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Integrating M PI-Skeletons with Web Servicesfor Grid Programming
Jan Diinnwebér Anne Benoi?, Murray Cole, Sergei Gorlatch
aUniversity of Muinster, Munster, Germany

bSchool of Informatics, The University of Edinburgh, ScataUK

Interoperating components, implemented in multiple progning languages, are one of the key
requirements of grid computing that operates over the srdéindividual hardware and soft-
ware platforms. Modern grid middleware like WSRF facikstinteroperabilty through service-
orientation but it also increases software complexity. Wews that Higher-Order Components
(HOCSs) provide a service-oriented programming abstraater middleware technology. By of-
fering the pipeline skeleton from the MPI-baseskel library as a HOC, we show how machine-
oriented technologies can be made available via Web Sereicgrids. We bind a Java-based Web
application to the HOC to demonstrate its connectivity:ruidined input can be transformed in a
highly performant manner by running wavelet computati@mately on parallel machines.

1. Introduction

In a grid infrastructure computers of varying architectuaee connected, so that any task in an
application can be delegated to the most appropriate psgeplatform. Programmers targeting a
grid currently face a tradeoff when choosing the implemigoratechnology for their applications.
Machine-oriented parallel technologies like C and MPI [6pyde good performance, but they
narrow the range of the possible execution platforms. Thidue to the fact that C is compiled
into native machine code, which cannot be interchanged grdifierent machines offering unequal
instruction sets. Moreover, the use of function pointessit & required, e.g., for parameterising
MPI collective operations implies a tight coupling betwetkiferent software components: code of
library functions implementing a generic functionality stbe present in the same address space as
application-specific parameter code.

In contrast, a service-oriented architecture (SOA [5]¢lamn grid middleware such as WSRF [10]
loosely interconnects clients and compute nodes. The conmaion is handled via Web Service
requests and the required APIs for issuing and processuigreguests are available for interpreted
languages and also for C. Despite of the gained connectidtsantages, the use of Web Services
for handling the entire communication in an applicationalsuimposes a loss of performance. The
messaging protocol employed by Web Services is SOAP, wigighires the time-consuming com-
position, transmission and parsing of an XML-tree strueteren for elementary data exchange.

Our goal is to provide the performance of a light-weight naggsg system within a heteroge-
neous, distributed environment. Therefore, we combineartbee traditional performance approach
to parallel programming using C and MPI with the recent SCArés in grid computing. Our work
extends Higher-Order Components (HOCSs), which were sha@gfulifor programming grids using
Java in [7]. In this paper, a HOC is composed of a Web ServideaarMPI-program. We developed
a Web Serivce that we call gateway, which bridges betweendaiBISOAP and allows to provide a
skeleton from a C-librarygSkel [3]) as a HOC abstracting over all MPI-communication.

The next section shows how HOCs can be integrated with MREnTim Section 3 we introduce
the case study of the discrete wavelet transfodmt), Section 4 presents an imaging application
using our MPIl-based HOC. We explain our gateway service ati@e5 and conclude in Section 6.
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Figure 1. Abstracting over the runtime platform using a Kigrder Component (HOC)

2. Integrating HOCswith C and MPI

In [7] we presented HOCs that abstract over the grid middiewad make the required middle-
ware setup transparent for the user. HOCs offer a skel@erpfogramming interface and include
a grid-aware mechanism for shipping units of executable @moss the network. HOCs and their
parameters correlate to the skeleton model [2], but theemphtation of a HOC takes into account
the distinctive features of a SOA, e.g., there is no stanftardat defined to exchange executable
code between Web Services. The HOC corresponding to the ke#gian, e. g., provides a service
that applies functions in parallel to independent inpus.clbde parameter is the mapped function,
which is portably represented by a string in the HOC impletaigon.

The most notable difference between a HOC and Web Servicedlgab submission system,
such as the Globus resource allocation manager (WS GRAMhardte/WS [16], is that, in case
of using a HOC, a skeletal implementation of a parallel atbor is deployed upon the runtime
platform before the HOC is used in an application. Figure Hestatically depicts this scenario:
Instead of the complete application code, the XML-dataesgnting a request, which is uploaded
by the client, only contains the code and data parametersitbapecific for the given application.
The parallel implementation for processing the requesbtely in the grid can make use of MPI
as suggested in the figure, or it can comprise multiple intamected Web Services providing an
alternative parallel processing platform, as describdd]in

Contrary to a typical MPI-application, where the clientuaning on top of the MPI platform itself
as, e.g. process 0, the HOC client connects to a Web Servich wiaintains a TCP-connection to
one process dedicated for handling the external commuamicgbection 5 explains this gateway in
more detail). Thus, a HOC not only abstracts over the skeletplementation, but it also decouples
the client from the skeleton allowing both implementatiembe exchanged without affecting each
other’s code, which promotes code reusability.

The interfaces of HOCs are designed such that applicatmgrammers can access them thinking
in terms of skeletons, disregarding details about the mm&nvironment. Our experiments have
shown that the abstraction offered by HOCs does not havdieatimpact on the performance of
this class of applications.

This paper deals with an application which has a pipelinetire: the discrete wavelet transform,
which can be decomposed into multiple successive stepdetngnting this transform by mapping
stages of the underlying pipeline model to different preoes leads to frequent inter-processor
communications, because of the fine grain of the singleestpgrations. Therefore, a parallelisation
should employ a light-weight message passing mechanisml, &Fused, e.g., by the pipeline
skeleton in the C-librargSkel, is therefore a suitable candidate.
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By embeddingSkel’s MPI-based pipeline into a Web Service that offers it as a&kl®e provide
an interface for remote access via SOAP. The new HOC accepisngter functions, which are
shipped over the network and may be sent from a service castine latter may be implemented
in a programming language other than C. As an experimentoneected the pipeline service to a
Java-based Web interface which allows the user to uploadransform data via a Web browser.

3. Case Study: The Discrete Wavelet Transform

Wavelet transform is used in applications such as equglisieasurements, denoising graphics
and data compression. Such procedures are often appliathviédy to large amounts of data, which
is time-consuming. Therefore a grid-enabled implemeoatvhich allows for the outsourcing of
computations to high-performance multiprocessor serngaigsirable. In an application, the trans-
form is customised for a particular objective so that thetfarmed data exhibits properties which
cannot be detected so easily in the source data. As an exathpleontours in an image can be
accentuated. Another popular application of waveletsia dampression via a customisation of the
transform where the resultant data can be represented lessmghemory. Customising the wavelet
transform is done by parameterising a general schema wticapon specific functions.

3.1. The Wavelet Lifting Scheme

Wavelet transforms are integral transforms, closely eeldb the (windowed) fast Fourier trans-
form (fft), which decomposes a function into sines and cosines. Thincmus wavelet transform
(cwt) defined below projects functiof(t) onto a family of zero-mean functione/gvel ets ):

00

owt(f;a,b) 1= / f(t)a 3 p(a Lt —b))dt L)

Instead of a continuous function, the discrete wavelesfiaam (@wt) processes a sebf samples
(such as a list or a matrix) which are subdivided into two dguszed, discrete subsetsandv.
The “lifting technique”, proposed by W. Sweldens in 1994][E8lows us to computdwt iteratively
as follows. Initially,up ; = Xj for j = 0..mg. The first index ofu; ; (indexi) represents th&fting
step, andmy is the initial number of elementslwt (x) is computed by applying two functions called
predict andupdate repeatedly, according to the followiridting scheme:

(Ui,Vi) = split(ui,l)
Uit1j = U j— predict(vi j) forj <m; (2)
Vitlj—m :=Vij—m +update(Uirj_m) forj>m

At each increment of, index j iterates from 0 to 2n; to complete ondifting step (first step
with i = 1). First, the set;_1 (of sizem;_1) is split into subsets; andv;, which are thus of sizay
(my =m_1/2). Thepredict function is then applied to the values in subgédtpredicting” the values
in subset;). The samples; are then replaced by the differences between their pretheteies and
their actual values. These differences are processed ptlage function and added to the samples
in subset; (“correcting” it). Note that the workspace, i. e., the datattis affected by subsequent
steps is reduced in each lifting step: once computed; aalues remain unchanged. The wiring
diagram of two lifting steps in Figure 2(a) illustrates theusture of the lifting algorithm. The minus
indicates that the input from the top is subtracted from tipeit from the left.

While the computation schema (2) is fixed, the functigpist, predict and update can be cus-
tomised. This customisation is done by the user, dependirigeocharacteristics of the application.



(a) wavelet analysis (b) wavelet synthesis

Figure 2. The lifting scheme

If plain number series are processed, shit function can simply be defined to separate entries
with odd and even indices. The choice of suitalgdate andpredict functions requires making an
appropriate assumption about the correlation of the sialgiments within the processed data.

3.2. Paralldising the Lifting Scheme

When the lifting scheme is applied to multiple independesitiacsets in parallel, the pipeline
skeleton [2] can be used to parallelise the computation. ntimber of lifting steps that we apply
to an input set (called theeale of the transform in classical wavelet theory [8]) dependshensize
of the set (np): the number of steps g, (my), since the input is bisected at each step. For a
straightforward parallelisation, we use a pipeline wheesich stage corresponds to one lifting step
and the number of stages is determined by the largest input se

Wavelet transformation is reversible: the original inpam ®e reconstructed from the transformed
data using an inverse process, called the wavelet synthiesikis context, the forward transform
is usually called wavelet analysis. Our pipeline-basedlementation of the wavelet transform
allows us to run both a wavelet analysis and a wavelet syisthés the reversed schema, update
and predict functions are swapped; updated values areastddrand predicted ones are added as
shown in Figure 2(b). A reverse pipeline with the same nundbestages as the wavelet analysis
pipeline can be used to reconstruct the source data. We isseutiput data for a comparison with
the original input to verify the correctness of our implenaion. The reverse process has another
notable property: the workspace increases, since it redotes the storeg, ; values to compute;
(see Section 3.1).

3.3. An Application to Image Data

Figure 3 shows the effect of an example applicatiodwtf on images. The input image is trans-
formed up to the maximum scale and then reconstructed vimieese transform as introduced in
Section 3.2. The fractal image in Figure 3(a) is a Julia Setfe —0.16— 0.65 (to construct

(a) an example input image (b) reconstruction (threshold®)

Figure 3. Application of the transform on a grayscale freictage
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such diagrams, see [12]). It features very fine contourstibabme bolder in the reconstruction
(Figure 3(b)), since all the pixel values below a given thodd are set to zero in the transform.

Contrary to the elementary splitting of number series, @&xgld in Section 3.1, images require
the splitting to be customised via a parameter functioniggeg a 2-dimensional partitioning. If
we simply concatenate all rows or all columns of the imagerimaito a 1-dimensional array, the
image structure would be lost during the transform, as megfhibouring entries in the matrix are
disjoint in such an array. Instead, we overlay the image wit&ittice that classifies the pixels into
two complementary partitions, preserving the data cotcela.

4. Running the Pipeline HOC, customised for the Lifting Scheme

The middleware setup for running Web Service-based apitacan be intricate. This is es-
pecially the case in the WSRF-context, where Web Serviceatipas can affect component states,
represented via resource properties. Moreover WS-N [10$esl for asynchronous messaging via
service notifications. Thus, resources and notificationstiine configured additionally to Web Ser-
vices. Each setup step is error-prone and configuration déesiot be debugged by a stepwise
execution in the manner of traditional executable code.

To provide a higher-level programming interface, we haveetiped a HOC which allows the
wavelet lifting scheme to run in parallel. In Section 3.2, wv&e shown how to parallelise the lifting
scheme using a pipeline skeleton. We explain here how tpalipe can be offered as a HOC and
how it can be customised to run the image transformatioreptes in Section 3.3.

4.1. The Parameter Functions

In the wavelet lifting algorithm, the stages of the pipelare defined through the parameter func-
tions split, predict andupdate. For our imaging application, we definesglit function which com-
putes the so-calleduincunx lattice. All the pixels of the processed image are altetgpatssigned
to a subgroup of black pixels or white pixels. This quincuatt@rn is just one possible partitioning
among others. We refer to [9] for details on the implemeatatif such partitions.

The predict function rates the grayscale value of a pixel by computirgaberage of its nearest
neighbours:

. 1
predict(x; j) = Z(Xi—l,j +Xij—1+Xi+1,j + X j+1)

The correspondingpdate function returns half of the average computed byheslict function.
The factor one half irupdate reflects the bisection performed by thait function in each lifting
step. In this way, we preserve the average of the input duiftigg, i.e. the grayscale value
average over all pixels in both partitions equals half therage over all initial values. Some more
sophisticated methods also bind neighbouring values, bhtavdifferent calculation rule. In any
case, botlpredict andupdate can be represented via arithmetic expressions. Thesessipns can
be encoded in an XML-compliant manner using, e XPath-expressions.

XPath is a language designed to select nodes, specify conditimhg@nerate outputs in XML
documents [18]. XML processing APIs, suchAgsche Xalan [11], evaluateXPath-expressions and
are available for multiple programming languages. We tlusiderXPath as a suitable format for
encoding functions and for exchanging them via the network.

The fractal image computation discussed in [7] uses a logidéthe skeleton parameter function.
Loop statements are not supported witKPath-expressions and therefore this application required
from the HOC a mechanism to transfer executable code withalt limitations.
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Figure 4. (a) Standard eSkel pipeline skeleton — (b) Stagppslg optimisation

As traditional HOCs support the transmission of parameadesscribing complex control flows,
such as loops and nesting, in the format of Java or a scrifpginguage, there is still a tradeoff
between purely Java-based HOCs and potentially more effio@ive skeletons, even if the latter
can also be offered as HOCs.

4.2. The Stage-Skipping Optimisation

The HOC can be optimised to shortcut the lifting scheme ireotd reduce the number of lifting
steps in the pipeline. Indeed, the several inputs of thelipgpenay be of varying sizes, and the
number of lifting steps is directly related to their size.nde, an input of short size does not need to
go through all the stages of the pipeline. The adaptablegdesiskeletal components [4] helps to
address this problem in our implementation.

The parallelisation described in Section 3.2 is not optineglause small-sized sets are to be passed
through numerous pipeline stages, although no furthergsnog is necessary. We could therefore
envision an optimised pipeline skeleton which skips stagesn needed. We perform the computa-
tion using the skeleton libramtkel, namely its pipeline skeleton which allows us to define dteda
explicit interactions. In most of the skeletons libraries, the interactions betwactivities (i.e. the
stages of a pipeline) arenplicit: a pipeline stage is a function which takes input data asanpeter
and returns one output for each input, thus being under nsboth in time and space. bBS«l,
it is possible to definexplicit interactions [1] between activities and release tempanastraints.

Figure 4(a) displays the standard pipeline behaviour waitplicit interactions. The circles repre-
sent three examples of input items and the size of the ciiglpportional to the size of the input.
In our application the inputs of small size do not need to lme@ssed by all the stages. Figure 4(b)
presents the stage skipping optimisation, which allowsllsimauts to skip the unnecessary stages
and to be directly sent as an output. As can be seen in Fighjethhé smallest input is finished in
stage 1 and no more present in stage 2, while it is towed thraligtages in Figure 4(a).

When the explicit interaction mode is usedeskel, the user can control the timing of commu-
nications within the spatial constraints imposed by thdetka. This means, a stage function does
not need to receive all its input through its parameters addes not necessarily pass output as a
return value. Through direct calls to tb8kel functionsG ve andTake, new input can be retrieved
or new output can be sent at any time within a stage functian.the skipping optimisation, we
need to break the spatial constraints of the pipeline as well any stage should be enabled to send
an output not only to the next stage but also to the last.

5. The Gateway for Bridging between Web Services and M PI

In telecommunication terminology, a gateway is some harewa software that addresses inter-
connection issues between systems using different pristoEor connecting our wavelet computa-
tion to a Web client, we developed a specially configured WetviSe bridging between SOAP and
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an MPI-based pipeline. We call this service the gatewayiceand in the following, we explain its
setup, which may be reused in other grid applications reggan efficient pipeline implementation.

A particular feature of the gateway service is that it essailels a connection to an MPI-environment,
which is external to the Web Service container and exhibdp@rties of its own. To maintain this
connection the gateway service must store seta data, i.e., data persisting the execution of
single operations such asi t, execut e andget Resul ts. The minimum state data required for
the gateway service consist in the output variables forihgltesults and the number of a TCP-port
used for transferring application data between the MPIrenment and the Web Service.

While plain Web Services do not support state data at all, W3R defined by OASIS [10],
allows to bind a Web Service to state data. In order to usefélaisire, we deployed our HOC in
the globus-wsc-container [15], which allows to run WSRF-compliant services writtenG. The
Globus middleware supports Web Service interfaces inotpdiresource property document. This
document defines, in XML-Schema [17] format, the structdréhe state data persisting during the
execution of single service operations. For our Pipelin€i@e specified the resource properties of
the gateway service corresponding to the parameters eSkekpipeline, i. e., except the mandatory
data described above, we declared one string property age $tinction, one array type property
holding the time needs per process plus one integer progafityg the number of processes to be
executed within the external MPI-environment.

The separation of the MPI-environment from the Web Servarganer and the use of an extra
communication channel (TCP in our implementation) insidegateway is a necessity. Web Service
containers like Globus are parallel applications which gaotess multiple requests simultaneously
via multithreading. Therefore, they must not be run withimaltiprocess environment like MPI
themselves, which would lead to running one extra contgieerMPIl-process, making resource
sharing unfeasible and furthermore resulting in a processagement overhead.

Our gateway service assemblescamand-string wherein a platform dependent prefix holds the
path to the MPI-installation directory, followed lopi run -np # pi pel i ne with the#-parameter
reflecting thenunPr ocessor s resource property. Upon request of ilve t -operation, the service
launches the MPI-program by callirgyst en( conmand) . The MPI-progranpi pel i ne starts by
opening a TCP server socket which accepts input in the formuafber series or images. This
connection is established only by process 0, i.e., prosesgh a higher rank wait until all input
has arrived and is scattered amongst them.

6. Conclusion and Future work

This paper describes a high-level abstraction over nagifertologies on the grid using a Higher-
Order Component (HOC). We implemented the lifting algarnthia sequential pipeline stages and
applied it to multiple independent tasks in parallel. Theica of MPI was motivated by the fine
grain of the computations in this application, which are @lagible to be dispersed across the grid.
We implemented a Pipeline HOC allowing for local paralleliand for remote access. This HOC
was customised for an application of the discrete wavedetsfiorm. We also proposed a solution
to avoid portability problems in the grid environments, wh@arameters must be exchangeable
between different software components. When a well-defioedat is used for representing pa-
rameters, even the presence of multiple protocols and gnoging languages within a single sys-
tem does not put insuperable barriers in the way of commtiait®etween services and clients.
We identifiedXPath as a suitable format for customising HOCs rather than ustegigable code,
which would restrict our HOC implementation to the use ofrgk programming language.

Customising components by transferring user-defined iomgtacross the network is a new us-
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age for theXPath language, applicable in multiple domains. In our futureky@re plan to integrate
Apache Xalan for this purpose with our HOC, which currently still requer® hard-wire the defini-
tions of Section 4.1 to run a particular transform.

We also proposed an adaptation of the pipeline skeletorghndptimises its behaviour when it is
used in a lifting scheme application. To simplify such adéipts ineSkel, we plan to define a new
functionG veTolLast St age, which will allow any stage to communicate with the last one.

Finally, we plan to extend our HOC-based SOA approach toratkedeton implementations that
use native machine code.
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