473 research outputs found

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    Discrete Wavelet Transformation Implementation in GPU through Register Based Strategy

    Get PDF
    The significant architectural changes made by Nvidia during the launch of Kepler architecture in 2012, upgraded its GPUs with greater register memory and rich instructions set to have communication between registers through available threads. This created a potential for new programming approach which uses registers for sharing and reusing of data in the context of the shared memory. This kind of approach can considerably improve the performance of applications which reuses implied data heavily. This work is based upon of register-based implementation of the Discrete Wavelet Transform (DWT) with the help of CUDA and openCV. DWT is the data decorrelation approach in the area of video and image coding. Results of this particular approach indicate that this technique performs at least four times better than the best GPU implementation of the DWT in past. Experimental tests also prove that this approach shows the performance close to the GPUs performance limits

    Implementing 3D Warping Method In Wavelet Domain

    Get PDF
    A wide class of operations on images can be performed directly in the wavelet domain by operating on coefficients of the wavelet transforms of the images and other matrices defined by these operations. Operating in the wavelet domain enables one to perform these operations progressively in a coarse-to-fine fashion, operate on different resolutions, manipulate features at different scales, and localize the operation in both the spatial and the frequency domains. Performing such operations in the wavelet domain and then reconstructing the result is also often more efficient than performing the same operation in the standard direct fashion. Performing 3D warping in the wavelet domain is in many cases faster than their direct computation. In this paper we demonstrate our approach both on still and sequences of images

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join

    Multiprocessor DSP Implementation of the JPEG 2000 Codec

    Get PDF
    The transition to JPEG2000 from other image formats such as standard JPEG offers im proved compression and image quality, yet has not been widely adopted in practice. This is mainly due to the complexity of the JPEG2000 algorithm. Standard JPEG uses the Discrete Cosine Transform (DCT) and Huffmann encoding to achieve its compression, whereas JPEG2000 uses the wavelet transform and arithmetic encoding. Due to the wide acceptance of JPEG, there are processors such as Equator Technology\u27s BSP-15 digital signal processor (DSP) that have been designed with features specifically for JPEG appli cations. For some of the current digital printing applications where JPEG is used, images must be encoded and decoded at rates exceeding 100 pages per minute. A multiprocessor environment consisting of Equator Technology\u27s BSP-15 processors may offer acceptable performance for the JPEG2000 codec. The aim of this work is to design a JPEG2000 codec for the BSP-15 processor and to determine if this processor is capable of delivering the performance required by high end digital printers. The features of the BSP-15 that are well suited for the JPEG2000 algorithm will be discussed, as well as future improvements that could be incorporated into the architecture. By analyzing the advantages and disadvantages of this processor, the next generation of processors may be able to offer features that will allow it to excel in JPEG2000 processing. A multiprocessor DSP implementation of the JPEG2000 codec is the main result of this work. The resulting codec is able to provide more than double the processing throughput of existing JPEG2000 software

    Multimedia Applications of the Wavelet Transform

    Get PDF
    This dissertation investigates novel applications of the wavelet transform in the analysis and compression of audio, still images, and video. Most recently, some surveys have been published on the restoration of noisy audio signals. Based on these, we have developed a wavelet-based denoising program for audio signals that allows flexible parameter settings. The multiscale property of the wavelet transform can successfully be exploited for the detection of semantic structures in images: A comparison of the coefficients allows the extraction of a predominant structure. This idea forms the basis of our semiautomatic edge detection algorithm. Empirical evaluations and the resulting recommendations follow. In the context of the teleteaching project Virtual University of the Upper Rhine Valley (VIROR), many lectures were transmitted between remote locations. We thus encountered the problem of scalability of a video stream for different access bandwidths in the Internet. A substantial contribution of this dissertation is the introduction of the wavelet transform into hierarchical video coding and the recommendation of parameter settings based on empirical surveys. Furthermore, a prototype implementation proves the principal feasibility of a wavelet-based, nearly arbitrarily scalable application. Mathematical transformations constitute a commonly underestimated problem for students in their first semesters of study. Motivated by the VIROR project, we spent a considerable amount of time and effort on the exploration of approaches to enhance mathematical topics with multimedia; both the technical design and the didactic integration into the curriculum are discussed. In a large field trial on "traditional teaching versus multimedia-enhanced teaching", the objective knowledge gained by the students was measured. This allows us to objectively rate positive the efficiency of our teaching modules

    Robust digital watermarking for compressed 3D models based on polygonal representation

    Get PDF
    Multimedia has recently played an increasingly important role in various domains, including Web applications, movies, video game and medical visualization. The rapid growth of digital media data over the Internet, on the other hand, makes it easy for anyone to access, copy, edit and distribute digital contents such as electronic documents, images, sounds and videos. Motivated by this, much research work has been dedicated to develop methods for digital data copyright protection, tracing the ownership, and preventing illegal duplication or tampering. This paper introduces a methodology of robust digital watermarking based on a well-known spherical wavelet transformation, applied to 3D compressed model based on polygonal representation using a neural network. It will be demonstrated in this work that applying a watermarking algorithm on a compressed domain of a 3D object is more effective, efficient, and robust than when applied on a normal domain
    • …
    corecore