

Edinburgh Research Explorer

Integrating MPI-Skeletons with Web Services

Citation for published version:
Dünnweber, J, Benoit, A, Cole, M & Gorlatch, S 2005, 'Integrating MPI-Skeletons with Web Services'. in
PARCO. pp. 787-794.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
PARCO

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

http://www.research.ed.ac.uk/portal/en/publications/integrating-mpiskeletons-with-web-services(ba77e279-3282-4588-8a14-6876fd07271d).html

1

Integrating MPI-Skeletons with Web Services for Grid Programming

Jan Dünnwebera, Anne Benoitb, Murray Coleb, Sergei Gorlatcha

aUniversity of Münster, Münster, Germany

bSchool of Informatics, The University of Edinburgh, Scotland, UK

Interoperating components, implemented in multiple programming languages, are one of the key
requirements of grid computing that operates over the borders of individual hardware and soft-
ware platforms. Modern grid middleware like WSRF facilitates interoperabilty through service-
orientation but it also increases software complexity. We show that Higher-Order Components
(HOCs) provide a service-oriented programming abstraction over middleware technology. By of-
fering the pipeline skeleton from the MPI-basedeSkel library as a HOC, we show how machine-
oriented technologies can be made available via Web Services on grids. We bind a Java-based Web
application to the HOC to demonstrate its connectivity: user defined input can be transformed in a
highly performant manner by running wavelet computations remotely on parallel machines.

1. Introduction

In a grid infrastructure computers of varying architectures are connected, so that any task in an
application can be delegated to the most appropriate processing platform. Programmers targeting a
grid currently face a tradeoff when choosing the implementation technology for their applications.
Machine-oriented parallel technologies like C and MPI [6] provide good performance, but they
narrow the range of the possible execution platforms. This is due to the fact that C is compiled
into native machine code, which cannot be interchanged among different machines offering unequal
instruction sets. Moreover, the use of function pointers, as it is required, e. g. , for parameterising
MPI collective operations implies a tight coupling betweendifferent software components: code of
library functions implementing a generic functionality must be present in the same address space as
application-specific parameter code.

In contrast, a service-oriented architecture (SOA [5]) based on grid middleware such as WSRF [10]
loosely interconnects clients and compute nodes. The communication is handled via Web Service
requests and the required APIs for issuing and processing such requests are available for interpreted
languages and also for C. Despite of the gained connectivityadvantages, the use of Web Services
for handling the entire communication in an application usually imposes a loss of performance. The
messaging protocol employed by Web Services is SOAP, which requires the time-consuming com-
position, transmission and parsing of an XML-tree structure, even for elementary data exchange.

Our goal is to provide the performance of a light-weight messaging system within a heteroge-
neous, distributed environment. Therefore, we combine themore traditional performance approach
to parallel programming using C and MPI with the recent SOA efforts in grid computing. Our work
extends Higher-Order Components (HOCs), which were shown useful for programming grids using
Java in [7]. In this paper, a HOC is composed of a Web Service and an MPI-program. We developed
a Web Serivce that we call gateway, which bridges between MPIand SOAP and allows to provide a
skeleton from a C-library (eSkel [3]) as a HOC abstracting over all MPI-communication.

The next section shows how HOCs can be integrated with MPI. Then, in Section 3 we introduce
the case study of the discrete wavelet transform (dwt). Section 4 presents an imaging application
using our MPI-based HOC. We explain our gateway service in Section 5 and conclude in Section 6.

v1lfass
Typewritten Text
Dünnweber, J., Benoit, A., Cole, M., & Gorlatch, S. (2005). Integrating MPI-Skeletons with Web Services. In PARCO. (pp. 787-794).

2

Web Service

HOC

skeletal implementation

results

grid client

request
e.g., image filter

e.g., pipeline from
a library

MPI−hosting platform

xml

xml pa
ra

m
et

er
s

co
de

/d
at

a−

TCP Communication

Figure 1. Abstracting over the runtime platform using a Higher-Order Component (HOC)

2. Integrating HOCs with C and MPI

In [7] we presented HOCs that abstract over the grid middleware and make the required middle-
ware setup transparent for the user. HOCs offer a skeleton-like programming interface and include
a grid-aware mechanism for shipping units of executable code across the network. HOCs and their
parameters correlate to the skeleton model [2], but the implementation of a HOC takes into account
the distinctive features of a SOA, e. g. , there is no standardformat defined to exchange executable
code between Web Services. The HOC corresponding to the map skeleton, e. g. , provides a service
that applies functions in parallel to independent input. Its code parameter is the mapped function,
which is portably represented by a string in the HOC implementation.

The most notable difference between a HOC and Web Service based job submission system,
such as the Globus resource allocation manager (WS GRAM) or Unicore/WS [16], is that, in case
of using a HOC, a skeletal implementation of a parallel algorithm is deployed upon the runtime
platform before the HOC is used in an application. Figure 1 schematically depicts this scenario:
Instead of the complete application code, the XML-data representing a request, which is uploaded
by the client, only contains the code and data parameters that are specific for the given application.
The parallel implementation for processing the request remotely in the grid can make use of MPI
as suggested in the figure, or it can comprise multiple interconnected Web Services providing an
alternative parallel processing platform, as described in[7].

Contrary to a typical MPI-application, where the client is running on top of the MPI platform itself
as, e. g. process 0, the HOC client connects to a Web Service which maintains a TCP-connection to
one process dedicated for handling the external communication (Section 5 explains this gateway in
more detail). Thus, a HOC not only abstracts over the skeleton implementation, but it also decouples
the client from the skeleton allowing both implementationsto be exchanged without affecting each
other’s code, which promotes code reusability.

The interfaces of HOCs are designed such that application programmers can access them thinking
in terms of skeletons, disregarding details about the runtime environment. Our experiments have
shown that the abstraction offered by HOCs does not have a critical impact on the performance of
this class of applications.

This paper deals with an application which has a pipeline structure: the discrete wavelet transform,
which can be decomposed into multiple successive steps. Implementing this transform by mapping
stages of the underlying pipeline model to different processors leads to frequent inter-processor
communications, because of the fine grain of the single-stage operations. Therefore, a parallelisation
should employ a light-weight message passing mechanism. MPI, as used, e. g. , by the pipeline
skeleton in the C-libraryeSkel, is therefore a suitable candidate.

3

By embeddingeSkel’s MPI-based pipeline into a Web Service that offers it as a HOC, we provide
an interface for remote access via SOAP. The new HOC accepts parameter functions, which are
shipped over the network and may be sent from a service consumer; the latter may be implemented
in a programming language other than C. As an experiment, we connected the pipeline service to a
Java-based Web interface which allows the user to upload andtransform data via a Web browser.

3. Case Study: The Discrete Wavelet Transform

Wavelet transform is used in applications such as equalising measurements, denoising graphics
and data compression. Such procedures are often applied iteratively to large amounts of data, which
is time-consuming. Therefore a grid-enabled implementation which allows for the outsourcing of
computations to high-performance multiprocessor serversis desirable. In an application, the trans-
form is customised for a particular objective so that the transformed data exhibits properties which
cannot be detected so easily in the source data. As an example, the contours in an image can be
accentuated. Another popular application of wavelets is data compression via a customisation of the
transform where the resultant data can be represented usingless memory. Customising the wavelet
transform is done by parameterising a general schema with application specific functions.

3.1. The Wavelet Lifting Scheme
Wavelet transforms are integral transforms, closely related to the (windowed) fast Fourier trans-

form (fft), which decomposes a function into sines and cosines. The continuous wavelet transform
(cwt) defined below projects functionf (t) onto a family of zero-mean functions (wavelets ψ):

cwt(f ;a,b) :=
Z ∞

−∞
f (t)a−

1
2 ψ(a−1(t −b))dt (1)

Instead of a continuous function, the discrete wavelet transform (dwt) processes a setx of samples
(such as a list or a matrix) which are subdivided into two equally sized, discrete subsetsu andv.
The “lifting technique”, proposed by W. Sweldens in 1994 [13], allows us to computedwt iteratively
as follows. Initially,u0, j = x j for j = 0..m0. The first index ofui, j (index i) represents thelifting
step, andm0 is the initial number of elements.dwt(x) is computed by applying two functions called
predict andupdate repeatedly, according to the followinglifting scheme:

(ui,vi) := split(ui−1)
ui+1, j := ui, j − predict(vi, j) for j < mi
vi+1, j−mi := vi, j−mi +update(ui+1, j−mi) for j ≥ mi

(2)

At each increment ofi, index j iterates from 0 to 2.mi to complete onelifting step (first step
with i = 1). First, the setui−1 (of sizemi−1) is split into subsetsui andvi, which are thus of sizemi

(mi = mi−1/2). Thepredict function is then applied to the values in subsetvi (“predicting” the values
in subsetui). The samplesui are then replaced by the differences between their predicted values and
their actual values. These differences are processed by theupdate function and added to the samples
in subsetvi (“correcting” it). Note that the workspace, i. e. , the data that is affected by subsequent
steps is reduced in each lifting step: once computed, allvi, j values remain unchanged. The wiring
diagram of two lifting steps in Figure 2(a) illustrates the structure of the lifting algorithm. The minus
indicates that the input from the top is subtracted from the input from the left.

While the computation schema (2) is fixed, the functionssplit, predict andupdate can be cus-
tomised. This customisation is done by the user, depending on the characteristics of the application.

4

subset v
subset v

subset u
subset u

update

+

−
update

predict

+

−

i

i+1

i+1

predict
split

ui−1

split

i

(a) wavelet analysis

−

+

predict

update

−

+

predict

updatemerge

v i+1

merge

u
i+1u

iv

i

(b) wavelet synthesis

Figure 2. The lifting scheme

If plain number series are processed, thesplit function can simply be defined to separate entries
with odd and even indices. The choice of suitableupdate andpredict functions requires making an
appropriate assumption about the correlation of the singleelements within the processed data.

3.2. Parallelising the Lifting Scheme
When the lifting scheme is applied to multiple independent data sets in parallel, the pipeline

skeleton [2] can be used to parallelise the computation. Thenumber of lifting steps that we apply
to an input set (called thescale of the transform in classical wavelet theory [8]) depends onthe size
of the set (m0): the number of steps islog2(m0), since the input is bisected at each step. For a
straightforward parallelisation, we use a pipeline wherein each stage corresponds to one lifting step
and the number of stages is determined by the largest input set.

Wavelet transformation is reversible: the original input can be reconstructed from the transformed
data using an inverse process, called the wavelet synthesis. In this context, the forward transform
is usually called wavelet analysis. Our pipeline-based implementation of the wavelet transform
allows us to run both a wavelet analysis and a wavelet synthesis. In the reversed schema, update
and predict functions are swapped; updated values are subtracted and predicted ones are added as
shown in Figure 2(b). A reverse pipeline with the same numberof stages as the wavelet analysis
pipeline can be used to reconstruct the source data. We use this output data for a comparison with
the original input to verify the correctness of our implementation. The reverse process has another
notable property: the workspace increases, since it re-introduces the storedvi+1 values to computeui

(see Section 3.1).

3.3. An Application to Image Data
Figure 3 shows the effect of an example application ofdwt on images. The input image is trans-

formed up to the maximum scale and then reconstructed via theinverse transform as introduced in
Section 3.2. The fractal image in Figure 3(a) is a Julia Set for c = −0.16− 0.65i (to construct

(a) an example input image (b) reconstruction (threshold 2.5)

Figure 3. Application of the transform on a grayscale fractal image

5

such diagrams, see [12]). It features very fine contours thatbecome bolder in the reconstruction
(Figure 3(b)), since all the pixel values below a given threshold are set to zero in the transform.

Contrary to the elementary splitting of number series, explained in Section 3.1, images require
the splitting to be customised via a parameter function specifying a 2-dimensional partitioning. If
we simply concatenate all rows or all columns of the image matrix into a 1-dimensional array, the
image structure would be lost during the transform, as most neighbouring entries in the matrix are
disjoint in such an array. Instead, we overlay the image witha lattice that classifies the pixels into
two complementary partitions, preserving the data correlations.

4. Running the Pipeline HOC, customised for the Lifting Scheme

The middleware setup for running Web Service-based applications can be intricate. This is es-
pecially the case in the WSRF-context, where Web Service operations can affect component states,
represented via resource properties. Moreover WS-N [10] isused for asynchronous messaging via
service notifications. Thus, resources and notifications must be configured additionally to Web Ser-
vices. Each setup step is error-prone and configuration filescannot be debugged by a stepwise
execution in the manner of traditional executable code.

To provide a higher-level programming interface, we have developed a HOC which allows the
wavelet lifting scheme to run in parallel. In Section 3.2, wehave shown how to parallelise the lifting
scheme using a pipeline skeleton. We explain here how this pipeline can be offered as a HOC and
how it can be customised to run the image transformation presented in Section 3.3.

4.1. The Parameter Functions
In the wavelet lifting algorithm, the stages of the pipelineare defined through the parameter func-

tionssplit, predict andupdate. For our imaging application, we define asplit function which com-
putes the so-calledquincunx lattice. All the pixels of the processed image are alternately assigned
to a subgroup of black pixels or white pixels. This quincunx pattern is just one possible partitioning
among others. We refer to [9] for details on the implementation of such partitions.

Thepredict function rates the grayscale value of a pixel by computing the average of its nearest
neighbours:

predict(xi, j) =
1
4
(xi−1, j + xi, j−1+ xi+1, j + xi, j+1)

The correspondingupdate function returns half of the average computed by thepredict function.
The factor one half inupdate reflects the bisection performed by thesplit function in each lifting
step. In this way, we preserve the average of the input duringlifting, i. e. the grayscale value
average over all pixels in both partitions equals half the average over all initial values. Some more
sophisticated methods also bind neighbouring values, but with a different calculation rule. In any
case, bothpredict andupdate can be represented via arithmetic expressions. These expressions can
be encoded in an XML-compliant manner using, e. g. ,XPath-expressions.

XPath is a language designed to select nodes, specify conditions and generate outputs in XML
documents [18]. XML processing APIs, such asApache Xalan [11], evaluateXPath-expressions and
are available for multiple programming languages. We thus considerXPath as a suitable format for
encoding functions and for exchanging them via the network.

The fractal image computation discussed in [7] uses a loop inside the skeleton parameter function.
Loop statements are not supported withinXPath-expressions and therefore this application required
from the HOC a mechanism to transfer executable code withoutsuch limitations.

6

Stage 1 Stage 2 Stage N

Stage 1 Stage 2 Stage N

(a)

(b)

Figure 4. (a) Standard eSkel pipeline skeleton – (b) Stage skipping optimisation

As traditional HOCs support the transmission of parametersdescribing complex control flows,
such as loops and nesting, in the format of Java or a scriptinglanguage, there is still a tradeoff
between purely Java-based HOCs and potentially more efficient native skeletons, even if the latter
can also be offered as HOCs.

4.2. The Stage-Skipping Optimisation
The HOC can be optimised to shortcut the lifting scheme in order to reduce the number of lifting

steps in the pipeline. Indeed, the several inputs of the pipeline may be of varying sizes, and the
number of lifting steps is directly related to their size. Hence, an input of short size does not need to
go through all the stages of the pipeline. The adaptable design of skeletal components [4] helps to
address this problem in our implementation.

The parallelisation described in Section 3.2 is not optimalbecause small-sized sets are to be passed
through numerous pipeline stages, although no further processing is necessary. We could therefore
envision an optimised pipeline skeleton which skips stageswhen needed. We perform the computa-
tion using the skeleton libraryeSkel, namely its pipeline skeleton which allows us to define so-called
explicit interactions. In most of the skeletons libraries, the interactions between activities (i.e. the
stages of a pipeline) areimplicit: a pipeline stage is a function which takes input data as a parameter
and returns one output for each input, thus being under constraint both in time and space. IneSkel,
it is possible to defineexplicit interactions [1] between activities and release temporal constraints.

Figure 4(a) displays the standard pipeline behaviour with implicit interactions. The circles repre-
sent three examples of input items and the size of the circlesis proportional to the size of the input.
In our application the inputs of small size do not need to be processed by all the stages. Figure 4(b)
presents the stage skipping optimisation, which allows small inputs to skip the unnecessary stages
and to be directly sent as an output. As can be seen in Figure 4(b), the smallest input is finished in
stage 1 and no more present in stage 2, while it is towed through all stages in Figure 4(a).

When the explicit interaction mode is used ineSkel, the user can control the timing of commu-
nications within the spatial constraints imposed by the skeleton. This means, a stage function does
not need to receive all its input through its parameters and it does not necessarily pass output as a
return value. Through direct calls to theeSkel functionsGive andTake, new input can be retrieved
or new output can be sent at any time within a stage function. For the skipping optimisation, we
need to break the spatial constraints of the pipeline as well, i. e. any stage should be enabled to send
an output not only to the next stage but also to the last.

5. The Gateway for Bridging between Web Services and MPI

In telecommunication terminology, a gateway is some hardware or software that addresses inter-
connection issues between systems using different protocols. For connecting our wavelet computa-
tion to a Web client, we developed a specially configured Web Service bridging between SOAP and

7

an MPI-based pipeline. We call this service the gateway service and in the following, we explain its
setup, which may be reused in other grid applications requiring an efficient pipeline implementation.

A particular feature of the gateway service is that it establishes a connection to an MPI-environment,
which is external to the Web Service container and exhibits properties of its own. To maintain this
connection the gateway service must store somestate data, i. e. , data persisting the execution of
single operations such asinit, execute andgetResults. The minimum state data required for
the gateway service consist in the output variables for holding results and the number of a TCP-port
used for transferring application data between the MPI-environment and the Web Service.

While plain Web Services do not support state data at all, WSRF, as defined by OASIS [10],
allows to bind a Web Service to state data. In order to use thisfeature, we deployed our HOC in
the globus-wsc-container [15], which allows to run WSRF-compliant services written in C. The
Globus middleware supports Web Service interfaces including aresource property document. This
document defines, in XML-Schema [17] format, the structure of the state data persisting during the
execution of single service operations. For our Pipeline HOC, we specified the resource properties of
the gateway service corresponding to the parameters of theeSkel pipeline, i. e. , except the mandatory
data described above, we declared one string property per stage function, one array type property
holding the time needs per process plus one integer propertygiving the number of processes to be
executed within the external MPI-environment.

The separation of the MPI-environment from the Web Service container and the use of an extra
communication channel (TCP in our implementation) inside the gateway is a necessity. Web Service
containers like Globus are parallel applications which canprocess multiple requests simultaneously
via multithreading. Therefore, they must not be run within amultiprocess environment like MPI
themselves, which would lead to running one extra containerper MPI-process, making resource
sharing unfeasible and furthermore resulting in a process management overhead.

Our gateway service assembles acommand-string wherein a platform dependent prefix holds the
path to the MPI-installation directory, followed bympirun -np # pipeline with the#-parameter
reflecting thenumProcessors resource property. Upon request of theinit-operation, the service
launches the MPI-program by callingsystem(command). The MPI-programpipeline starts by
opening a TCP server socket which accepts input in the form ofnumber series or images. This
connection is established only by process 0, i. e. , processes with a higher rank wait until all input
has arrived and is scattered amongst them.

6. Conclusion and Future work

This paper describes a high-level abstraction over native technologies on the grid using a Higher-
Order Component (HOC). We implemented the lifting algorithm via sequential pipeline stages and
applied it to multiple independent tasks in parallel. The choice of MPI was motivated by the fine
grain of the computations in this application, which are noteligible to be dispersed across the grid.
We implemented a Pipeline HOC allowing for local parallelism and for remote access. This HOC
was customised for an application of the discrete wavelet transform. We also proposed a solution
to avoid portability problems in the grid environments, where parameters must be exchangeable
between different software components. When a well-definedformat is used for representing pa-
rameters, even the presence of multiple protocols and programming languages within a single sys-
tem does not put insuperable barriers in the way of communication between services and clients.
We identifiedXPath as a suitable format for customising HOCs rather than using executable code,
which would restrict our HOC implementation to the use of a single programming language.

Customising components by transferring user-defined functions across the network is a new us-

8

age for theXPath language, applicable in multiple domains. In our future work, we plan to integrate
Apache Xalan for this purpose with our HOC, which currently still requires to hard-wire the defini-
tions of Section 4.1 to run a particular transform.

We also proposed an adaptation of the pipeline skeleton, which optimises its behaviour when it is
used in a lifting scheme application. To simplify such adaptations ineSkel, we plan to define a new
functionGiveToLastStage, which will allow any stage to communicate with the last one.

Finally, we plan to extend our HOC-based SOA approach to other skeleton implementations that
use native machine code.

Acknowledgements: This work has been performed under the ProjectHPC-EUROPA (RII3-CT-2003-506079),
with the support of the European Community - Research Infrastructure Action under the FP6 “Structuring the
European Research Area” Programme and the EPSRC project Enhance (under grant number GR/S21717/01).

References

[1] Anne Benoit and Murray Cole. Two fundamental concepts inskeletal parallel programming. In P. Sloot
V. Sunderam, D. van Albada and J. Dongarra, editors,The International Conference on Computational
Science (ICCS 2005) , Part II, LNCS 3515, pages 764–771. Springer Verlag, 2005.

[2] Murray I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel Compu-
tation. Pitman, 1989.

[3] Murray I. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel pro-
gramming. InParallel Computing 30, pages 389–406, 2002.

[4] Jan Dünnweber, Sergei Gorlatch, Sonia Campa, Marco Danelutto, and Marco Aldinucci. Adaptable
components for grid programming. InIEEE International Grid Computing Conference, 2005. Submit-
ted.

[5] Thomas Erl. Service-Oriented Architecture : A Field Guide to Integrating XML and Web Services.
Prentice Hall PTR, 2004.

[6] Ian Foster.Designing and Building Parallel Programs. Concepts and Tools for Parallel Software Engi-
neering. Addison Wesley, 1995.

[7] Sergei Gorlatch and Jan Dünnweber. From grid middleware to grid applications: Bridging the gap with
HOCs. InFuture Generation Grids. Springer Verlag, 2005. to appear.

[8] Barbara Burke Hubbard.The world according to wavelets. A K Peters Ltd., Wellesley, MA, 1998.
second ed.

[9] Arne Jensen and Anders la Cour-Harbo.Ripples in mathematics: the discrete wavelet transform.
Springer Berlin, 2001.

[10] OASIS Technical Committee. WSRF: The Web Service Resource Framework, http://www.oasis-
open.org/committees/wsrf.

[11] Apache Organization. Apache xalan. http://xml.apache.org/xalan-c.
[12] Heinz-Otto Peitgen and Peter H. Richter.The Beauty of Fractals, Images of Complex Dynamical Sys-

tems. Springer-Verlag New York Inc, June 1996.
[13] Wim Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.Appl.

Comput. Harmon. Anal., 3(2):186–200, 1996.
[14] Clemens Szyperski.Component software: Beyond object-oriented programming. Addison Wesley,

1998.
[15] The Globus Alliance. GT 4.0: C WS Core. http://www.globus.org/toolkit/docs/4.0/common/cwscore.
[16] Unicore Forum e.V. UNICORE-Grid. http://www.unicore.org.
[17] World Wide Web Consortium, W3C. The XML Schema definition language recommendation.

http://www.w3.org/XML/Schema.
[18] World Wide Web Consortium, W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20.

