981 research outputs found

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Non-weighted aggregate evaluation function of multi-objective optimization for knock engine modeling

    Get PDF
    In decision theory, the weighted sum model (WSM) is the best known Multi-Criteria Decision Analysis (MCDA) approach for evaluating a number of alternatives in terms of a number of decision criteria. Assigning weights is a difficult task, especially if the number of criteria is large and the criteria are very different in character. There are some problems in the real world which utilize conflicting criteria and mutual effect. In the field of automotive, the knocking phenomenon in internal combustion or spark ignition engines limits the efficiency of the engine. Power and fuel economy can be maximized by optimizing some factors that affect the knocking phenomenon, such as temperature, throttle position sensor, spark ignition timing, and revolution per minute. Detecting knocks and controlling the above factors or criteria may allow the engine to run at the best power and fuel economy. The best decision must arise from selecting the optimum trade-off within the above criteria. The main objective of this study was to proposed a new Non-Weighted Aggregate Evaluation Function (NWAEF) model for non-linear multi-objectives function which will simulate the engine knock behavior (non-linear dependent variable) in order to optimize non-linear decision factors (non-linear independent variables). This study has focused on the construction of a NWAEF model by using a curve fitting technique and partial derivatives. It also aims to optimize the nonlinear nature of the factors by using Genetic Algorithm (GA) as well as investigate the behavior of such function. This study assumes that a partial and mutual influence between factors is required before such factors can be optimized. The Akaike Information Criterion (AIC) is used to balance the complexity of the model and the data loss, which can help assess the range of the tested models and choose the best ones. Some statistical tools are also used in this thesis to assess and identify the most powerful explanation in the model. The first derivative is used to simplify the form of evaluation function. The NWAEF model was compared to Random Weights Genetic Algorithm (RWGA) model by using five data sets taken from different internal combustion engines. There was a relatively large variation in elapsed time to get to the best solution between the two model. Experimental results in application aspect (Internal combustion engines) show that the new model participates in decreasing the elapsed time. This research provides a form of knock control within the subspace that can enhance the efficiency and performance of the engine, improve fuel economy, and reduce regulated emissions and pollution. Combined with new concepts in the engine design, this model can be used for improving the control strategies and providing accurate information to the Engine Control Unit (ECU), which will control the knock faster and ensure the perfect condition of the engine

    Recent trends of the most used metaheuristic techniques for distribution network reconfiguration

    Get PDF
    Distribution network reconfiguration (DNR) continues to be a good option to reduce technical losses in a distribution power grid. However, this non-linear combinatorial problem is not easy to assess by exact methods when solving for large distribution networks, which requires large computational times. For solving this type of problem, some researchers prefer to use metaheuristic techniques due to convergence speed, near-optimal solutions, and simple programming. Some literature reviews specialize in topics concerning the optimization of power network reconfiguration and try to cover most techniques. Nevertheless, this does not allow detailing properly the use of each technique, which is important to identify the trend. The contributions of this paper are three-fold. First, it presents the objective functions and constraints used in DNR with the most used metaheuristics. Second, it reviews the most important techniques such as particle swarm optimization (PSO), genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), immune algorithms (IA), and tabu search (TS). Finally, this paper presents the trend of each technique from 2011 to 2016. This paper will be useful for researchers interested in knowing the advances of recent approaches in these metaheuristics applied to DNR in order to continue developing new best algorithms and improving solutions for the topi

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Metaheuristic optimization of power and energy systems: underlying principles and main issues of the 'rush to heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions containing applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods based on weak comparisons. This 'rush to heuristics' does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter, but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems, and aims at providing a comprehensive view of the main issues concerning the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls found in literature contributions are identified, and specific guidelines are provided on how to prepare sound contributions on the application of metaheuristic algorithms to specific problems

    An overview of population-based algorithms for multi-objective optimisation

    Get PDF
    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided

    On Continuation Methods for Non-Linear Bi-Objective Optimization: Certified Interval-Based Approach

    Get PDF
    The global optimization of constrained Non-Linear Bi-Objective Optimization problems (MO) aims at covering their Pareto-optimal front which is in general a manifold in R^2. Continuation methods can help in this context as they can follow a continuous component of this front once an initial point on it is provided. They constitute somehow a generalization of the classical scalarizing framework which transforms the bi-objective problem into a parametric mono-objective problem. Recent works have shown that they can play a key role in global algorithms dedicated to bi-objective problems, e.g. population based algorithms, where they allow discovering large portions of locally Pareto optimal vectors, which turns out to strongly support diversification. In this paper, we provide a survey on continuation techniques in global optimization methods for MO, which allow discovering large portions of locally Pareto-optimal solutions. We also propose a rigorous active set management strategy on top of a previously proposed certified continuation method based on interval analysis, and illustrate it on a challenging bi-objective problem
    • …
    corecore