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ABSTRACT 

Introduction 

Protein-protein interactions are important for biological processes and pathological situations, 
and are attractive targets for drug discovery. However, rational drug design targeting protein-
protein interactions is still highly challenging. Hot-spot residues are seen as the best option to 
target such interactions, but their identification requires detailed structural and energetic 
characterization, which is only available for a tiny fraction of protein interactions. 

Areas covered 

In this review, the authors cover a variety of computational methods that have been reported 
for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural 
modeling of protein-protein complexes by docking. This can help to rationalize the discovery of 
small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational 
analysis and docking can help to locate the interface, molecular dynamics can be used to find 
suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein 
interactions. 

Expert opinion 

A major difficulty for applying rational drug design methods to protein-protein interactions is 
that in the majority of cases the complex structure is not available. Fortunately, computational 
docking can complement experimental data. An interesting aspect to explore in the future is the 
integration of these strategies for targeting PPIs with large-scale mutational analysis.  

 

 

 

 

 

 

 

 

 

ARTICLE HIGHLIGHTS 

 

- Protein-protein interactions are critical for essential biological processes and pathological 
situations 
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- The effect of pathological mutations on protein interaction networks and pathways are 
difficult to foresee 

- Structural and energetic data on protein-protein interactions is essential to understand 
biomolecular processes, but their availability is currently very limited 

- A variety of computational methods have been reported for protein-protein interface 
characterization and complex structure modeling by docking 

- Computational approaches can help to improve rational drug discovery targeting protein-
protein interactions 

- Integration of computational modeling, drug discovery targeting protein interactions, and 
large-scale mutational analyses can help to progress towards precision medicine 
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1. Introduction 

Rational drug design has been the object of increased attention by the pharma industry, mostly 

propelled by the accumulated expertise on biological systems, and the large-scale availability of 

sequence, structural and functional data, together with better computer-based models. One of 

the most successful examples was the series of HIV protease inhibitors that were 

computationally designed and developed in the early 1990s, which provided the first effective 

clinical treatments against AIDS [1]. However, despite all the investments and the increased 

availability of computational resources and big data, the number of new molecular entities 

approved by FDA per year is reaching a plateau [2]. The reasons for this are multiple, but one of 

the key factors is that the majority of available small-molecule drugs target only three major 

protein families: GPCRs, ion channels and nuclear receptors [3]. In order to expand the target 

space, it is important to realize that proteins do not act alone, but they rather interact with other 

proteins and biomolecules, forming intricate networks of interactions, which determine the 

behavior of the system. Indeed, the drug discovery field is beginning to focus on new concepts 

such as systems pharmacology [4,5] and network medicine [6]. In this review, we will discuss the 

important role of protein-protein interactions in the cell, and how the characterization and 

identification of interface hot-spot residues could help to discover small-molecule compounds 

that can modulate protein-protein interactions of pathological interest and have an effect on 

the system at phenotypic level. 

 

2. Importance of protein-protein interactions for drug discovery 

2.1. Protein-protein interactions in biological processes 

Protein-protein interactions (PPIs) play essential roles in biological systems [7]. They can form 

more or less stable multi-molecular complexes involved in a variety of functions, such as the 

ribosome, nuclear pore, spliceosome, etc., or they can form specific and dynamic interaction 

networks as in the case of cell signaling or metabolic pathways [8]. The complexity of these PPI 

networks is highly related to the dynamics of the cell. The dynamic activity in a cell is distributed 

as functional modules, defined as groups of different proteins that interact but that are not 

necessarily present at the same time in the same space [9,10]. These functional modules can be 

detected by clustering the groups of nodes in the network according to their connectivity.  

The complete set of interactions in a living organism defines the so-called interactome 

[11], whose description is key to understand the behavior of the entire biological system, 

especially when integrated with other data generated from the "omics" sciences (genomics, 
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proteomics, transcriptomics, etc.). Recent studies have tried to describe the complete 

interactome of different organisms, but this is a highly challenging task due to experimental 

limitations. Indeed, the number of PPIs in human is highly uncertain, with some estimations 

widely ranging between 130,000 and 650,000 [12,13]. In a recent study, a total of 14,000 human 

interactions were experimentally identified with high reproducibility [11]. Using information 

from several public databases, the number of reliable interactions (i.e. those found in more than 

one database and showing reliable evidence that they are binary) can increase up to 93,000 PPIs 

(http://interactome3d.irbbarcelona.org/)[14]. This shows that there is still a significant degree 

of uncertainty in the description of the human protein-protein interactome.  

 

2.2. Protein-protein interactions and disease 

Protein-protein interactions are involved in the majority of diseases, and thus are key to 

understand, prevent and correct pathological situations. In many cases, the perturbation of a 

given protein-protein interaction due to environmental, genetic or other reasons is the cause of 

the disease. In other cases, perturbed protein-protein interactions might not be the primary 

cause of a pathological situation, but they could affect the behavior of a given network or 

metabolic pathway and thus explain the phenotype. Functional genomics studies have helped 

to understand the involvement of disease-associated mutations in protein-protein interactions. 

For instance, some pathological mutations can disrupt protein interactions by causing miss-

folding of their components [15,16], or they can directly affect protein-protein interaction 

networks involved in specific cellular phenotypes [17].   

A wealth of data is available on mutations leading to pathological phenotypes, most of 

which are publicly accessible in different databases: ClinVar (www.ncbi.nlm.nih.gov/clinvar/), 

gnomAD (Genome Aggregation Database; www.hgmd.cf.ac.uk/ac/index.php), Humsavar 

(http://www.uniprot.org/docs/humsavar), OMIM (Online Mendelian Inheritance in Man; 

www.omim.org/) and HGMD (Human Gene Mutation Database; 

www.hgmd.cf.ac.uk/ac/index.php). The information about the genes, disease disorders, and 

proteins altered by known pathological mutations can be combined to build human disease 

networks. These can be defined as graphs in which a disease node is linked with a gene node 

containing a mutation associated to the disease, which in turn is connected to another gene 

based on the interactions of the encoded proteins [18].  

The ultimate objective is to build the complete set of disease networks occurring in 

human, or diseasome [19]. Computational tools can be used to analyze the properties of these 
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disease networks (hubs, connectivity, topology, etc.) [20] and help to highlight the key players 

that drive most of the characterized diseases [21]. This holds promises for helping to find 

treatments to revert altered disease networks back to the normal state. 

The effect of pathological mutations on the entire disease network can differ depending 

on the aminoacid change and its location in the protein. A strong change in protein folding or 

stability will likely affect to all the interactions of the mutated protein (Figure 1). However, a 

mutation located at a specific protein-binding interface could affect only to specific interactions 

or “edges” of a given network (Figure 1). This edgetic effect can vary depending on the type of 

mutation and its location, producing unforeseen effects on the entire network [6,22,23]. Indeed, 

interaction perturbation profiling of missense mutations across a broad spectrum of human 

disorders suggests that around one third of disease mutations have edgetic effects, modifying 

the range of effect of specific interactions of a given protein [22]. Interestingly, mutated proteins 

with edgetic effects have been found to play central roles in the protein network [22]. Due to 

such edgetic effects, dissimilar mutations within the same gene may produce distinct interaction 

profiles and, as a consequence, different disease phenotypes [22]. 

Thus, characterizing such subtle networks effects for a given observed disorder is of 

paramount importance to understand its cause and to rationally develop new strategies for 

therapeutic intervention, within the context of precision medicine.  

 

[FIGURE 1 HERE] 

 

 

2.3. Structural and energetic characterization of protein-protein interactions 

Current interaction network maps provide useful information on the relationships of genes or 

interactions between proteins, in the context of normal and pathological situations. However, 

the vast majority of network analyses are done at a level of resolution that makes it difficult to 

observe details of the interactions at atomic level. As mentioned above, in order to understand 

and model subtle but key aspects of the disease networks, such as the edgetic effects of 

pathological mutations and genetic variants in general, it would be necessary to include data 

about the three-dimensional (3D) structures of the protein-protein complexes forming the 

network [24]. The integration of such structural data within the human diseasome network can 

help to understand the effect of disease-related mutations at molecular level [25]. In addition, 
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the characterization of the energetic effects of specific mutations in binding affinity can provide 

a first general explanation for some of the differences in phenotype.  

Existing structural data on protein-protein complexes at atomic resolution, mostly from 

x-ray or NMR experiments, have provided a wealth of information on protein-protein 

association and the role of disease mutations. Thanks to the available structural information, 

the edgetic effect of thousands of cancer mutations at protein-protein interfaces has been 

clearly described [26]. There are useful databases mapping pathological variants on protein-

protein complex structures, such as Structure-PPi [27] or dSysMap  [28]. The effect of mutations 

at local level can be better understood by analyzing the structural information of protein-protein 

interfaces in more detail. It is known that protein-binding sites involve around 28 residues on 

average, forming mostly flat interfaces of around 1000 A2 on average [29], which are much larger 

than traditional protein-ligand sites [30]. Protein-protein interfaces are organized in three major 

regions: core, rim and support, which are defined according to the relative accessible surface 

area (rASA) of the interface residues (Figure 2). The core region is formed by exposed residues 

at the unbound protein that are significantly buried upon binding. They contribute with a 

significant number of inter-protein contacts during interaction and tend to be more 

hydrophobic. The rim residues are exposed residues at protein surface that remain partially 

exposed upon binding. They provide a suitable micro-environment for the establishment of the 

interaction. These residues are more mobile than core residues and help to shield the core from 

the solvent. The support region is formed by partially exposed residues in the unbound protein 

that become buried when the complex is formed, and thus can help to establish the interaction 

[29]. All these structural considerations are important when analyzing the role of disease-related 

mutations. Recent studies have shown that disease-causing mutations are enriched at the core 

region of the interface [23,31]. When analyzing all the structural aspects in protein-protein 

interactions, we should not forget that proteins are not static entities. In addition to their 

intrinsic conformational variability in solution, they often show different conformational states 

(as well as isoforms generated by alternative splicing, or post-translational modifications, such 

as methylation, phosphorylation, glycosylation, etc). Therefore, the definition of whether a 

given protein is active or inactive, or is engaged in a protein interaction or not, will depend on 

which of their different possible molecular states are considered. Along this line, a recent work 

has redefined the concept of protein-protein interaction networks, by including conformational 

variability of the interacting proteins [32]. Obviously, the effect of a given pathological mutation 

on conformational variability, post-translational events or splicing will be important in order to 

fully understand its role on the protein-protein interaction networks. 



8 
 

 

[FIGURE 2 HERE] 

 

 

For a given mutation located at a protein-protein interface, it is also important to know 

the effect of such mutation on binding affinity. We mentioned above that a residue located at 

the core region of the protein-protein interface is expected to affect the interaction when 

mutated. Consequently, many disease-related mutations are directly involved at protein-protein 

interfaces [23,33,34]. However, the degree of this effect would depend on the type of mutation. 

Indeed, it has been found that missense mutations described as disease-related in the database 

OMIM can cause changes in protein-protein binding energy [35]. Thus, the energetic 

characterization of protein-protein interactions is of paramount importance in order to 

understand in detail the effects of disease mutations in the disease networks. Obtaining this 

type of data requires building point mutations and analyzing them experimentally, which is too 

costly to be done in a high-throughput manner. The SKEMPI database contains available 

experimental data of changes in binding affinity for over 3,000 mutations [36]. However, this 

data set includes only a few of the increasingly high number of known pathological mutations. 

Despite the limited experimental data, it has been already shown that disease causing mutations 

located at protein-protein interfaces tend to debilitate protein binding, by introducing clashes, 

removing key interactions, or simply by increasing the flexibility of the interacting proteins. On 

the other hand, some disease mutations may increase protein rigidity and protein-protein 

complex stability [37,38].  

Related to the energetic characterization of protein-protein interactions, it is important 

to discuss the concept of "hot-spot" residues. Based on experimental mutation to alanine, it has 

been found that usually only a few residues, so-called "hot-spots", are responsible for the 

majority of the binding affinity (Figure 3A). They are typically defined as those ones contributing 

more than 2 kcal.mol-1 to the total binding energy of the complex [39,40]. Experimental 

measurements based on specific mutants are costly, so the available data on hot-spots is limited 

[40,41]. Mutation of these hot-spot residues are more likely to be related to disease. [42,43]. 

Recent studies show that hot-spot residues can also be relevant in homo-oligomeric interfaces 

[16]. Hot-spot residues at self-assembly patches in fibers and punctate foci play an essential role 

in binding, and their mutation could induce the formation of non-natural assemblies and cause 

disease [15,16,44–46]. 
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[FIGURE 3 HERE] 

 

 

2.4 . Computational analysis and modeling of protein-protein complexes 

A large variety of statistical potentials, empirical functions and energy-based algorithms 

can be applied to computationally characterize a protein-protein complex structure. Many of 

these functions are compiled and publicly available in the database CCharPPI [47]. They can be 

used to analyze surface patches, estimate binding affinities, or identify hot-spot residues [53] 

[54]. Focusing on the identification of protein-protein hot-spot residues, many computational 

approaches first model the mutated residues based on the complex structure and then compare 

the computed binding affinity of the modelled mutant with that of the original complex 

structure. Some examples of this strategy are HSPred  [50], Rosetta [51] and FoldX [52]. Machine 

learning is also used in different hot-spot prediction approaches, such as PCRPi, which combines 

sequence conservation, energy score and contact number information [53], PPI-Pred, based on 

surface shape and electrostatics [54], or Pocket-Query, which provides an assortment of metrics 

useful for predicting hot-spots [55]. Other methods are: HotSpot Wizard [56], based on the 

integration of structural, functional and evolutionary information provided by several 

databases; DrugScorePPI [57], derived from experimental alanine scanning results; iPred [58], 

using pairwise potential atom types and residue properties; or ECMIS [59], using a new algorithm 

combining energetic, evolutionary and structural features. These methods can be used to 

analyze interfaces at large-scale. In this context, it is interesting to mention the PCRPi database 

(PCRPi-DB), which contains computationally annotated hot-spot residues in all protein-protein 

complexes for which a high-resolution 3D structure is known [60]. 

The above hot-spot prediction methods are based on the 3D structure of a protein-

protein complex. However, despite all the methodological advances and the number of 

structural genomics projects initiated in recent years, the structural determination of all protein-

protein complexes in human (structural interactome) remains one of the biggest challenges in 

structural biology. Indeed, structural information is available for only a tiny fraction of all the 

protein-protein interactions that are estimated to occur in human [14]. In this context, a variety 

of computational approaches have been reported to help characterizing a protein-protein 

interaction for which there is no structural information.  
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Many of these computational methods aim to predict the protein-binding regions at the 

surface of the unbound protein structures. One popular tool is ProMate, which uses a 

combination of biophysical properties [61]. Other interface prediction methods are: PINUP [62], 

which is also based on a combination of empirical energy functions, or cons-PPISP [63], a neural 

network predictor which uses sequence profiles and solvent accessibilities of each residue and 

its spatial neighbors. It is important to remark that all these methods are applied to the structure 

of one of the unbound proteins and therefore can only predict general interface residues, which 

are not necessarily specific for one particular partner protein. In the case of a protein interacting 

with other different proteins using different interfaces, such predicted interface residues are 

not useful to distinguish these specific interfaces. 

On the other side, different computational docking methods have been reported for 

predicting more specifically the structure of a complex formed by two interacting proteins. 

Methodologically, two major aspects are considered in virtually all docking protocols: a sampling 

procedure, to search for different binding orientations, and a scoring procedure, which evaluate 

these decoys in order to identify the correct binding mode.  Major sampling strategies are based 

on shape matching, exhaustive global search, and stochastic sampling. Shape matching methods 

include DOCK [64] or Patchdock [65], where binding regions are represented by a graph 

generated from geometric features, such as convex, flat and concave regions. Examples of 

exhaustive global search methods are FTDock [66], ZDOCK [67] or MolFit [68] based on Fast 

Fourier Transform (FFT) calculations [69] on rigid-body proteins. Methods using stochastic 

search are ICM-DISCO [70], HADDOCK [71], RosettaDock [72], SwarmDock [73], or LightDock 

[74]. After generating many different docking decoys by the above described methods, it is 

important to evaluate all these docking poses and identify the correct binding modes. In this 

context, scoring plays an essential role, and different strategies have been reported, based on 

statistical potentials, empirical functions or energy-based description, the latter usually 

including van der Waals, desolvation or electrostatics terms. Several scoring algorithms that can 

be independently applied to previously generated docking models are available, such as pyDock 

[75], ZRANK [76], or SIPPER [77]. Many methods, in addition to scoring, introduce flexible 

refinement of the docking models, such as FireDock [78]. Available computational docking 

methods are being continuously evaluated at the Critical Assessment of PRedicted Interactions 

(CAPRI) community experiment [79]. CAPRI is an international scientific effort to boost the 

development of different approaches to solve the problem of protein-protein docking. After 

more than fifteen years since its first edition, the CAPRI experiment is now the source of 

standard protein-protein docking sets and quality measurements. 
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The use of energy-based functions in docking can help to describe the energetic aspects 

of protein-protein association [36]. One interesting application of this is the capability of 

predicting hot-spot residues by analyzing the regions that are energetically important in the 

docking simulations by pyDock [80] (Figure 3B). The main advantages of this method are that it 

does not require the structure of a complex and that hot-spot predictions are specific for two 

given interacting proteins (as opposed to general interface prediction on one unbound protein 

as described above).  

 

2.5. Modulation of protein-protein interactions for drug discovery  

Traditional drug discovery has focused on targeting individual proteins. However, the number 

of proteins that are druggable, i.e. potentially used for rational drug discovery, is limited. The 

majority of FDA-approved drugs target a few families of proteins, basically GPCRs, ion channels 

and nuclear receptors [3]. The traditional goal of targeting a single protein has strong limitations, 

such as unforeseen side-effects (because the protein altered by the drug may be involved in 

other different functions), or a limited efficacy at system level (because of homeostatic 

compensation through other pathways). For these reasons, the pharmaceutical industry has a 

strong need for expanding current target space, considering the proteins involved in a given 

disease (traditional targets) in the context of an interaction network [81]. Detailed 

understanding of the behavior of a protein interaction network in pathological conditions is 

especially critical for complex diseases such as cancer or rare conditions related to the 

malfunction of the Ras signaling pathway (RASopathies) [82]. In addition to understanding the 

systemic effect of targeting one protein, a detailed description of a pathological network can 

help to identify specific protein-protein interactions as potential targets to be analyzed and 

modulated according to the interaction profiling.  

Modulating protein-protein interactions of therapeutic interest with small-molecules is 

a long-sought goal in drug discovery. Several examples of antibodies and peptides capable of 

inhibiting PPIs have been reported. Monoclonal antibodies can target the protein-binding 

surface of one of the proteins, and mimetic peptides can replace the interaction surface of one 

of the proteins. But the low bioavailability of antibodies and peptides does not make them very 

attractive for therapeutic purposes. Small-molecules show many more advantages over large 

protein competitors, especially from a kinetic perspective [30]. Success in modulating PPIs with 

small-molecules for therapeutic purposes clearly depends on the target type [83], and this is 

why the characterization of protein-protein interfaces is so important. In the last decades, 
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increasing knowledge on small-molecules capable of inhibiting protein-protein interactions is 

available in hand-curated databases such as TIMBAL [84], 2P2I [85] and iPPI-DB [86,87]. TIMBAL 

database holds a wide diversity of PPI inhibitors, including peptides, useful for helping to 

characterize which type of molecules could be involved in protein interfaces [84]. The small-

molecule compounds annotated in TIMBAL tend to be large and lipophilic, engaged in 

hydrophobic contacts, and involved in fewer hydrogen bounds [84]. 2P2I is a hand-curated 

database combined with an automated extractor from ChEMBL, and holds all structural 

information involving small-molecule inhibitors of protein-protein complexes. Interestingly, the 

protein-protein interfaces of the complexes in 2P2I database are smaller, more hydrophobic, 

with less charged residues and more non-polar atoms than those of standard hetero-dimeric 

complexes [85]. Finally, iPPI-DB database aims to compile the diversity of profiles of inhibitors 

of PPI in order to enable a rational characterization of the PPI inhibitor chemical space [86,87]. 

This database includes physicochemical and pharmacological data in addition to the profile of 

the PPI target.  

Thus, the identification of small-molecule inhibitors of PPIs is not an easy task. Known 

PPI inhibitors do not have high similarity to traditional inhibitors of enzymes and receptors [30], 

showing physicochemical properties that may violate traditional rules such as the Lipinski's Rule 

of Five [88]. The molecular size of known small-molecule inhibitors of PPIs is around 500-900 Da, 

with Ki values of less than 1µM. In many cases (e.g. IL-2, HDM2, HPV E2), this value is in the mid-

nanomolar to low-nanomolar range, comparable to the binding affinity of the protein-protein 

complex [30]. There are currently some small-molecule inhibitors of PPIs in clinical trials, and a 

few of them have been approved by the Food and Drug Administration (FDA). Table 1 shows 

small-molecule drugs that are targeting PPIs [89,90]. Considering the difficulties for a potential 

drug to reach the clinical trials stage, a lot of attention is focused onto drugs that have already 

passed clinical trials or have been accepted for medical use. The case of Gabapentin is an 

interesting example of drug repositioning. This drug was originally designed to mimic the 

chemical structure of neurotransmitter GABA, and was used as a treatment for epilepsy. But 

later it was found that this drug significantly reduced PKCε translocation by competitively 

inhibiting the interaction with the pronociceptive peptides bradykinin and prokineticin 2, and it 

is now widely used to relieve neuropathic pain in patients with amyotrophic lateral sclerosis 

(ALS) [91]. 
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[TABLE 1 HERE] 

 

 

 

 

3. Rational discovery of new modulators of protein-protein interactions 

3.1. Major challenges for rational drug design targeting protein-protein interactions 

Targeting protein-protein interactions with small-molecules is highly challenging. Protein-

protein interfaces are usually larger than traditional protein-ligand interactions, and they are 

mostly flat, showing a large variety of topologies [89,92]. For this reason, known inhibitors of 

protein-protein interactions do not show high similarity to traditional inhibitors of enzymes and 

receptors [30], and usually exhibit physicochemical properties that may violate traditional rules 

such as the Lipinski's Rule of Five [88]. 

Perhaps the first difficulty for rational design is to find a correct spot to be targeted by 

small-molecule. Contrary to traditional targeting of enzymes and membrane receptors, in which 

the known active site is used as starting point for drug discovery, identifying suitable cavities in 

protein-protein interfaces is extremely difficult since natural protein-protein complexes have 

not evolved to host cavities for small ligands. Fortunately, protein-protein contact surfaces are 

not rigid in solution, and conformational motions at local level (basically side-chains and loops) 

can induce transient openings in the protein surface [30,93]. These small perturbations have 

been detected by molecular dynamics simulations, making them a suitable target surface for 

binding of small-molecules [30].  

Provided that transient cavities can be generated by molecular dynamics, the question 

is, how can we identify those potentially useful cavities in the different conformations generated 

during the dynamics? There are many freely-available computational tools for the identification 

of cavities in the protein surface, like Fpocket [94], PASS [95] or QsiteFinder [96]. Most of these 

tools were developed to locate surface pockets involving active sites or natural substrate binding 
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sites. Whether they can be also efficient for the identification of suitable pockets for PPI 

inhibitors within protein-protein interfaces is yet to be evaluated.  

Once transient pockets can be generated by molecular dynamics simulations, and 

identified by cavity predictor methods, the next problem is how to select the most suitable 

transient cavity for small-molecule positioning. The starting position for further docking or 

virtual ligand screening studies is critical, since the small-molecule inhibitor needs to bind at the 

optimal site in order to efficiently compete with a large protein. In addition, many small-

molecule inhibitors of protein-protein interactions are still larger than traditional enzyme 

inhibitors, so in order to identify a suitable cavity for these cases, more than one predicted 

pocket might need to be merged [97] or combined for a fragment-based drug design strategy 

[98]. This would involve different computational problems, such as efficiently clustering the 

many detected pockets, or selecting a suitable threshold size for the pocket (small pockets might 

not cover the entire inhibitor, while large pockets would not be adequate for a small-molecule 

inhibitor) (Figure 4).    

 

[FIGURE 4 HERE] 

 

 

3.2. Hot-spots can focus the search for inhibitors of protein-protein interactions  

Protein-protein interfaces that have already been successfully targeted by small-molecule 

inhibitors tend to have extended binding grooves that may be split into different sub-pockets 

[99,100] (Figure 4). Very often, hot-spot residues are located nearby these pockets and are 

complementary on both sides of the interface. In addition, small conformational changes in the 

binding site makes a pocket deeper when bound to a small-molecule than to the partner protein 

[101]. Finally, PPIs with known small-molecule inhibitors tend to have small, high-affinity 

interfaces and include a hot segment that is essential for the binding to the partner protein [100]. 

In addition, druggable hot-spots at protein-protein interfaces with a general tendency to bind 

organic compounds have been reported. These druggable hot-spots show significant 

conformational flexibility to facilitate the accommodation of a ligand of drug-like dimensions  

[102]. 

 Thus, targeting hot-spot residues at protein-protein interfaces with small-molecules 

seems to be a reasonable strategy to disrupt protein-protein interactions. By targeting hot-spots, 



15 
 

a small-molecule could break critical interactions and be able to compete with a large protein-

protein interface. This has been extensively applied to the discovery of PPI inhibitors, in some 

cases yielding potent and selective compounds [42,103–105]. The knowledge of interface and 

hot-spot residues based on the complex structures of several inhibitors can be used to localize 

the binding pocket [106]. In one interesting example, predicted hot-spots are used for the 

rational design of small-molecule compounds capable of blocking the IFN-α / receptor 

interaction. Hot-spots were predicted with iPred, then pharmacophore search was performed 

with VirtualLigand, and final docking of candidate compounds was done with Gold [107]. 

Computational docking can help to model protein-protein complexes of therapeutic interest and 

predict hot-spot residues, which can be helpful for developing drug discovery programs aiming 

to target protein-protein interactions with no available structure (Figure 5). 

The use of hot-spots can be complemented by other computational approaches based 

on the use of peptides and protein fragments [104,108], fragment docking and coevolutionary 

analysis [109], or ligand docking to locate protein-protein interfaces and potentially druggable 

sites  [110]. 

 

[FIGURE 5 HERE] 

 

3.3. Stabilizing protein-protein interactions 

The stabilization of protein-protein interactions by small-molecule compounds is an alternative 

strategy to modulate interactions of pathological interest. Although it has received much less 

attention in drug discovery, some of the FDA-approved drugs modulating PPIs are actually 

stabilizers (Table1). Small molecules known to stabilize protein-protein interactions need to bind 

simultaneously both protein partners, and therefore they are usually involved in druggable 

pockets from the two interacting proteins [111]. Therefore, these molecules are highly selective 

against a specific protein-protein complex, while PPI inhibitors usually bind to only one of the 

protein partners. 

 Besides the above mentioned difficulties in designing PPI inhibitors, the identification of 

PPI stabilizers encounters additional difficulties, such as the lack of understanding of the 

mechanisms and underlying principles of PPI stabilization, and the poor representation of PPI 

stabilizer chemical space in current small-molecule libraries [111]. The large variation of 

molecular structures found for PPI stabilizers (from large macrocycles to small hydrophobic 

compounds) makes it difficult to establish consensus chemical principles for these compounds 
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[111]. Indeed, most of the reported cases of PPI stabilization have been serendipitously found, 

and only a few of them have been rationally designed [111]. Although interface hot-spot 

residues could be also useful to locate potential pockets for PPI stabilizers, as in the case of PPI 

inhibitors, the identification of druggable pockets that could be optimal for the stabilization of 

protein-protein interactions needs still further efforts from the drug discovery community. 

 

 

4. Conclusions 

Protein-protein interactions are essential in life processes, and their perturbation, very often by 

missense mutations, can lead to pathological situations. As a consequence, they are increasingly 

seen as attractive targets for drug discovery. However, rational design of small-molecule 

compounds targeting protein-protein interfaces presents important challenges. The strategy of 

choice is usually to target interface hot-spot residues, but their experimental identification 

needs exhaustive alanine-scanning and biophysical characterization. We have reviewed here 

different computational methods that are available to help in the identification of such hot-spot 

residues. When the complex structure is not available, additional computational interface 

analysis and docking approaches are needed. Finally, transient cavities for ligand binding can be 

modelled by molecular dynamics. All these computational methods can complement 

experimental efforts and help to rationalize the discovery of small compounds capable of 

modulating protein-protein interactions of therapeutic interest. 

 

5. Expert opinion 

A major problem is that all of the discussed strategies to identify binding cavities in protein-

protein interfaces need the structure of the complex, which is not available in the majority of 

complexes. Thus, identifying binding sites in the unbound forms of the interacting proteins is a 

desirable goal, but much more challenging than on the holo structures, because in many cases 

these pockets may show large conformational rearrangement and thus remain mostly hidden in 

the apo state (so-called cryptic sites). Recent studies have found that these cryptic sites tend to 

be conserved in evolution and could be identified by using machine learning methods [112]. The 

combination of molecular dynamics and docking predictions could also help to identify these 

sites. A sensible strategy would be to apply molecular dynamics to the unbound form of the 

protein, identify all transient pockets generated in the different conformers with methods like 
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MDpocket [113] or Caver[114], then apply protein docking and hot-spot predictions [80] to 

locate the interface and the important residues to target, and finally select the most suitable 

transient pockets to start virtual screening and ligand docking procedures. One example is the 

interaction between TGF-β Type I receptor with FKBP12, for which several disease-related 

mutations are annotated, and several functional inhibitors have been described [115]. 

Interestingly, one of the "unclassified" mutations is involving a binding hot-spot residue 

predicted by docking, which could be used to redefine their pathogenic character (Figure 6). 

Further molecular dynamics could help to find transient pockets around this hot-spot residue 

and be the basis of future drug development programs.  

 

[FIGURE 6 HERE] 

 

An interesting aspect to explore in the future is the integration of these strategies for 

targeting PPIs with large-scale mutational analysis. Characterization of the effect of a 

pathological mutation on the network of protein-protein interactions in human could help to 

identify potential targets for therapeutic intervention. Candidate targets for that would be 

protein-protein interactions whose binding energy are directly affected by the mutation. The 

majority of mutations affecting protein-protein interfaces are expected to be destabilizing, but 

a significant percentage of them (20% according to SKEMPI database) makes the interaction 

stronger. In other situations, over-expressed proteins by a mutation in a regulatory gene or over-

activated proteins by a mutation affecting its structure or dynamics could be involved in protein-

protein interactions that would need to be blocked for therapeutic purposes. For instance, over-

expression of interleukin-8 (IL8) has been associated with KRAS mutations in tumors, and thus 

the interaction of IL8 with their receptors CXCR1 or CXCR2 has been proposed as an attractive 

therapeutic target in cancer [116]. It could also happen that a protein-protein interaction 

acquires a new unwanted role due to homeostatic compensation of the network upon a given 

mutation or other pathological situations. As an example, IL-2 levels are raised in normal 

immune response, but unwanted high IL-2 levels are also found in pathological situations as in 

autoimmune disease or graft rejection in organ transplantation. In these situations, the 

otherwise normal interaction of IL-2 with IL-2R produces unwanted effects, and thus constitutes 

a known drug target for which several inhibitors have been identified (see Table 1) [117]. In all 

these situations, the modulation of a target protein-protein interaction by a small-molecule 

could restore normal function, and thus such compound could have the potential to be further 
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developed into a therapeutic drug. Large-scale annotation of disease-related mutations thanks 

to lower sequencing costs could bring a wealth of protein-protein interactions that could be 

potentially used as targets for drug discovery. Then, it would be essential to integrate structural 

characterization, dynamics and hot-spot analysis, before attempting to rational design small-

molecule inhibitors that could target such interactions. 
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FIGURE LEGENDS 

 

Figure 1. Effects of pathological mutations on protein-protein interaction networks. 

The network of protein interactions for ETFB according to Interactome3D 

(https://interactome3d.irbbarcelona.org/) is represented. The proteins are represented in 

nodes (ETFB in square, interacting partners in circles) and the interactions by edges (blue if there 

is a complex structure available; grey otherwise). The effect of mutations in ETFB can be 

disruptive (removal of all interactions), neutral (no interactions affected), or edgetic (only 

specific interactions are affected, with effects ranging from complete removal, weakening or 

strengthen them). All these no neutral effects can cause a modification or even rewiring on the 

entire network. 

 

Figure 2. Type of interface residues. 

The protein-protein complex structure between Xiap-BIR3 (surface) and Caspase (ribbon) (PDB 

1NW9) is shown. Protein-protein interface of Xiap-BIR3 is represented with the three classes of 

interface regions: core (yellow), rim (blue) and support (green). Known hot-spot residues for this 

interaction are also shown (red sticks). 

 

Figure 3. Binding hot-spot residues are critical for the interaction. 

(A) The human TGF-β type II receptor extracellular domain is shown in white surface, with the 

most important residues (hot-spots) for binding to TGF- β3 according to SKEMPI database in red. 

On the right, the complex structure is also shown, with ligand in white ribbon (PDB 1KTZ). (B) In 

red are shown the hot-spot residues predicted from pyDock docking calculations, with NIP > 0.2. 

They are consistent with the known experimental hot-spots, and are located at the interface in 

the complex structure. 

 

Figure 4. Binding cavities are difficult to identify at protein-protein interfaces.  

Bcl-Xl / Bak complex is a clear example of the problems arising when trying to find binding 

pockets at protein-protein interfaces. Protein-protein interfaces may have large flat pockets that 

are difficult to identify with methods originally developed to detect deep cavities, such as 

Fpocket. (A) Bcl-Xl (white surface) is shown in the complex (PDB 2YXJ) with one of the known 
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inhibitors (in green) for the interaction with Bak. The cavity predictor Fpocket identifies two 

different pockets at the inhibitor binding site, which corresponds with the two deep sub-pockets 

(orange and pink) in which the inhibitor anchors to Bcl-Xl surface. (B) Bcl-xL is shown in complex 

(PDB 1YSG) with two small molecules that need to bind simultaneously to inhibit interaction 

with Bak. In this case, Fpocket detects the two binding sites (pink and orange), which could be 

merged into a single one and overlap with a longer inhibitor. These problems should be 

considered when devising virtual screening or fragment-based search of inhibitors. 

 

Figure 5. Computational approaches for rational drug discovery targeting protein-protein 

interactions.  

This shows a scheme of a general pipeline for drug discovery targeting protein-protein 

interactions, focusing on the different computational approaches that can help in each phase. 

An important part of target characterization is the identification of hot-spot residues in protein 

interfaces. Docking-based hot-spot prediction can help to locate binding cavities for hit 

identification, as well as in the process of lead optimization. 

 

Figure 6. Hot-spot residues and pathological mutations in the interaction between Type I TGF-

β receptor with FKBP12. 

The x-ray structure of the complex between Type I TGF-β receptor (surface) and FKBP12 (ribbon) 

is shown (PDB 1B6C). (A) Residues involving mutations annotated in Humsavar (pathological: 

T200I, S241L, D266Y; unclassified: N267H) are shown in blue or magenta. Predicted hot-spot 

residues by docking (using pyDock NIP values) are shown in red or magenta. Interestingly, N267 

residue (from N267H mutation, annotated as unclassified) is predicted as hot-spot (magenta). 

(B) Detail of protein-protein interface. Residues involving mutations T200I, D266Y, and N267H 

are shown before (left) and after modeling mutation (right).  
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Table 1. FDA-approved drugs that are targeting protein-protein interactions [89,90]. 

PPI target  Drug Disease PDB ID Drug Bank ID 

PPI inhibitors 

Bcl-2 family Venetoclax Cancer - DB11581

BIII Gabapentin 
 

Epilepsy 1st; Neurophatic pain - DB00996 

c-Myc/Max
 

Nadroparin Cardiovascular - DB08813 

CCR5/gp120 Maraviroc HIV 4MBS DB04835 

HIF-1a Carvedilol Cardiovascular - DB01136 

IL-2/IL2-R Apremilast Psoriatic arthritis - DB05676 

KEAP1/NRF2 Dimethyl fumarate Multiple Sclerosis - DB08908 

LFA1/CAM1 Lifitegrast Dry eye - DB11611 

PPAR-gamma/NCOA Rosiglitazone Diabetes 4EMA DB00412 

Rac1 Azathioprine Asthma - DB00993 

S100B/p53 Olopatadine Itching eyes - DB00768 

STAT5 Dasatinib Cancer - DB01254 

Tubulin Griseofulvin Tinea infections - DB00400 

αIIbβ3 Tirofiban Cardiovascular 2VDM DB00775 

PPI Stabilizers 

Cyclophilins Cyclosporine Gaft rejection 1CWA DB00091 

Immonuglobulin FKBP1A Tacrolimus Imunosuppressor (after transplant) 1FKJ DB00864 

Transthyretin/RBP Diflunisal Reumathoid arthritis and osteoarthritis 3D2T DB00861 
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