present PocketPicker, an automated grid-based technique for the prediction of protein binding pockets that specifies the shape of a potential binding-site with regard to its buriedness. The method was applied to a representative set of protein-ligand complexes and their corresponding apo-protein structures to evaluate the quality of binding-site predictions. The performance of the pocket detection routine was compared to results achieved with the existing methods CAST, LIGSITE, LIGSITEcs, PASS and SURFNET. Success rates PocketPicker were comparable to those of LIGSITEcs and outperformed the other tools. We introduce a descriptor that translates the arrangement of grid points delineating a detected binding-site into a correlation vector. We show that this shape descriptor is suited for comparative analyses of similar binding-site geometry by examining induced-fit phenomena in aldose reductase. This new method uses information derived from calculations of the buriedness of potential binding-sites. Conclusions The pocket prediction routine of PocketPicker is a useful tool for identification of potential protein binding-pockets. It produces a convenient representation of binding-site shapes including an intuitive description of their accessibility. The shape-descriptor for automated classification of binding-site geometries can be used as an additional tool complementing elaborate manual inspections

    Hot-spot analysis for drug discovery targeting protein-protein interactions

    Get PDF
    Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets

    Get PDF
    Background: Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins’ dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket’s boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. Results: We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. Conclusions: Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures

    fpocket: online tools for protein ensemble pocket detection and tracking

    Get PDF
    Computational small-molecule binding site detection has several important applications in the biomedical field. Notable interests are the identification of cavities for structure-based drug discovery or functional annotation of structures. fpocket is a small-molecule pocket detection program, relying on the geometric α-sphere theory. The fpocket web server allows: (i) candidate pocket detection—fpocket; (ii) pocket tracking during molecular dynamics, in order to provide insights into pocket dynamics—mdpocket; and (iii) a transposition of mdpocket to the combined analysis of homologous structures—hpocket. These complementary online tools allow to tackle various questions related to the identification and annotation of functional and allosteric sites, transient pockets and pocket preservation within evolution of structural families. The server and documentation are freely available at http://bioserv.rpbs.univ-paris-diderot.fr/fpocket

    Geometric algorithms for cavity detection on protein surfaces

    Get PDF
    Macromolecular structures such as proteins heavily empower cellular processes or functions. These biological functions result from interactions between proteins and peptides, catalytic substrates, nucleotides or even human-made chemicals. Thus, several interactions can be distinguished: protein-ligand, protein-protein, protein-DNA, and so on. Furthermore, those interactions only happen under chemical- and shapecomplementarity conditions, and usually take place in regions known as binding sites. Typically, a protein consists of four structural levels. The primary structure of a protein is made up of its amino acid sequences (or chains). Its secondary structure essentially comprises -helices and -sheets, which are sub-sequences (or sub-domains) of amino acids of the primary structure. Its tertiary structure results from the composition of sub-domains into domains, which represent the geometric shape of the protein. Finally, the quaternary structure of a protein results from the aggregate of two or more tertiary structures, usually known as a protein complex. This thesis fits in the scope of structure-based drug design and protein docking. Specifically, one addresses the fundamental problem of detecting and identifying protein cavities, which are often seen as tentative binding sites for ligands in protein-ligand interactions. In general, cavity prediction algorithms split into three main categories: energy-based, geometry-based, and evolution-based. Evolutionary methods build upon evolutionary sequence conservation estimates; that is, these methods allow us to detect functional sites through the computation of the evolutionary conservation of the positions of amino acids in proteins. Energy-based methods build upon the computation of interaction energies between protein and ligand atoms. In turn, geometry-based algorithms build upon the analysis of the geometric shape of the protein (i.e., its tertiary structure) to identify cavities. This thesis focuses on geometric methods. We introduce here three new geometric-based algorithms for protein cavity detection. The main contribution of this thesis lies in the use of computer graphics techniques in the analysis and recognition of cavities in proteins, much in the spirit of molecular graphics and modeling. As seen further ahead, these techniques include field-of-view (FoV), voxel ray casting, back-face culling, shape diameter functions, Morse theory, and critical points. The leading idea is to come up with protein shape segmentation, much like we commonly do in mesh segmentation in computer graphics. In practice, protein cavity algorithms are nothing more than segmentation algorithms designed for proteins.Estruturas macromoleculares tais como as proteínas potencializam processos ou funções celulares. Estas funções resultam das interações entre proteínas e peptídeos, substratos catalíticos, nucleótideos, ou até mesmo substâncias químicas produzidas pelo homem. Assim, há vários tipos de interacções: proteína-ligante, proteína-proteína, proteína-DNA e assim por diante. Além disso, estas interações geralmente ocorrem em regiões conhecidas como locais de ligação (binding sites, do inglês) e só acontecem sob condições de complementaridade química e de forma. É também importante referir que uma proteína pode ser estruturada em quatro níveis. A estrutura primária que consiste em sequências de aminoácidos (ou cadeias), a estrutura secundária que compreende essencialmente por hélices e folhas , que são subsequências (ou subdomínios) dos aminoácidos da estrutura primária, a estrutura terciária que resulta da composição de subdomínios em domínios, que por sua vez representa a forma geométrica da proteína, e por fim a estrutura quaternária que é o resultado da agregação de duas ou mais estruturas terciárias. Este último nível estrutural é frequentemente conhecido por um complexo proteico. Esta tese enquadra-se no âmbito da conceção de fármacos baseados em estrutura e no acoplamento de proteínas. Mais especificamente, aborda-se o problema fundamental da deteção e identificação de cavidades que são frequentemente vistos como possíveis locais de ligação (putative binding sites, do inglês) para os seus ligantes (ligands, do inglês). De forma geral, os algoritmos de identificação de cavidades dividem-se em três categorias principais: baseados em energia, geometria ou evolução. Os métodos evolutivos baseiam-se em estimativas de conservação das sequências evolucionárias. Isto é, estes métodos permitem detectar locais funcionais através do cálculo da conservação evolutiva das posições dos aminoácidos das proteínas. Em relação aos métodos baseados em energia estes baseiam-se no cálculo das energias de interação entre átomos da proteína e do ligante. Por fim, os algoritmos geométricos baseiam-se na análise da forma geométrica da proteína para identificar cavidades. Esta tese foca-se nos métodos geométricos. Apresentamos nesta tese três novos algoritmos geométricos para detecção de cavidades em proteínas. A principal contribuição desta tese está no uso de técnicas de computação gráfica na análise e reconhecimento de cavidades em proteínas, muito no espírito da modelação e visualização molecular. Como pode ser visto mais à frente, estas técnicas incluem o field-of-view (FoV), voxel ray casting, back-face culling, funções de diâmetro de forma, a teoria de Morse, e os pontos críticos. A ideia principal é segmentar a proteína, à semelhança do que acontece na segmentação de malhas em computação gráfica. Na prática, os algoritmos de detecção de cavidades não são nada mais que algoritmos de segmentação de proteínas

    LIGSITE(csc): predicting ligand binding sites using the Connolly surface and degree of conservation

    Get PDF
    BACKGROUND: Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. RESULTS: We present LIGSITE(csc), an extension and implementation of the LIGSITE algorithm. LIGSITE(csc )is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITE(csc )performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. CONCLUSION: The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITE(csc )and its source code is available at scoppi.biotec.tu-dresden.de/pocket
    corecore