
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1140
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Discrete Wavelet Transformation Implementation in GPU through Register

Based Strategy

Hemkant Balasaheb Gangurde

Department of Computer Engineering

MET's Institute of Engineering

Nashik, India

gangurdehemkant@gmail.com

M. U. Kharat

Department of Computer Engineering

MET's Institute of Engineering

Nashik, India

mukharat@rediffmail.com

Abstract— The significant architectural changes made by Nvidia during the launch of Kepler architecture in 2012, upgraded its

GPUs with greater register memory and rich instructions set to have communication between registers through available threads.

This created a potential for new programming approach which uses registers for sharing and reusing of data in the context of the

shared memory. This kind of approach can considerably improve the performance of applications which reuses implied data

heavily. This work is based upon of register-based implementation of the Discrete Wavelet Transform (DWT) with the help of

CUDA and openCV. DWT is the data decorrelation approach in the area of video and image coding. Results of this particular

approach indicate that this technique performs at least four times better than the best GPU implementation of the DWT in past.

Experimental tests also prove that this approach shows the performance close to the GPUs performance limits.

Keywords- CUDA, DWT, Kepler, Nvidia, OpenCV

__*****___

I. INTRODUCTION

 The computational power of GPUs is growing notably day

by day. Previously GPUs were only used to decrement the

graphics rendering burden due to CAD (computer-aided

design) or high graphics video games on CPUs. GPUs are

currently used for mainstream applications as well. During

the evolution of GPUs, it has gone through major changes in

its architecture. The most important change was the release

of Compute Unified Device Architecture (CUDA) in 2006

of the Nvidia, which provided architectural tools for general

purpose computing together along with C-compiler for the

GPU to have GPU programming. While using GPU for the

implementation of mainstream application one must have to

take care so that the potential of the GPU capacities get fully

exploited. Managing the data internally is the important

aspect. The important factor in GPU-based implementation

is storing required data in the legitimate memory areas.

Memory space of GPU is divided into three areas: global

memory, shared memory, and register-based memory.

Global memory is the largest, situated off-chip DRAM

which shows the largest latency. Register and the shared

memory are present on-chip and do get managed

accordingly. In comparison, they are much faster in

comparison with global memory, but their size is much

smaller. The important deviation between the register

memory and the shared memory is that use of shared

memory is more common in order to store and reusing

intermediate results and sharing data between threads

efficiently. The arithmetic and logical operations are

performed in register memory where threads are private in

registers.

During the launch of CUDA, Nvidia has released the

guidelines [2] which have strongly recommended using

shared memory space for the operations such as sharing and

reusing of data. These recommendations were challenged by

Volkov and Demmel [3][4], who explored that an extreme

use of the shared memory may decrement the level of

performance. Three factors are responsible for this. The first

one is the bandwidth associated with shared memory that,

though it is very high, it might act as the bottleneck for the

applications which uses previously used data heavily. The

next factor is that ALU dependent operations whose data is

present in the shared memory space must be required to

move it to registers before performing the operations. The

last one is that the size of shared memory space is

considerably lesser in comparison with register memory

space. Volkov and Demmel [3][4] shown that it is possible

to gain the GPU's level of performance by directly using the

register memory, by decreasing the interference of the

shared memory. These results suggested that performance

can be maximized by making register memory space as local

storage place when data reusing is the must.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1141
IJRITCC | June 2017, Available @ http://www.ijritcc.org

In Kepler architecture launched in 2012, the size of the

register memory space is made twice as previous, and the

quantity of registers which single thread can able to manage

is made four times as that of the previous, also a new

instructions set is introduced in order to enable the data

sharing in the register space. These improvements helped

register based implementations in order to code the GPU.

Which is an emerging programming approach to have the

better and faster implementation of the applications which

can able to use GPUs efficiently.

 The DWT (Discrete Wavelet Transformation) is a wavelet

transformation implementation based on a discrete set of the

wavelets and translations following some predefined rules.

Discrete Wavelet Transformation decomposes the signal

into mutually orthogonal wavelets set, this is an important

deviation from the continuous wavelet transform or its

implementation for the discrete time series sometimes called

discrete-time continuous wavelet transform.

A GPU-based implementation using Nvidia hardware

needs the understanding of CUDA. CUDA stands for

Compute Unified Device Architecture. CUDA is launched

by Nvidia in 2006, as a platform for parallel computation

and an API for GPU programming. CUDA permitted

software and hardware developers to make use of CUDA-

enabled graphics processing unit for general purpose

processing which is also known as General Purpose

computing on Graphics Processing Units (GPGPU). It

creates a software level access which allows direct access to

the GPU’s instruction and parallel computational elements,

in order to execute compute kernels. This platform can be

used with high-level programming languages such as C,

C++, and FORTRAN. This enables to specialists in this

languages to program the GPU which was only possible

previously for the experts in technologies such as OpenGL

and Direct3D. Furthermore, CUDA is compatible with

frameworks like OpenACC as well as OpenCL.

This work has included OpenCV to perform experiments

on images in order to obtain the intensity of the samples

(pixels). OpenCV (Open Source Computer Vision Library)

is an open source computer vision and machine learning

software library. OpenCV is mainly written in c++ which is

the container of more than 2000 useful algorithms for the

image processing and machine learning. Its interfaces are

available for other platforms like Java and .Net. The purpose

of inclusion of openCV in this work was to perform

operations on real images in order to provide the results for

the register based implementation of DWT.

This work explores the register based implementation

strategy for the DWT [1] with the help of openCV. Discrete

Wavelet Transformation which is a technique for data

decorrelation in the area of video and image programming.

It’s usage found in international standards of compression,

which include JPEG, also in a number of coding schemes

which includes SPIHT, EBCOT, or SPECK. In order to

implement the DWT using GPU as hardware data reuse

must be considered significantly. Various strategies are

present in the literature so that data could be reused

efficiently. The use of a register based implementation

allows an approach which is very much deviated from

previous methods. Register based implementation of DWT

needs to be implemented from start. The significant aspects

of this strategy are partitioning of data and mapping of

thread and associated data. This strategy gains speedups of 4

times in comparison with the best techniques present in the

previous work.

II. LITERATURE SURVEY

 Since a lot of work and efforts has been taken while

providing the efficient way to implement the DWT. In this

section, we had discussed existing techniques used to

implement DWT.

 The implementations before emerging of CUDA, DWT

were employed over a number of devices and different

programming languages based upon GPU as a hardware.

The implementation proposed in [5][6], was based on

OpenGL which introduced a decomposition of wavelets and

recreation of the algorithm, which directly deals with the

graphics hardware of OpenGL workstations as well as

increases the speed of time taking filtration steps resulting

into time-saving. This particular approach has used the

convolution method as well as color matrix combined with

OpenGL's in order to scale images in the process of copying

the instructions, they performed all required stages of 2D

tensor product wavelet filtering instead of copying data from

or to the machine's main memory, resulting into avoiding

typical bottlenecks which may occur in the visualization

cycle. OpenGL is a cross language and platform API for

rendering two-dimensional and three-dimensional graphics.

This application programming interface is majorly used to

have communication with GPU in order to gain fast graphics

rendering. Whereas [7], [8] employed OpenGL as well as

Computer graphics together. Lots of these older approaches

were based on convolution technique.

DWT was evaluated for the first time using lifting

scheme [8]. In this work they explored a simple and

powerful and efficient solution in order to implement two-

dimensional DWT on the consumer level hardware (GPU).

This approach does not need any expensive hardware to

achieve better performance. This method proved that

implementation can be done on any SIMD graphics

processing unit. This technique unites the mathematically

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1142
IJRITCC | June 2017, Available @ http://www.ijritcc.org

deviated forward and inverse discrete wavelet

transformations. Even the convolution-based method was

popular previously as the lifting scheme needed intermediate

results to be shared in between the coefficients. Tools were

unavailable to implement lifting scheme efficiently in the

past. Which was confirmed in [9] experimentally, in [9] the

two approaches, convolution and the lifting scheme were

implemented and compared for the performance together.

The general purpose architecture of graphics processing

unit (GPU), as well as associated tools for programming

GPU, were lacking in the previously mentioned pre-CUDA

implementations. The tasks involved in the DWT must be

related to graphics operations, which found to be limited in

past. Even these techniques were far faster compared to a

CPU-based implementation, their performance could have

been more with current GPUs which having an advanced

memory arrangement for GPU programming. One of the

most important thing in present CUDA based

implementations is the way in which image partitioning

takes place in order to allow parallel implementation

scheme. There are three main strategies applied for

partitioning, called row-column scheme, row-block scheme,

and block-based scheme.

 The earliest implementation based upon CUDA of DWT

was mentioned in [10]. Which uses the row-column

approach. At a start, a block of the thread does load a row of

an image in shared memory space then threads compute

horizontal filtering process on that row. First CUDA based

implementation which combines lifting scheme as well as

block-based scheme to implement DWT was addressed in

[11]. The important factor of this approach was that it

decreases the number of transfers to the global memory as it

evaluates horizontal and the vertical filtering in a one

computation step. In this method, the image is partitioned

into rectangular blocks that need to be loaded in the shared

memory by a thread block. Then horizontal filtering and the

vertical filtering are performed to these blocks, in this, there

is no need of memory transfer operation or need of

performing transpose of the matrix. The setback in this kind

of approach is that there are dependencies of data between

blocks which are next to each other. These dependencies are

not taken care in [11]. The simple solution here is to extend

all blocks with a certain number of rows and columns which

overlap with blocks next to each other. The fastest

implementation of the Discrete Wavelet Transformation was

present in the literature, which was explored in [12]. In this

approach, the row-block partitioning technique was used,

which can work on any number of dimensions. They

compared their method to an optimized CPU

implementation of the lifting scheme, to another (non-

CUDA based) GPU wavelet lifting method, and also to an

implementation of the wavelet transform in CUDA via

convolution.

III. SYSTEM ARCHITERCTURE

Figure 1. DWT two level decomposition architecture

Figure 1. shows the basic system architecture. Input is

provided as an image to the system and based upon the

number of decomposition levels applied the operations will

be carried out.

In Figure 1. the two decomposition levels has been

shown which may vary based upon the requirements. Finally

after performing the DWT operation profiling of GPU will

be executed in order to express various GPU parameter (e.g.

execution time, throughput).

IV. ALGORITHM

 The algorithm provided below gives a glance at CUDA

kernel implementation in the register based strategy. This is

an algorithm for the forward Discrete Wavelet

Transformation. This CUDA kernel function is executed by

all the threads present in the each warp simultaneously. This

algorithm takes parameters such as (i) thread identifier TI

(ii) first column and row of an image related to the block

computed by current warp (i.e., P; Q) (iii) starting column

and row of the wavelet sub-bands in which the current warp

must leave the resulting coefficients (i.e., PS; QS). The

height of the block is denoted by B' and is a constant.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1143
IJRITCC | June 2017, Available @ http://www.ijritcc.org

1: Allocation of K[B'][2] in register based memory space

2: y = 0

3: while y < B'

4: start of while loop

5: K[y][0] = GM[Q+y][P+TI*2]

6: K[y][0] = GM[Q+y][P+TI*2+1]

7: y = y+1

8: end of while loop

9: j= 0

10: while j < J'

11: start of while loop

12: y=0

13: while y < B'

14: start of while loop

15: K' = (K[y][0],TI+1)

16: K[y][1] = K[y][1]- (K[y][0]+K')

17: K' = (K[y][1],TI-1)

18: K[y][0] = K[y][1]- (K[y][1]+R')

19: y = y+1

20: end of while loop

21: j = j+1

22: end of while loop

23: j=0

24: while j < J

25: start of while loop

26: y =1

27: while y < B'

28: start of while loop

29: K[y][0]= K[y][0] - (K[y-1][0] +K[y+1][0])

30: K[y][1]= K[y][1] - (K[y-1][1] +K[y+1][0])

31: y = y+2

32: end of while loop

33: y=0

34: while y < B'-1

35: start of while loop

36: K[y][0]= K[y][0] - (K[y-1][0] +K[y+1][0])

37: K[y][1]= K[y][1] - (K[y-1][1] +K[y+1][0])

38: y = y+2

39: end of while loop

40: j = j+1

41: end of while loop

42: for y {2J,2J+2,.....Y' -2J} do

43: GM[+ y/2][+TI] = K[y][0]

44: GM[+ y/2][+TI] = K[y][1]

45: end for

46: for y {2J+1,2J+3,.....Y' -2J+1} do

47: GM[+ y/2][+TI] = K[y][0]

48: GM[+ y/2][+TI] = K[y][1]

49: end for

In first stage, the algorithm given below do reserve the

registers required to the thread. Here registers are denoted

by K and global memory by GM. From line 2 to 8, thread

are reading from the global memory. Operation of horizontal

filtering is from line 9 to 22 and vertical filtering is from 23

to 41. Line 42 to 49 results are saved in global memory.

V. MATHEMATICAL MODELING

Let S be a system.

S= {I, F, O} Where,

I represent the set of inputs:

I= {I1, I2, I3, I4, I5, I6} where,

I1 Which filter to be used CDF 5/3 or CDF 9/7 will be

provided as a binary input.

I2 Number of random generated images.

I3 Size in both dimensions of the random generated

input image employed.

I4 Length of the Data block computed by each warp.

I5 Whether to use shuffle instructions or intermediate

buffer.

I6 Number of DWT decomposition levels applied.

F is the set of functions:

F= {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12};

where

F1 Performing 5/3 CDF.(FORWARD).

F2 Performing 9/7 CDF.(FORWARD).

F3 Performing 5/3 CDF.(REVERSE).

F4 Performing 9/7 CDF.(REVERSE).

F5 Performing vertical filter 5/3 (FORWARD).

F6 Performing vertical filter 5/3 (REVERSE).

F7 Performing vertical filter 9/7 (FORWARD).

F8 Performing vertical filter 9/7 (REVERSE).

F9 Performing Horizontal filter 5/3 (FORWARD).

F10 Performing Horizontal filter 5/3 (REVERSE).

F11 Performing Horizontal filter 9/7 (FORWARD).

F12 Performing Horizontal filter 9/7(REVERSE).

O is the set of outputs:

O= {C}

C The comparison of various GPU parameters of

forward and reverse DWT.

VI. ANALYSIS OF RESULTS

 The experimental results mentioned in this section are

carried out with a Nvidia GTX 650M CUDA v8.0 compiler

and on the operating system having a block size 512 bytes.

This GPU has 15 SMs and a peak global memory bandwidth

of 336 GB/s. These results are for the block size 128, which

is one of the recommended sizes to generate maximum

performance. Results here are collected with the help of

Nvidia profiler tool. The result indicated here are for both

http://www.ijritcc.org/
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_L_L
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_L_L
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_H_L
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_H_L
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_L_H
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_L_H
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_H_H
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ_H_H

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1144
IJRITCC | June 2017, Available @ http://www.ijritcc.org

5/3 CDF and 9/7 CDF with the help of image of size

768*768 and for 2160* 2160.

 The first experiment evaluates the performance achieved

by the proposed method and compares it to the best

implementation in the literature based upon the shared

memory strategy [12]. The strategy used in [12] is to obtain

the maximum performance using shared memory usage.

Figure 2. depicts the result for 5/3 CDF filter bank using the

image size of 768*768. As per the results, it gives a

significant amount of execution time difference (up to four

times) between the shared memory based approach and the

proposed (register based approach). In Figure.2 results are

for the two levels of DWT decomposition. Decomposition

levels can be changed as per the requirement of the

application.

 The size of an image is directly proportional to the

execution time of DWT kernels. Figure 3. explores the same

operation i.e. DWT using 5/3 CDF using a large image of

size 2160*2160.

 Figure 2. and Figure 3. results are for 5/3 CDF filter

bank. 9/7 CDF is another popular filter bank which is used

in jpeg standard. Figure 4. provides are the results for

768*768 image DWT using 9/7 CDF filter bank. When

register based strategy is used shuffled instructions are

enabled. It is easy to conclude from Figure 2. and Figure 4.

that the 9/7 CDF filter bank takes more time compared to

5/3 CDF for the same samples of input.

Figure 2. The results comparison for the cuda DWT kernels

for an image of size 768*768 with 5/3 CDF

Figure 3. The results comparison for the cuda DWT kernels

for an image of size 2160*2160 with 5/3 CDF

Figure 4. The results comparison for the cuda DWT kernels

for an image of size 768*768 with 9/7 CDF

The Figure. 5 explores the result of DWT using shared

memory and register based strategy for image size

2160*2160 using 9/7 CDF.

Figure 5. The results comparison for the cuda DWT kernels

for an image of size 2160*2160 with 9/7 CDF

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1140 – 1145

1145
IJRITCC | June 2017, Available @ http://www.ijritcc.org

VII. CONCLUSION

 This work provides the implementation of DWT

(Discrete Wavelet Transform) in GPU using register-based

strategy with the help of lifting scheme. Register based

strategy for DWT implementation does become possible in

recent CUDA based architecture because of increase in

register-based memory size and the introduction of the

instructions for the data sharing such as shuffle instructions.

Register based implementation in this system makes use of

openCV an open-source technology for image processing to

extract the image samples. It is possible that future

generations of GPU may be changed in the context of

architecture, but it is likely that these future GPUs still

provide or increase the amount of register memory. In this

strategy, all the operations are carried out using register-

based memory which eliminates the requirement of data

movement to conduct the ALU based operations which were

acting as performance bottleneck in case of the shared

memory based implementation. This system uses an

optimized block based partitioning scheme. It has a process

of thread to data mapping which allows assigning of the

warps in order to compute entire data of the single block.

Experimental results do indicate the significant decrease in

the execution times of DWT kernels due to the usage of

register memory space. Evidence in results indicates that

register based implementation of DWT provides

performance gain up to four times compared with the best

implementation found in the literature. The execution time

of DWT kernels is directly proportional to the size of an

image. This system does provide the implementation for

both 9/7 CDF and 5/3 CDF filter banks which are standard

in JPEG 2000 for the progressive lossy and lossless

compression techniques respectively. Experiments do

conclude that 9/7 CDF is more expensive in the context of

kernel execution timings as compared to 5/3 CDF filter

bank. Experimental analysis proves that this strategy

provides a memory-bounded implementation. The

bandwidth of global memory is near to the maximum which

can be achieved. As almost all global memory traffic can't

be avoided, it can be concluded that execution times

achieved for the DWT kernels are near to the hardware

limitations of current architecture.

References

[1] Pablo Enfedaque, Francesc Aul-Llinas and Juan C. Moure,

“Implementation of the DWT in a GPU through a Register-

based Strategy”, in IEEE Trans.Parallel Distrib. Syst, 2015,

pp 3394-3406.

[2] Nvidia, CUDA C Programming guide, 2014. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide.

[3] V. Volkov and J. W. Demmel, ``Benchmarking GPU’s to

tune dense linear algebra", in Proc. ACM/IEEE Conf.

Supercomputing, Nov. 2008, pp. 31-42.

[4] V. Volkov, ``Better Performance at Lower Occupancy", in

IEEE Int. Conf. Image Pro., 2010.

[5] F. N. Iandola, D. Sheffield, M. Anderson, P. M.

Phothilimthana, and K. Keutzer, ``Communication-

minimizing 2D convolution in GPU registers", in Proc. IEEE

Int. Conf. Image Process., Sep. 2013, pp. 2116-2120.

[6] M. Hopf and T. Ertl, ``Hardware accelerated wavelet

transformations", in Proc. EG/IEEE TCVG Symp, 2000, pp.

93-103.

[7] A. Garcia and H.-W. Shen, ``GPU-based 3D wavelet

reconstruction with tileboarding", in Vis. Comput, 2005, pp.

755-763.

[8] T. T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang,

``Discrete wavelet transform on consumer-level graphics

hardware", in IEEE Trans. Multimedia, 2007, pp. 668-673.

[9] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado,

``Parallel implementation of the 2D discrete wavelet

transform on graphics processing units: filter bank versus

lifting", in IEEE Trans. Parallel Distrib. Syst, vol. 19, no. 3,

2008, pp. 299-310.

[10] J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, ``A

parallel implementation of the 2D wavelet transform using

CUDA", in Proc. 17th Euromicro Int. Conf. Parallel, 2007,

pp. 111-118.

[11] J. Matela, ``GPU-based DWT acceleration for JPEG2000", in

Proc. Annu. Doctoral Workshop Math. Eng. Meth. Comput.

Sci, 2009, pp. 136-143.

[12] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink,

"Accelerating wavelet lifting on graphics hardware using

CUDA", in IEEE Trans. Parallel Distrib, 2011, pp. 132-146.

http://www.ijritcc.org/

