
Structural and Multidisciplinary Optimization
https://doi.org/10.1007/s00158-021-02882-7

RESEARCH PAPER

Sparsifying to optimize over multiple information sources:
an augmented Gaussian process based algorithm

Antonio Candelieri1 · Francesco Archetti2

Received: 23 June 2020 / Revised: 18 September 2020 / Accepted: 11 February 2021
© The Author(s) 2021

Abstract
Optimizing a black-box, expensive, and multi-extremal function, given multiple approximations, is a challenging task known
as multi-information source optimization (MISO), where each source has a different cost and the level of approximation
(aka fidelity) of each source can change over the search space. While most of the current approaches fuse the Gaussian
processes (GPs) modelling each source, we propose to use GP sparsification to select only “reliable” function evaluations
performed over all the sources. These selected evaluations are used to create an augmented Gaussian process (AGP), whose
name is implied by the fact that the evaluations on the most expensive source are augmented with the reliable evaluations
over less expensive sources. A new acquisition function, based on confidence bound, is also proposed, including both cost of
the next source to query and the location-dependent approximation of that source. This approximation is estimated through
a model discrepancy measure and the prediction uncertainty of the GPs. MISO-AGP and the MISO-fused GP counterpart
are compared on two test problems and hyperparameter optimization of a machine learning classifier on a large dataset.

Keywords Multi-information source optimization · Gaussian process · Sparsification · Machine learning

1 Introduction

1.1 Overview

This paper focuses on the situation arising when a
black-box, multi-extremal, and expensive function can be
optimized by querying multiple information sources which
provide less expensive approximations of the original
function. The final goal is to optimize the original function
while keeping low the overall cumulated query cost. This
setting is known as multi-information source optimization
(MISO).

When the different sources come with an explicit infor-
mation about their level of approximation, usually named
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fidelity, MISO specializes in multi-fidelity optimization,
first introduced in Kennedy and O’Hagan (2000). Knowl-
edge about fidelities can be exploited to sort hierarchically
the sources in order to implement efficient and effec-
tive multi-fidelity optimization methods (Peherstorfer et al.
2017; Sen et al. 2018; Marques et al. 2018; Chaudhuri et al.
2019; Kandasamy et al. 2019). However, as already reported
in March and Willcox (2012), a number of drawbacks can
arise with respect to sources hierarchically organized: once
one has queried a fidelity source at a location x, no further
knowledge can be obtained querying any other source of
lower fidelity, at any location. Moreover, hierarchical orga-
nization requires the assumption that information sources
are unbiased, admitting only aleatoric error that must be
independent across sources.

The mentioned drawbacks were addressed first in Lam
et al. (2015) who proposed an approach to generate a sin-
gle model integrating the different information sources with
fidelities changing over the search space. Thus, sources
are not necessarily unbiased and independent and allow
for epistemic error. More recently, Poloczek et al. (2017)
introduced a general notion of model discrepancy to quan-
tify the difference between each source and the function to
optimize, depending on the location. In MISO, model dis-
crepancy is different from the aleatoric uncertainty, and it
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is considered a residual process to mitigate structural bias
(Liu et al. 2019).

The reference problem for MISO is:

x∗ = arg min
x∈Ω⊆�d

f (x) (1)

with f (x) black-box, multi-extremal, and expensive, and
Ω the search space. Minimization is considered without loss
of generality (i.e., max f (x) = min −f (x)).

Problem (1) is the reference problem for global
optimization: what makes MISO a different problem is the
availability of sources approximating f (x), with a different
cost for querying each of them. All the sources are also
black-box and potentially multi-extremal.

Let {f1(x), ..., fs(x), ..., fS(x)} denote the S different
sources available, where s = 1 identifies the most expensive
source: in the case that also f (x) can be queried we have
f1(x) = f (x). In the rest of this paper, we make this
assumption without any loss of generality.

Let cs denote the cost for querying the source fs(x), with
cs > 0 ∀s = 1, ..., S. One can always sort sources so that
cs > cs+1. Since fidelity changes over the search space, this
cost-based ranking does not imply a fidelity-based ranking
or hierarchy of the sources.

Querying the source s at a certain location x ∈ Ω leads
to the observation ys = fs(x), or ys = fs(x) + εs in the
case of a noisy setting, with εs ∼ N (0, λ2

s ).
Bayesian optimization (BO) (Shahriari et al. 2015; Fra-

zier 2018; Archetti and Candelieri 2019) is a mathematically
principled and sample efficient global optimization algo-
rithm. A lot of research has been made to extend the advan-
tages offered by BO to MISO, especially by using Gaussian
process (GP) modelling to approximate the sources and then
choose, sequentially, the next source-location pair to query.
GP modelling (Williams and Rasmussen 2006) is one of the
widely adopted kernel-based learning algorithms for both
regression and classification tasks. A GP is a probabilistic
model, able to provide a prediction along with an estimate
of its uncertainty. Unfortunately, GP training is not scalable
on large datasets because its computational complexity is
O(n3), with n the number of examples (aka instances) into
the dataset. Computational complexity of GP is a quite rele-
vant issue in “learning” tasks, representing a relevant gap to
its applicability on large datasets. Thus, GP approximation
is still a relevant topic in the machine learning (ML) and
statistical learning community, as also recently addressed in
Schreiter et al. (2016).

GP approximation—specifically GP sparsification—is
considered in this study not for reducing computational
costs of GP fitting in MISO, but as the core of our
algorithm in order to reduce the discrepancy between
f (x) and the single model enabling a uniform Bayesian
treatment of all the information sources. More specifically,

the set to be sparsified is that consisting of all the function
evaluations performed over all the information sources. GP
sparsification methods are described in Section 2.2; here, it
is important to anticipate that they are aimed at restricting
the GP model to a small set of inducing locations which
should be large enough to cover the search space in order to
avoid variance starvation (Wang et al. 2018), and also be as
small as possible for efficiency.

1.2 Related works

MISO and multi-fidelity optimization have been gaining
increasing attention in the last years in many real-life
problems, especially in aerodynamics (Feldstein et al.
2019; Marques et al. 2020), where simulation models are
considered less expensive information sources of the actual
aerodynamic system to optimize. Additional information
sources can be physical prototypes, with costs depending on
the experimental setting.

Another domain whose importance for MISO and multi-
fidelity optimization has been growing is ML, especially
automated machine learning (AutoML) (Hutter et al.
2019) and neural architecture search (NAS) (Elsken et al.
2019). Indeed, searching for the best ML algorithm and
the optimal configuration of its hyperparameters might
take hours or even days. The seminal paper adopting
MISO in ML is Swersky et al. (2013), which proposes
a method to use small datasets to quickly optimize the
hyperparameters of ML algorithms on a large dataset.
Results proved that it is possible to transfer the knowledge
gained from previous optimizations to new tasks in order to
speed up k-fold cross-validation. Successively, Klein et al.
(2017) proposed FABOLAS (FAst Bayesian Optimization
on LArge dataSets), an approach for hyperparameter
optimization on large datasets that selects hyperparameter
values and a dataset size, iteratively, in order to identify
optimal hyperparameter values for the entire large dataset.

From the global optimization perspective, Lam et al.
(2015) was the first paper addressing location-dependent
fidelities of the sources, removing the assumption about
hierarchical relations across them. The approach uses a
separate GP for each information source and then fuse
their predictions—and associated uncertainties—through
the method proposed by Winkler (1981), which came to
represent the standard practice for the fusion of normally
distributed data. The detailed process of estimating the
correlation between the errors of two models, at the basis
of the fusing procedure, is given in Thomison and Allaire
(1949).

The approach proposed in Poloczek et al. (2017) uses a
GP to capture the model discrepancy of each information
source with respect to f (x), while a single statistical model
is used to perform BO jointly on the search space and
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the information sources. A kernel able to deal with both
location and source is used to exploit correlations across
different information sources. This allows reducing the
uncertainty on all the information sources whenever a new
function evaluation is performed, even if it comes from a
less accurate source.

Analogous to mentioned approaches, also Ghoreishi and
Allaire (2019) use a GP for each information source and
fuse them into a single statistical model. More precisely
all the GPs are fused through the method by Winkler
(1981), as previously proposed also by Lam et al. (2015).
The main contribution is the adoption of a two-step
look ahead acquisition function for the selection of the
next source-location pair to query. To our knowledge
Ghoreishi and Allaire (2019) is the most recent and
complete MISO approach, since it also considers black-
box constraints. The main drawback in fusing GPs is that
the computation of correlations requires using a further set
of Nf points, randomly selected, which determines both
the computational complexity and the smoothness of the
resulting fused GP. For instance, in Ghoreishi and Allaire
(2019), Nf locations are used, even if the authors do not
provide any information on how they have chosen this value.

1.3 Our contribution

The main contributions of this paper can be summarized as
follows:

– A new mechanism for generating a single model on
the information sources, based on GP sparsification
instead of fusion. A low complexity criterion (i.e., with
complexity O(1)) is introduced to decide whether a
function evaluation performed on a cheap source can
be selected to “augment” the set of function evaluations
on f1(x). The GP fitted on the augmented dataset
is called Augmented GP (AGP): this entails a lower
computational complexity than fusing GP (Lam et al.
2015; Ghoreishi and Allaire 2019).

– A new acquisition function to select the next source-
location pair, by mixing together: the GP Confidence
Bound, the cost of the source and the (location
dependent) model discrepancy between the source
specific GP and the Augmented GP.

– Avoiding variance starvation, premature convergence
to local optima, as well as ill-conditioning in the
GP training, by replacing, if needed, our acquisition
function with a variance maximization step on the most
expensive source (as discussed in Section 3.3).

– Computational experiments to confirm the actual
performance of the MISO-AGP method on benchmark
functions and the hyperparameter optimization of a
SVM classifier on a large dataset.

The rest of the paper is organized as follows: Section 2
is devoted to the methodological background about GP
regression, GP sparsification and Bayesian optimization.
Section 3 is devoted to the structure of the proposed MISO-
AGP algorithm. Section 4 is devoted to the experimental
setting and Section 5 to the computational results.

2 Background

2.1 Gaussian process regression

A GP is a random function f : Ω → � whose outputs
are drawn from a multivariate normal distribution, that is
f (x) ∼ N (μ(x), σ 2(x)). When n function evaluations
of f (x) have been already performed, the values of f (x)

can be conditioned on them through the GP posterior. Let
X1:n = {x1, ..., xn} and y = {y,..., yn} denote, respectively,
the n points evaluated so far and the associated observed
values, then the mean and variance of the multivariate
normal distribution can be computed as follows:

μ(x) = k(x,X1:n)
[
K + λ2I

]−1
y

σ 2(x) = k(x, x) − k(x,X1:n)
[
K + λ2I

]−1
k(X1:n, x)

(2)

where λ2 is the variance of—a zero-mean Gaussian—noise
in the case of noisy observations, K ∈ �n×n, such that
Kij = k(xi, xj ), with k a kernel function modelling the
covariance in the GP. Finally, k(x,X1:n) is a vector whose
i-th component is given by k(x, xi) (for completeness,
k(X1:n, x) = k(x,X1:n)	).

Different types of kernels are available, such as squared
exponential (aka Gaussian), and Matérn and exponential
(aka Laplacian). Each kernel has its own hyperparameters
which are typically fitted on data through maximum log-
likelihood estimation (MLE) or maximum a posteriori
estimation (MAP).

While the kernel type establishes a prior on the
structural characteristics of the approximation (e.g., the
Laplacian kernel leads to f (x) that are not continuously
differentiable), the values of the kernel’s hyperparameters
allow modulating the amplitude and the smoothness
of f (x), conditioned to the observations but anyway
“constrained” by the kernel type chosen.

In this paper, we use the squared exponential (SE)

kernel, kSE(x, x′) = σ 2
SEe

||x−x′ ||2
2�2 and MLE to fit its

hyperparameters σ 2
SE and �, namely kernel’s output variance

and lengthscale, respectively.
The formulation (2) is known as function-space view and

it is easy to understand that the most computationally expen-
sive operation is the matrix inversion, with computational
complexity O(n3).
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Another possible formulation for GP modelling is the
so-called weight-space view, which approximates g(x)

through an explicit set of basis functions. According to
the kernel trick (Scholkopf and Smola 2001), the kernel
function k(· , · ) can be considered the inner product in
a reproducing kernel Hilbert space (RKHS) H equipped
with a feature map function ϕ : Ω → H such that
k(x, x′) = 〈ϕ(x), ϕ(x′)〉H. If H is separable, then the kernel
function can be approximated through an explicit feature
map function φ : Ω → �q , such that:

k(x, x′) = 〈ϕ(x), ϕ(x′)〉H ≈ φ(x)	φ(x′) (3)

For stationary kernel functions, Bochner’s theorem
provides a suitable q-dimensional feature map based on a
set of random Fourier features (Rahimi and Recht 2008).

More precisely, φi(x) =
√

2
q

cos(θ ix + τi), with θ i

sampled assuming the (scaled) kernel’s spectral density as
probability distribution and τi ∼ U(0, 2π). Then, f (x) is
approximated as follows:

f (x) =
q∑

i=1

wiφi(x) (4)

where weights wi are sampled from a posterior
distribution conditioned to the observations collected so far,
that is wi ∼ N (μw, σ 2

w) with:

μw = (
�	� + λ2I

)−1
�	y

σw = (
�	� + λ2I

)−1
λ2

(5)

and where � is an n × q matrix whose i-th row is given by
φ(xi) = [φ1(xi), ..., φq(xi)] with xi ∈ X1:n.

Typically, q � n, so the computational complexity
for fitting the GP—according to (4)—is reduced to O(q3)

due to the inversion of the matrix
(
�	� + λ2I

)
in (5).

Thus, the weight space view leads naturally to a GP
approximation whose quality is controlled through q:
the greater the value of q the better the approximation
(but the higher the computational cost). This kernel
approximation method is—together with the Nystrøm
method—a covariance matrix approximation (Schreiter
et al. 2016). GP approximation methods have been also
proposed for the function space view and are usually known
as sparse likelihood approximation techniques (Schreiter
et al. 2016) or, more commonly, GP sparsification methods.
Recently, the combination of the two “views” has been
proposed to perform efficient function sampling from a GP
(Wilson et al. 2020).

In this paper, the focus is on GP sparsification which is
at the basis of the proposed MISO-AGP approach. A brief
overview of GP sparsification methods is presented in the
following sub-section.

2.2 Gaussian process sparsification

GP sparsification methods are aimed at restricting the GP
model to a small set of inducing locations. This set should
be large enough to cover the search space and to avoid
variance starvation (Wang et al. 2018) but, on the other way
around, as small as possible in order to make GP modelling
scalable on large datasets. Many different methods have
been proposed for selecting the set of inducing locations
(Wahba 1990; Csató and Opper 2001; Smola and Bartlett
2001; Csató and Opper 2002; Seeger et al. 2003; Seeger
2008; Schreiter et al. 2016). In particular, Smola and
Bartlett (2001) is one of the best approaches in terms
of model accuracy but it is heavily inefficient. It was
successively improved in Keerthi and Chu (2006) in terms
of computational complexity but significantly increases
the memory requirements, especially on large and high-
dimensional datasets.

Two early papers proposed an original approach on the
issue of sparsification by elaborating criteria for deletion
(Csató and Opper 2001) and insertion (Csató and Opper
2002) of observations from and into the basis vector set
(i.e., inducing locations), for which the exact update is
performed.

Then, Seeger et al. (2003) presented a method which
randomly selects the set of inducing points, called support
patterns, based on information gain and Kullback–Leibler
divergence, leading to a sufficiently stable approximation of
the marginal log-likelihood of the training data.

Successively, Seeger (2008) argues that, beyond the
analysis of large datasets, the value of Bayesian modelling
is larger in higher level tasks such as making optimally
cost-efficient decisions or experimental designs where data
is sampled in a sequential and actively controlled manner.
Seeger’s main argument is that GPs do not encode sparsity
and reports substantial benefits using Laplace prior, such as
to offset the absence of analytically tractable formulae for
inference. A key component in the choice of the selection
of inducing points is the expected information gain, for
whose computation Seeger suggests a computationally
effective approximation. Following the selection of the
support patterns, Gaussian properties of the approximation
are retrieved by adopting a Gaussian posterior (i.e., a
Gaussian kernel). This closely resembles BO which also is
an active learning approach because it selects the new points
according to their informative value.

2.3 Bayesian optimziation

BO (Shahriari et al. 2015; Frazier 2018; Archetti and
Candelieri 2019) is a sample efficient strategy for solving
the problem (1) under a limited number of function
evaluations available. BO consists of two components:
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(i) a probabilistic surrogate model, fitted on the function
evaluations performed so far, approximating the objective
function f (x), and (ii) an acquisition function (aka infill
criterion or utility function) which drives the choice of
the next location x to evaluate while dealing with the
exploitation-exploration dilemma.

The probabilistic surrogate model provides an estimate
of f (x) along with a measure of uncertainty about such an
estimate. The estimate is usually given by the prediction
mean of the model, μ(x), while prediction uncertainty is
given by the standard deviation, σ(x).

GP is the common choice for the probabilistic surrogate
model, especially when the search space is continuous.
Random Forest (Goel et al. 2017) is the most common
alternative, especially when the search space is spanned by
discrete, mixed as well as conditional variables, which is a
common situation in AutoML.

Several acquisition functions have been proposed,
offering different strategies for balancing exploitation and
exploration in selecting the next point to evaluate (an
overview is reported in Shahriari et al. (2015), Frazier
(2018), and Archetti and Candelieri (2019)).

However, BO—as is—is not well suited for MISO
because it does not exploit the availability of different
sources in order to keep low the overall querying cost over
the sequential optimization process.

3MISO via augmented GP

3.1 Fitting an augmented Gaussian process

Let us denote with Ds = {(x(i), y(i))}i=1,...,ns the set of
function evaluations performed so far on the source s.
The final aim in MISO is to solve (1) using the cheaper
approximations to reduce the overall cost over the entire
optimization process.

The basic idea of the proposed MISO-AGP algorithm
(MISO via augmented GP) is to use GP sparsification for
selecting a subset of the function evaluations—among those
performed so far over all the different sources—as inducing
locations to generate the AGP approximating f (x). The
GP sparsification proposed is an insertion method: the
set of inducing locations is initialized with the function
evaluations on f1(x) (i.e., the most expensive information
source) and is incremented by including evaluations on
other sources depending on both a model discrepancy
measure and GP’s predictive uncertainty. It is important to
remark that the proposed MISO-AGP algorithm works on
the assumption that f (x) = f1(x).

Denote with η(G,G′, x) the model discrepancy between
two GPs, G and G′, at a certain location x. We compute
η(G,G′, x) simply as the absolute difference between the

two means of the GPs:

η(G,G′, x) = |μ(x) − μ′(x)| (6)

This simplified measure does not require to compute the
discrepancy as a further model, such as in Poloczek et al.
(2017) where it is modelled as a separate GP.

Then, the set of inducing locations, denoted with D̂, is
computed as D̂ ← D1 ∪ D̄, where D1 is the dataset related
to all the function evaluations performed so far on f1(x) and
D̄ is defined as follows:

D̄ = {(x̄, ȳ) : ∃s̄ : (x̄, ȳ) ∈ Ds̄ ∧ η(G1,Gs̄ , x̄) < mσ1(x̄)}
(7)

where m is the first of two technical parameters of the
MISO-AGP algorithm. Basically, a function evaluation
performed at location x̄ on a cheap source s̄ �= 1 is inserted
into the set of inducing locations only if the discrepancy
between G1 and Gs̄ at x̄ is lower than m times the standard
deviation of G1 at x̄. Here, we are considering that σ 2

s̄ (x̄) is
close to 0—or anyway limited by the noise variance λ2

s̄ in
the case of a noisy setting.

In Fig. 1, we report an example about how (6) and
(7) work. On the top, three GPs are fitted according
to function evaluations performed on the associated
information sources. On the bottom: the two solid lines are

Fig. 1 Selection of the inducing locations for the AGP. Top: three GPs
fitted on the function evaluations performed on the associated sources.
Bottom: solid lines are discrepancies between the GP on the most
expensive source (i.e., G1) and the GPs related to the other two sources
(i.e., purple for η(G1,G2, x) and light brown for η(G1,G3, x)). The
dashed line is the standard deviation of G1 (i.e., σ1(x)): all the function
evaluations on cheap sources having a discrepancy greater than σ1(x)

are not selected as inducing locations for the AGP (i.e., red dots in the
top)
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the discrepancies—computed according to (6)—between
the GP of the most expensive source, namely G1 in the
figure, and the GPs of the other two sources. All the function
evaluations on cheap sources having a discrepancy lower
than the G1’s standard deviation (i.e., m = 1) are selected,
according to (7), to “augment” the function evaluations on
f1(x), leading to the set of the AGP’s inducing locations D̂,
while all the others are discarded (i.e., red dots on the top of
the figure). With respect to computational complexity, the
cost of our selection strategy is O(1), exactly as the most
efficient presented in Seeger et al. (2003) and Schreiter et al.
(2016).

The suggested value is m = 1 because around 68% of the
possible values for f1(x) are estimated to be within μ1(x)±
σ1(x) (i.e., around 95% in μ1(x) ± 2σ1(x) and around
99% in μ1(x) ± 3σ1(x)). Indeed, increasing m leads to
including more evaluations performed on the cheap sources
even if they have a high discrepancy and, consequently,
might degrade the approximation offered by the AGP. In
Fig. 2, we show an example about the role of m in fitting the
AGP. From left to right, the increasing value of m (i.e., m =
1, .., 3) implies the selection of more evaluations performed
on cheap sources, significantly changing the resulting AGP.
Moreover, the most optimistic estimation the minimum of
f1(x) (i.e., μ̂(x) − σ̂ (x)), drastically changes, leading to a
prediction of the global minimizer of f1(x) far away from its
actual location. Indeed, in Fig. 2, for m = 1, the estimated
location of the most optimistic minimum is quite close to the
actual global minimizer, that is x = 0.7572488 (as reported
in Section 4), while for m = 2 and m = 3, the location is
around x = 0, very far from the actual location.

Finally, the AGP Ĝ is fitted on the inducing locations D̂,
leading to μ̂(x) and σ̂ 2(x) according to equations in (2).
The resulting AGP is very different from models proposed
in previous studies which use all the function evaluations
on all the sources to generate a unified discrepancy model

(Poloczek et al. 2017) or to fuse the GPs into a single model
over the different sources (Lam et al. 2015; Ghoreishi and
Allaire 2019).

In Fig. 3, we compare the AGP and the fused GP, both
fitted starting from the same set of function evaluations
performed on three different sources. The equations of the
three sources are from Ghoreishi and Allaire (2019); we
have changed their sign with respect to the original ones
because in our paper we consider a minimization setting:

f1(x) = (1.4 − 3x)sin(18x)

f2(x) = (1.6 − 3x)sin(18x)

f3(x) = (1.8 − 3x)sin(18x + 0.1)

(8)

Our insertion mechanism, based on (6) and (7), selects
only a subset of the overall function evaluations as inducing
points (blue dots). On the contrary, fused GP uses all of
them: our AGP is more accurate in approximating f1(x)

around the global minimizer, and it is less affected by
variance starvation and less computationally expensive.

3.2 Selecting the next source-point to query

In MISO, the next selection consists of a source-location
pair, (s′, x′). Thus, traditional acquisition functions used
in BO are not well-suited. In MISO-AGP, the proposed
acquisition function considers, for every source s = 1, ...S
and every location x ∈ Ω , the most optimistic improvement
with respect to the best value observed so far among
the current inducing locations of the AGP, then penalizes
this improvement depending on source’s cost, cs , and
the discrepancy—computed as in (6)—between the GP
associated to the source, Gs , and the AGP, Ĝ:

αs(x, ŷ+) =
ŷ+ −

[
μ̂(x) − √

βt σ̂ (x)
]

cs

(
1 + η(Ĝ,Gs , x)

) (9)

Fig. 2 Role of m in the AGP fitting process: an example on three
sources with four function evaluations on each source. The sources are
related to the first experiment presented in Section 4. When increasing
from m = 1 (left) to m = 2 (middle) and up to m = 3 (right), more
evaluations on cheap sources (i.e., f2(x) and f3(x)) are selected, along

with those on f1(x), as inducing locations of the AGP. Consequently,
the approximation offered by AGP might result poorer, especially in
terms of the most optimistic estimation of the f1(x) optimum, that is
μ̂(x) − σ̂ (x), aka lower confidence bound
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Fig. 3 A comparison between the proposed AGP (left) and the fused
GP (right) over three sources: the evaluations in red are explicitly dis-
carded to fit the AGP while, on the contrary, all the evaluations are

used to fit the fused GP, including those outside the yellow shaded area
delimited by mean ± standard deviation

We talk about the most optimistic improvement because
ŷ+ is the best value observed so far (usually named best

seen) and the quantity
[
μ̂(x) − √

βt σ̂ (x)
]

is the well-

known lower confidence bound of Ĝ, with βt the parameter
regulating the exploration-exploitation trade-off and t the
number of function evaluations used to fit the GP (a
scheduling for βt and a convergence proof are given in
Srinivas et al. (2012)). In the denominator, we use 1 +
η(Ĝ,Gs , x) to avoid division-by-zero; cs > 0 ∀s = 1, ..., S
by definition.

It is easy to demonstrate that maximizing (9) is equivalent
to minimizing the lower confidence bound of the AGP
Ĝ, divided by cs(1 + η(Ĝ,Gs , x)). We have decided to
use the notation in (9) for the sake of homogeneity with
the procedure described in the following Section 3.3 and
aimed at correcting, if needed, the selected source-location
pair. We have decided to base our acquisition function on
GP confidence bound because its computational cost is
lower compared to other look-ahead acquisition functions
proposed in other papers.

It is important to note that, due to the GP sparsification
performed at every iteration, the best seen ŷ+ in MISO-
AGP has a different behavior from BO and other MISO
approaches which do not use GP sparsification (Lam et al.
2015; Poloczek et al. 2017; Ghoreishi and Allaire 2019). At
every iteration of MISO-AGP, the current set of inducing
locations is identified by using (6) and (7), and ŷ+ is
computed as the best value observed among the current
inducing locations. As a consequence, the curve obtained
by plotting ŷ+ with respect to the function evaluations
is not strictly monotone because the ŷ+ obtained at a
certain iteration could be not selected as inducing location at
successive ones. To distinguish ŷ+ in MISO-AGP from the

common best seen—which is usually denoted with y+—we
named it augmented best seen.

For completeness, we report here the mathematical
formulations of the best seen y+—used in BO and MISO-
fused GP—and the augmented best seen ŷ+. All the
formulations are intended at a generic iteration.

BO best seen BO (single source)

y+ = min
i=1:n

{
y(i)

}
, where y(i) : ∃

(
x(i), y(i)

)
∈ D1 (10)

where n is the number of function evaluations performed so
far

MISO-fused GP best seen

y+ = min
s=1:S
i=1:ns

{
y(i)

}
, where y(i) : ∃

(
x(i), y(i)

)
∈ Ds (11)

where ns is the number of function evaluations performed
so far on source s

MISO-AGP augmented best seen

ŷ+ = min
i=1:p

{
y(i)

}
, wherey(i) : ∃

(
x(i), y(i)

)
∈ D̂ (12)

where p is the number of inducing locations in D̂ at the
current iteration.

We remark that the sequences related to (10) and (11),
over function evaluations, are monotonically decreasing,
while this is not true for the sequences related to (12)

Finally, the next pair (s′, x′) to evaluate is obtained by
solving the following auxiliary problem:

(s′, x′) ← arg max
x∈Ω

s=1,...,S

αs(x, ŷ+) (13)
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with αs(x, ŷ+) defined as in (9). A representation of the
proposed acquisition function is depicted in Fig. 4, applied
to the AGP and fused GP of previous Fig. 3. In both the
two cases, the cheapest source will be selected as s′, but the
location x′ chosen using the AGP will be closer to the global
optimizer (i.e., around 0.8 and 0.75 for AGP and fused GP,
respectively).

However, solving the auxiliary problem (13) could
lead to select an x′ very close to some location already
evaluated on the source s′. This could occur especially
when the optimization process is converging towards a local
optimum, making instable the inversion of the matrix K +
λ2I , especially in the noise-free setting. To overcome this
undesired situation, we propose the correction reported in
the following section.

3.3 Correcting the source-point pair

The ill-conditioning of the matrix K + λ2I is a well-known
issue in GP modelling. Some basic workarounds consist in
adding some noise to the observed value or to simply select
a different location in the case that ill-conditioning occurs.
Our correction is aligned with the second option: basically,

Fig. 4 An illustration of the acquisition function (9), with respect to
AGP and fused GP, respectively. Top: sources, AGP, and fusedGP,
as reported in previous Fig. 3. Bottom: the value of the acquisition
function. Line type (solid, dashed, and dotted) is used to differentiate
among sources, while color is used to differentiate between AGP and
fused GP. According to the situation in the figure, both AGP and fused
GP will select s′ ← 1, but two different locations (i.e., around 0.8 and
0.75, for AGP and fused GP, respectively)

we discard x′ if it is close to a previous observation
on s′ more than a given threshold δ > 0—that is the
second technical parameters of the MISO-AGP algorithm.
In our approach, we propose to choose an alternative x′ by
“investing” on function learning, meaning that x′ should be
a location improving the approximation offered by the AGP
at the next iteration. Under this consideration, we propose
to set s′ = 1 and then choose the location x′ associated to
the highest predictive uncertainty of G1.

Correction If ∃(x̃, ỹ) ∈ Ds′ : ||x̃ −x′|| < δ then set s′ ← 1
and choose x′ as follows:

x′ ← arg max
x∈Ω

σ1(x) (14)

As stated in Srinivas et al. (2012), solving (14) allows
to globally explore the search space and, consequently, is
a good strategy for function learning (aka function approx-
imation), whose goal is to efficiently sample f (x) at
different locations in order to obtain an accurate approxi-
mation f̂ (x) with a limited number of function evaluations.
A Smart Sampling and Incremental Function Learning
(SSIFL) algorithm has been proposed in Pedergnana et al.
(2016), where the method is also compared with other typ-
ical strategies, also not sequential, from the experiment
design field.

Basically, while BO can be considered active learning
aimed at finding, as fast as possible, the optimizer of a
black-box function, function learning can be considered
active learning aimed at obtaining, as fast as possible, an
accurate approximation of a black-box function, over the
whole search space Ω . This is the important difference,
making (14) a good choice to explore f (x) globally but
not well-suited for BO, which instead requires to focus
sampling eventually near the global optimum.

These considerations led to the definition of the GP
confidence bound acquisition function in Srinivas et al.
(2012). Indeed, (14) is guaranteed to provide a near-optimal
solution for the global optimization of a black-box function.
More precisely, the informativeness of a set of sampling
points X1:n ∈ Ω is measured by the information gain,
which is the mutual information between f (x) and the
observations y = f (X1:n) + ε, with ε ∼ N (0, λ2I).

In the GP setting, we have I(y, f (X1:n)) = 1
2 log|I +

λ2KX|, where KX = [k(xi, xj )]xi ,xj ∈X1:n . Finding the
information gain maximizer X1:n, with n ≤ N , is NP-hard.
An approximate solution is given by an efficient procedure
consisting in sequentially selecting the next location as
x′ ← arg max

x∈Ω

F(X ∪ {x}), where F(X1:n) =
I(y, f ). Being a sequential strategy, after each selection, we
update: X1:n+1 ← X1:n ∪ {x′}, y ← y ∪ {f (x′) + ε} and
n ← n + 1.
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This is equivalent to select x′ ← arg max
x∈Ω

σ(x).

After N function evaluations, we have at least a constant
fraction of the optimal information gain value:

F(X1:N) ≥ (1 − 1/e)max
n≤N

F(X1:n) (15)

making this sampling strategy near-optimal. This happens
because F(X1:n) satisfies a diminishing returns property
called submodularity, and the greedy approximation guar-
antee (15) holds for any submodular function (Nemhauser
et al. 1978).

Finally, consequently to the choice of (s′, x′) according
to (13) and (14), the value y′ = fs′(x′) is observed, at
a cost of cs′ . Then, the dataset Ds′ is updated as Ds′ ←
Ds′ ∪ {(x′, y′)} and the overall process is iterated until the
cumulated cost does not exceed a prefixed budget. It is
anyway possible to include also a stop-criterion related to
a maximum number of function evaluations, as typically
done in BO. The MISO-AGP algorithm is summarized in
Algorithm 1.

Just for completeness, we summarize here the main
equations related to fusing GP; for more details, please refer
to Ghoreishi and Allaire (2019).

μf used(x) = k(x,X1:Nf
)
[
K + Σ(X1:Nf

)
]−1

μwink(X1:Nf
)

σ 2
f used(x) = k(x, x)+

−k(x,X1:Nf
)
[
K + Σ(X1:Nf

)
]−1 k(X1:Nf

, x)

(16)

with Kij = k(xi, xj ) ∀xi, xj ∈ X1:Nf
, and μwink(X1:Nf

)

and Σ(X1:Nf
) = diag(σ 2

wink(x1), ..., σ 2
wink(xNf

)), respec-
tively, the vector of fused means and the diagonal matrix of
the fused variances at X1:Nf

. These two terms are obtained
according to:

μwink(x) = eT Σ̃(x)−1μ(x)

eT Σ̃(x)−1e
(17)

σ 2
wink(x) = 1

eT Σ̃(x)−1e
(18)

where e = [1, ..., 1]T , μ(x) = [μ1(x), ..., μS(x)]T are
the mean values of the S GPs at location x and Σ̃(x) is the
covariance matrix between the GPs, whose entry Σ̃(x)ij =
ρij (x)σi(x)σj (x). The value σ 2

i (x) is the variance of the
GP associated to the i-th source at location x and ρij

is the correlation coefficient between the deviations of
information sources i and j at location x, which is computed
as:

ρij (x) = σ 2
j (x)

σ 2
i (x) + σ 2

j (x)
ρ̃ij (x) + σ 2

i (x)

σ 2
i (x) + σ 2

j (x)
ρ̃ji(x)

(19)

where ρ̃ij is computed by reifying the i-th GP as:

ρ̃ij (x) = σi(x)
√

(μi(x) − μj (x))2 + σ 2
i (x)

(20)
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4 Experimental setting

To validate the proposed MISO-AGP algorithm, we have
performed a set of experiments involving both test functions
and a real-life application related to AutoML. Experiments
are described in the following.

4.1 Test functions

– Forrester A one-dimensional function proposed in the
MISO setting (Forrester et al. 2007; Bartz-Beielstein
et al. 2015). The original function to optimize is given
by:

f (x) = (6x − 2)2sin(12x − 4) (21)

The search space is Ω = [0, 1], the minimizer is x∗ =
0.7572488 and the minimum is f (x∗) = −6.02074.

The cheaper sources are defined according to:

fs(x) = Af (x) + B(x − 0.5) − C (22)

In our tests, we have considered two different
settings:

1. Two sources available:

f1(x) = f (x) (23)

f2(x) = 0.5f1(x) + 10(x − 0.5) − 5 (24)

with costs c1 = 1000 and c2 = 1, as defined in
Bartz-Beielstein et al. (2015).

2. Three sources available, adding the third source:

f3(x) = 0.5f1(x) + 10(x − 0.5) + 5 (25)

and costs are c1 = 1000, c2 = 1 and c3 = 0.5.

– Rosenbrock A well-known 2-dimensional test function,
used as a MISO test in Poloczek et al. (2017). In
particular, we have used the first setup of the experiment
in Poloczek et al. (2017), but in a noise-free setting:

f1(x) = (1 − x[1])2 + 100(x[2] − x2[1])2 (26)

f2(x) = f1(x) + 0.1sin(10x[1] + 5x[2]) (27)

where x[1] and x[2] are the first and second component
of the 2D location x.

Costs of the two sources are c1 = 1000 and c2 = 1.
The search space is Ω = [−2, 2]2, the minimizer is
x∗ = (1, 1) and the minimum is f (x∗) = 0.

4.2 Real-life application: ML

As real-life application, we have considered an AutoML
task, more specifically the hyperparameter optimization of
an SVM classifier on the “MAGIC Gamma Telescope”

dataset, available for free on the UCI Repository.1

The MAGIC dataset is generated by a Monte Carlo
program (CORSIKA Heck et al. 1998), to simulate
registration of high-energy gamma particles in a ground-
based atmospheric Cherenkov gamma telescope using the
imaging technique. The overall dataset consists of 19,020
instances: 12,332 of the class “gamma (signal),” and 6688
of the class “hadron (background),” with each instance
represented by 10 continuous features. We have performed
a data pre-processing consisting in scaling all the dataset
features in [0,1].

As classification learning algorithm, we have selected a
C-SVC classifier (Scholkopf and Smola 2001) with a radial
basis function (RBF) kernel. The C-SVC’s hyperparameters
to optimize are the regularization term, C, and γ of the RBF
kernel: kRBF (x, x′) = e−γ ‖x−x′‖2

.
The misclassification error on 10-fold cross-validation is the

objective function to minimize. We have defined two infor-
mation sources: the first is the misclassification error on
10-fold cross-validation with respect to the entire MAGIC
dataset (i.e., f1(x) = f (x)); the second (i.e., f2(x)) is the
same performance metric obtained using a smaller portion
of the dataset (just 5% obtained via stratified sampling).

Since computational time for querying f1(x) and f2(x)

depends on the values of C-SVC’s hyperparameters, and it
is black-box, we have run a sample of 10 hyperparameter
configurations on both the two sources and used the average
computational times for estimating reference values for c1

and c2. More precisely, computational time required by
f1(x) is, on average, 320 times that required by f2(x). Thus,
we set c2 = 1 and, consequently, c1 = 320.

The search space Ω is spanned by the two C-SVC’s
hyperparameters C ∈ [10−2, 102] and γ ∈ [10−4, 104].
We adopt a logarithmic scaling of the search space, a
usual procedure suggested in AutoML for hyperparameters
varying within ranges of this scale.

4.3 Compared approaches

The proposed MISO-AGP has been evaluated according
to two different goals. The first one is related to its
effectiveness and efficiency with respect to a traditional
BO performed on the most expensive source, only. The
second one is related to a comparison between using,
within the same MISO framework, a fused GP and the
proposed AGP. As far as the last consideration is concerned,
we want to remark that the MISO-fused GP is not the
approach proposed in Lam et al. (2015) or in Ghoreishi and
Allaire (2019). More specifically, we use for both MISO-
AGP and MISO-fused GP the acquisition function we have
proposed—defined in (9) and (14)—while Ghoreishi and

1https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
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Allaire (2019) use a more computational expensive, two-
step look ahead function.

Due to the different nature of AGP and fused GP, the
final solutions provided by the two approaches are identified
by two different mechanisms. For the AGP, as reported in
Algorithm 1, the set of inducing locations must be updated
at the end of the sequential optimization process and the
resulting augmented best seen is returned as final solution.
In the case of fused GP, we followed the procedure reported
in Ghoreishi and Allaire (2019), consisting in making a
further selection according to arg min

x∈Ω

μf used(x) (because

we are minimizing), where μf used(x) is the fused GP’s
mean updated at the end of the sequential optimization
process. The resulting selected location is then returned as
final solution for MISO-fused GP.

Summarizing, the approaches that we have compared in
our validation are:

– BO on the most expensive source f (x), only
– MISO-AGP, using the AGP as single model over

sources and locations, and (9) and (14) as acquisition
function

– MISO-fused GP, using the fused GP as single model
over sources and locations, and (9) and (14) as
acquisition function.

4.4 Computational setting

All the experiments have been performed on a Microsoft
Azure virtual machine, H8 (High Performance Computing
family) Standard with 8 vCPUs, 56 GB of memory, Ubuntu
16.04.6 LTS.

The code has been developed in R: all the codes are
available upon request from the authors, and an R package
is planned to be released soon.

GP modelling, for all the three compared approaches, is
performed by using a SE kernel whose hyperparameters are
set via MLE. The acquisition function in BO is GP-LCB,
while in MISO-AGP and MISO-fused GP we have used (9)
along with the correction (14), if required.

As initialization, 2 and 3 initial locations are sampled in
Ω via Latin Hypercube Sampling (LHS), respectively for
the 1D (Forrester test function) and the 2D (Rosenbrock
and C-SVC’s hyperparameter optimization) problems. To
mitigate the effect of random initialization, 30 different
runs of each strategy have been performed for the Forrester
and Rosenbrock test problems, and 10 runs for the real-life
application. At each run, the three strategies share the same
initialization.

As termination criterion, we set a maximum of 30 further
function evaluations; for each run, we decided not to set a
limit on the cumulated cost but to use the resulting value to
compare the different strategies.

5 Results

5.1 Results on test functions

Starting from the 1D Forrester test problem, the left-hand
side of Fig. 5 shows how the values of the best seen—for BO
(10) and MISO-fused GP (11)—and augmented best seen—
for MISO-AGP (12)—change with respect to the cumulated
cost, averaged on the 30 different runs. Solid lines are means
and shaded areas represent the standard deviations on the 30
different runs. As expected, both MISO-AGP and MISO-
fused GP required, on average, a lower cumulated cost with
respect to BO performed only on the most expensive source.

A first relevant consideration is that, in the case of two
sources available, the best seen of MISO-fused GP is on
average lower than the optimum f (x∗). This inconsistent
result is due to the nature of MISO: due to its locally poor
approximation, the less expensive source f2(x) can return
values lower than the actual optimum f1(x

∗), as depicted
in the right-hand side of Fig. 5. Therefore, the resulting
behavior of the best seen implies that MISO-fused GP
converged far away from the actual optimizer in many of the
30 runs. On the contrary, the augmented best seen of MISO-
AGP resulted on average greater than the actual optimum
f1(x

∗), with a small average difference ŷ+ − f (x∗) and a
small standard deviation at last iterations, confirming that it
converged close to the true optimizer.

Similar considerations hold for the case with three
available sources: the standard deviation related to the best
seen of MISO-fused GP implies that some solutions are far
away from the global minimizer.

Indeed, these considerations allow us to conclude that
looking at the only (augmented) best seen could be
misleading in MISO, due to the very different levels of
approximation of the sources, also depending on location in
Ω . In the right-hand side of Fig. 5, we have depicted the
three sources and the locations of the final solutions found
over the 30 different runs by each algorithm. As the most
relevant result, MISO-AGP on two sources was always able
to converge close to the global minimizer, even closer than
BO performed on the most expensive source. In the case of
three available sources, the final solutions found by MISO-
AGP are more spread over the search space Ω , but most
of them are anyway close to the global minimizer. On the
contrary, MISO-fused GP usually converges far away from
the global minimizer.

Results are summarized in Table 1, reporting the distance
of the final solutions from the global minimizer x∗ (mean
and standard deviation on the 30 independent runs), along
with the number (and percentage) of them falling into the
interval |x∗−0.034|. This corresponds to the smallest region
containing all the final solutions for at least one approach,
resulting in even smaller than the attraction basin of x∗.
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Fig. 5 Results on the 1D Forrester test problem. Left: best seen val-
ues with respect to cumulated cost—augmented best seen in the case
of MISO-AGP. Both cumulated cost and best seen are averaged over

30 different runs of each algorithm. Right: the three sources of the 1D
Forrester test problem with the minimizer and the locations of the final
solutions identified by each algorithm in each one of the 30 runs

Friedman’s statistical test confirms that the distributions
of the distances from x∗ are significantly different among
the five approaches considered (p-value=0.0368). However,
when a pairwise Wilcoxon’s test is used, distances from x∗
are not significantly different, but in the case of MISO-fused
GP with 3 sources compared to BO performed on f1(x) (p-
value=0.005), MISO-AGP with 2 sources (p-value<0.001),
and MISO-AGP with 3 sources (p-value=0.004). Thus,
MISO-fused GP with 3 sources is the worst approach.

It is important to remark that MISO-fused GP is not
the MISO algorithm proposed in Ghoreishi and Allaire
(2019): the undesired poor convergence to the actual
optimizer might be mitigated by the adoption of their
two-step acquisition function, which is anyway more
computationally expensive than the GP confidence bound
based acquisition function we have proposed.

In any case, the results show that increasing the number
of sources from two to three leads to a further reduction,
on average, of the cumulated cost, keeping fixed the overall
number of function evaluations. This happens because many

Table 1 Results on the Forrester test problem: distance from the global
minimizer x∗

Approach Distance from x∗ Final solutions

(mean ± std.dev.) in |x∗ − 0.034|

BO 0.0927 ± 0.1674 26 [86.67%]
AGP (2 sources) 0.0309 ± 0.0079 30 [100%]
AGP (3 sources) 0.1065 ± 0.1803 23 [76.67%]
Fused GP (2 sources) 0.3004 ± 0.3056 15 [50.00%]
Fused GP (3 sources) 0.3764 ± 0.3051 11 [36.67%]

function evaluations were performed on the cheapest source.
Since the selection mechanism is basically driven by the
acquisition function and it is the same for both the two
MISO approaches, it is reasonable to infer that cost is the
most relevant “driver” in selecting the next source to query,
more than discrepancy. A possible solution could be to
rescale sources’ costs in the range [0, 1] by simply dividing
each source’s cost by the largest one, that is ĉs ← cs/c1,
∀s = 1, ..., S. This should lead cost and discrepancy to work
in a similar range, giving them the same relevance in the
acquisition function.

Finally, it is important to remark that, given a cumulated
cost value, the associated (augmented) best seens obtained
using two or three sources are quite similar (Fig. 5).
This holds for both MISO-fused GP and MISO-AGP,
separately.

The previous considerations are also valid for the
2D Rosenbrock test problem. Also, in this case, MISO-
AGP apparently performed worse than MISO-fused GP,
when best seen (11) and augmented best seen (12) are
compared (Fig. 6). However, when the distance of the final
solutions from the actual global minimizer x∗ is considered,
the relevant result is that MISO-AGP was able to get
significantly closer to x∗.

Also for this test problem we report the distribution of
the final solutions found by each algorithm over the 30
different runs (Fig. 7). Although the final solutions found
by the two MISO approaches are spread within the search
space, most of those identified by MISO-AGP are closer to
the actual global minimizer when compared to those found
by MISO-fused GP, which instead seems to converge around
the location (1.5, 2).
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Fig. 6 Results on the 2D Forrester test problem: best seen values with
respect to cumulated cost—augmented best seen in the case of MISO-
AGP. Both cumulated cost and best seen are averaged over 30 different
runs of each algorithm

Results are summarized in Table 2, reporting the distance
(mean and standard deviation on the 30 independent runs)
of the final solutions, identified by each approach, from the
global minimizer x∗. Also, the number (and percentage)
of solutions falling into ||x∗ − 0.46|| is reported, that is
the smallest circle containing all the final solutions of at
least one approach. In this case, BO performed on the most
expensive source was able to converge closer to the global
minimizer than the other MISO approaches, but of course
with a significantly higher cost.

Although only 10 final solutions identified by MISO-
AGP (33.33%) are within ||x∗ − 0.46||, they are anyway
more than the only 2 identified by MISO-fused GP (6.67%).
Enlarging the interval up to ||x∗ − 1||, these figures
increase to 17 solutions for MISO-AGP (56.67%) and only
4 solutions for MISO-fused GP (13.33%).

Friedman’s test confirms that distance from x∗ is sig-
nificantly different among the three approaches considered
(p-value<0.001). This is also confirmed by a pairwise
Wilcoxon’s test: BO solutions are significantly closer to
x∗ than those of MISO-AGP (p-value=0.001) and MISO-
fused GP (p-value<0.001). Finally, MISO-AGP solutions
are significantly closer to x∗ than MISO-fused GP ones
(p-value=0.005).

Differently from the Forrester test case, here the shape
of f1(x)—and that of its cheap approximation f2(x)—
allows to easily converge towards the global minimum.
Indeed, in simple cases like the Rosenbrock test problem,
using multiple sources could lead to slightly worse solutions

than BO performed on the most expensive source: the
main advantage is the significant reduction in terms of
the overall query cost. On the other hand, in complicated
cases, like the Forrester test problem, using multiple sources
seems to improve exploration of the search space leading
to both better solutions and cost reduction with respect to
BO performed on the expensive source. It is important to
remark that, due to the black-box nature of the sources, it
is impossible to know a priori if we are going to optimize
a simple or complicated problem, so the slightly worsening
occurring in simple cases could be anyway considered
reasonable compared with the significant reduction of the
overall query cost.

To provide a comparison with respect to other state of the
art MISO approaches, we considered the results reported in
Poloczek et al. (2017), for the same test case. This required
to perform a further experiment due to some differences in
the experimental setup. More precisely, the initial design of
this additional experiment consists of 5 randomly selected
sample points—instead of 3—for each one of the two
sources. As for the other experiments, and coherently with
that reported in Poloczek et al. (2017), the random sampling
followed an LHS procedure. Although the size of our initial
design is the same as that of the experiment considered
for the comparison, the sample points within the initial
designs are surely different, leading to potentially different
results.

Another difference in the experimental setup is related to
the performance metric used in Poloczek et al. (2017): they
introduce the “gain” over the best initial solution, that is
the actual value, computed on the most expensive source, of
the solution identified at each iteration minus the best value
observed in the initial design. We have therefore computed
gain also for the solutions obtained through MISO-AGP on
this additional experiment.

In the left-hand side of Figure 1 of Poloczek et al. (2017),
it is possible to notice that increasing the cumulated cost, on
average, of about 30 units (from 5005 of the initial design
up to 5030), the resulting gain achieved by their algorithm is
around 27.5, with a standard deviation close to 0. When we
consider the same increase in terms of average cumulated
cost, the gain achieved by MISO-AGP is 31.09, but with a
very large standard deviation (i.e., 40.59). It is important to
explain that this high value in standard deviation is mainly
due to quite high gain values we have obtained in our
experiment: for 9 out of our 30 independent runs (30%) gain
was higher than 27.5, with values ranging from 46.40 up to
147.10.

According to a Mann-Whitney U test, the gain obtained
by MISO-AGP is significantly higher than that reported
in Poloczek et al. (2017) (p-value<0.001), at the same
cost. More precisely, we compared the gains obtained on
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Fig. 7 Distribution of the final solutions found by the three algorithms, on each run, on the 2D Rosenbrock test problem. Level set for the original
function are represented (in gray) along with location of the minimizer (whose coordinates are represented by the yellow dashed lines)

30 different runs of MISO-AGP to 100 samples (i.e., the
number of runs stated in Poloczek et al. (2017)) drawn form
a normal distribution with mean 27.5 and standard deviation
0.5.

5.2 Results on real-life application

Results on the real-life case study are summarized in Fig. 8.
On the left-hand side, it is shown how the values of
the best seen—for BO (10) and MISO-fused GP (11)—
and augmented best seen—for MISO-AGP (12)—change
with respect to the cumulated cost, where both best seen
and cost values are averaged on the 10 different runs.
In this case, both MISO-AGP and MISO-fused GP are
significantly more effective and cost-efficient than BO, and
almost equivalent between them. Due to the real-life nature
of the case study, we do not know neither the optimum
nor the optimizer of the problem, so it is difficult to make
accurate considerations such as those previously reported
for the test problems. To obtain an approximation of the
objective function f1(x), we have used all the function
evaluations, independently on the approach, performed
on the 10 runs, but only on the most expensive source
(i.e., the misclassification error on 10-fold cross-validation
on the large dataset for each C-SVC’s hyperparameter
configuration evaluated). To obtain this approximation, we
used a GP with SE kernel. Figure 8, in the middle, reports
the distributions of the final solutions identified by the

Table 2 Results on the Rosenbrock test problem: distance from the
global minimizer x∗
Approach Distance from x∗ Final solutions

(mean ± std.dev.) in ||x∗ ± 0.46||

BO 0.3790 ± 0.0669 30 [100%]
AGP (2 sources) 0.9781 ± 0.7900 10 [33.33%]
Fused GP (2 sources) 1.5434 ± 0.9134 2 [6.67%]

three algorithms, 10 each, and the estimated level sets of
f1(x). Again, some solutions identified by MISO-fused GP
are really far from the—approximated—global optimizer,
such as the solution in (−2, 4). Finally, on the right-hand
side, the 3D reconstruction of the approximated f (x) is
reported.

The left-hand side of Fig. 8 is devoted to show and
compare the evolution of the best seen for the approaches
considered, while the chart in the middle of the same
figure depicts the locations of the final optimal solutions
of each method. It is important to remark that for
selecting the final solutions of MISO-fused GP, we followed
the criterion proposed in Ghoreishi and Allaire (2019),
consisting in selecting the minimizer of the final fused GP’s
mean, that is a not-evaluated point. Thus, the locations
of the final solutions, for MISO-fused GP, might lie on
function levels different from the last associated best seen
values.

5.3 Considerations about the role of m and δ

MISO-AGP is characterized by two technical parameters, m
and δ, respectively used in (7) and (14). We remark that δ

is just used to avoid the ill-conditioning problem occurring
in GP fitting when the new location to query is too close
to one already sampled. To choose an appropriate value for
δ, the user has to consider that it could affect the resolution
of MISO-AGP: if a location is sampled, closer than δ to the
actual global optimizer, then MISO-AGP cannot go closer
to that, due to (14).

With respect to m, a more detailed discussion is needed.
We remark that increasing m leads to include, as inducing
locations of the AGP, a larger number of evaluations
performed on the cheap sources. This could degrade the
quality of approximation provided by the resulting AGP, as
previously shown in Fig. 2. Here, we report an additional
experiment for the Forrester test case, extending to m = 2
and m = 3 the results already reported for MISO-AGP on 3
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Fig. 8 Results on hyperparameter optimization of a C-SVC classifier
on the MAGIC GAMMA TELESCOPE dataset. Left: best seen with
respect to the cumulated cost; middle: level sets (estimated) and distri-
bution of the final solutions for the three algorithms (i.e., red crosses

for BO, blue plus for MISO-AGP, and green squares for MISO-fused
GP); right: 3D reconstruction of the (estimated) original function

sources in order to compare the performance of MISO-AGP
with respect to m. All the other experimental settings are the
same used in test case 1.

Results are summarized in Table 3, where distances
between the final solutions and the global minimizer x∗
are reported (as mean and standard deviation) depending
on m. We also report the number of final solutions close
to the global optimum, more precisely those in the interval
|x∗ − 0.034| previously defined in Section 5.1 for the same
test case. Finally, we also report the overall cost (averaged
on the 30 runs).

As the main result, a degradation of performances is
observed—as expected—by increasing m. However, this
degradation cannot be considered statistically significant
(pairwise Wilcoxon test, p-value>=0.1317 for every
comparison between two different values of m). More
importantly, the reduction in terms of distance and number
of solutions close to x∗ is not sufficiently counterbalanced
by a reduction in terms of the overall costs. Indeed, using
MISO-AGP with m = 1 allowed reducing the overall cost
of around 15,000 s with respect to BO (Fig. 5, left), while
using m = 2 as well as m = 3 led to a further reduction of
just around 1200 s.

Finally, Fig. 9 depicts the locations of the final solutions
identified by MISO-AGP with respect to the three different
values of m.

Table 3 Investigating the role of m in MISO-AGP. Results on the
Forrester test case with 3 information sources

m Distance from x∗ Final solutions Overall

(mean ± std.dev.) in |x∗ ± 0.034| cost [s]

1 0.1065 ± 0.1803 21 [70.00%] 5882.58

2 0.1601 ± 0.2197 18 [60.00%] 4518.32

3 0.1862 ± 0.2328 16 [53.33%] 4617.88

6 Conclusions

The main conclusion is that GP sparsification can be
an effective alternative to GP fusion in multi-information
source optimization. Advantages confirmed by our experi-
ments are many: (i) MISO-AGP did not outperform MISO-
fused GP in terms of value of the best solution, but showed
a lower variance in terms of its location, basically due to
the AGP’s ability to select only reliable function evaluations
on less expensive sources, depending on discrepancy and
GP’s prediction uncertainty; (ii) a significant reduction of
the cumulated query cost, with respect to BO on the most
expensive sources and aligned with that of MISO-fusedGP;
(iii) a lower risk for variance starvation; and (iv) an acquisi-

Fig. 9 Locations of the optimal solutions identified by MISO-AGP on
30 different runs, for different values of m
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tion function generalizing confidence bound by also consid-
ering a pure exploration step (i.e., variance maximization)
to avoid premature convergence and ill conditioning.

Moreover, it is important to remark that, contrary to
fused GP, the proposed AGP is fitted only on the inducing
locations that are less or equal to the function evaluations
performed over all the sources. Therefore, at each iteration,
fitting an AGP is less computationally expensive than fitting
a fused GP.

The computational results compared to other approaches
are encouraging: more has to be done to understand whether
the gain translates to higher dimensional problems.
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