474 research outputs found

    Error-tolerant Graph Matching on Huge Graphs and Learning Strategies on the Edit Costs

    Get PDF
    Els grafs són estructures de dades abstractes que s'utilitzen per a modelar problemes reals amb dues entitats bàsiques: nodes i arestes. Cada node o vèrtex representa un punt d'interès rellevant d'un problema, i cada aresta representa la relació entre aquests vèrtexs. Els nodes i les arestes podrien incorporar atributs per augmentar la precisió del problema modelat. Degut a aquesta versatilitat, s'han trobat moltes aplicacions en camps com la visió per computador, biomèdics, anàlisi de xarxes, etc. La Distància d'edició de grafs (GED) s'ha convertit en una eina important en el reconeixement de patrons estructurals, ja que permet mesurar la dissimilitud dels grafs. A la primera part d'aquesta tesi es presenta un mètode per generar una parella grafs juntament amb la seva correspondència en un cost computacional lineal. A continuació, se centra en com mesurar la dissimilitud entre dos grafs enormes (més de 10.000 nodes), utilitzant un nou algoritme de aparellament de grafs anomenat Belief Propagation. Té un cost computacional O(d^3.5N). Aquesta tesi també presenta un marc general per aprendre els costos d'edició implicats en els càlculs de la GED automàticament. Després, concretem aquest marc en dos models diferents basats en xarxes neuronals i funcions de densitat de probabilitat. S'ha realitzat una validació pràctica exhaustiva en 14 bases de dades públiques. Aquesta validació mostra que la precisió és major amb els costos d'edició apresos, que amb alguns costos impostos manualment o altres costos apresos automàticament per mètodes anteriors. Finalment proposem una aplicació de l'algoritme Belief propagation utilitzat en la simulació de la mecànica muscular.Los grafos son estructuras de datos abstractos que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada arista representa la relación entre estos vértices. Los nodos y las aristas podrían incorporar atributos para aumentar la precisión del problema modelado. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como la visión por computador, biomédicos, análisis de redes, etc. La Distancia de edición de grafos (GED) se ha convertido en una herramienta importante en el reconocimiento de patrones estructurales, ya que permite medir la disimilitud de los grafos. En la primera parte de esta tesis se presenta un método para generar una pareja grafos junto con su correspondencia en un coste computacional lineal. A continuación, se centra en cómo medir la disimilitud entre dos grafos enormes (más de 10.000 nodos), utilizando un nuevo algoritmo de emparejamiento de grafos llamado Belief Propagation. Tiene un coste computacional O(d^3.5n). Esta tesis también presenta un marco general para aprender los costos de edición implicados en los cálculos de GED automáticamente. Luego, concretamos este marco en dos modelos diferentes basados en redes neuronales y funciones de densidad de probabilidad. Se ha realizado una validación práctica exhaustiva en 14 bases de datos públicas. Esta validación muestra que la precisión es mayor con los costos de edición aprendidos, que con algunos costos impuestos manualmente u otros costos aprendidos automáticamente por métodos anteriores. Finalmente proponemos una aplicación del algoritmo Belief propagation utilizado en la simulación de la mecánica muscular.Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the modeled problem, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, bio-medics, network analysis, etc. Graph Edit Distance (GED) has become an important tool in structural pattern recognition since it allows to measure the dissimilarity of attributed graphs. The first part presents a method is presented to generate graphs together with an upper and lower bound distance and a correspondence in a linear computational cost. Through this method, the behaviour of the known -or the new- sub-optimal Error-Tolerant graph matching algorithm can be tested against a lower and an upper bound GED on large graphs, even though we do not have the true distance. Next, the present is focused on how to measure the dissimilarity between two huge graphs (more than 10.000 nodes), using a new Error-Tolerant graph matching algorithm called Belief Propagation algorithm. It has a O(d^3.5n) computational cost.This thesis also presents a general framework to learn the edit costs involved in the GED calculations automatically. Then, we concretise this framework in two different models based on neural networks and probability density functions. An exhaustive practical validation on 14 public databases has been performed. This validation shows that the accuracy is higher with the learned edit costs, than with some manually imposed costs or other costs automatically learned by previous methods. Finally we propose an application of the Belief propagation algorithm applied to muscle mechanics

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Sparsifying to optimize over multiple information sources: an augmented Gaussian process based algorithm

    Get PDF
    AbstractOptimizing a black-box, expensive, and multi-extremal function, given multiple approximations, is a challenging task known as multi-information source optimization (MISO), where each source has a different cost and the level of approximation (aka fidelity) of each source can change over the search space. While most of the current approaches fuse the Gaussian processes (GPs) modelling each source, we propose to use GP sparsification to select only "reliable" function evaluations performed over all the sources. These selected evaluations are used to create an augmented Gaussian process (AGP), whose name is implied by the fact that the evaluations on the most expensive source are augmented with the reliable evaluations over less expensive sources. A new acquisition function, based on confidence bound, is also proposed, including both cost of the next source to query and the location-dependent approximation of that source. This approximation is estimated through a model discrepancy measure and the prediction uncertainty of the GPs. MISO-AGP and the MISO-fused GP counterpart are compared on two test problems and hyperparameter optimization of a machine learning classifier on a large dataset

    Maximum A Posteriori Deconvolution of Sparse Spike Trains

    Get PDF

    A survey of Bayesian Network structure learning

    Get PDF
    corecore