54,254 research outputs found

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Insulation bonding test system

    Get PDF
    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    The simultaneity of complementary conditions:re-integrating and balancing analogue and digital matter(s) in basic architectural education

    Get PDF
    The actual, globally established, general digital procedures in basic architectural education,producing well-behaved, seemingly attractive up-to-date projects, spaces and first general-researchon all scale levels, apparently present a certain growing amount of deficiencies. These limitations surface only gradually, as the state of things on overall extents is generally deemed satisfactory. Some skills, such as “old-fashioned” analogue drawing are gradually eased-out ofundergraduate curricula and overall modus-operandi, due to their apparent slow inefficiencies in regard to various digital media’s rapid readiness, malleability and unproblematic, quotidian availabilities. While this state of things is understandable, it nevertheless presents a definite challenge. The challenge of questioning how the assessment of conditions and especially their representation,is conducted, prior to contextual architectural action(s) of any kind

    A programme to determine the exact interior of any connected digital picture

    Full text link
    Region filling is one of the most important and fundamental operations in computer graphics and image processing. Many filling algorithms and their implementations are based on the Euclidean geometry, which are then translated into computational models moving carelessly from the continuous to the finite discrete space of the computer. The consequences of this approach is that most implementations fail when tested for challenging degenerate and nearly degenerate regions. We present a correct integer-only procedure that works for all connected digital pictures. It finds all possible interior points, which are then displayed and stored in a locating matrix. Namely, we present a filling and locating procedure that can be used in computer graphics and image processing applications

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Demons and Daemons: Personal Reflections on CAID

    Get PDF

    Computing the Region Areas of Euler Diagrams Drawn with Three Ellipses

    Get PDF
    Ellipses generate accurate area-proportional Euler diagrams for more data than is possible with circles. However, computing the region areas is difficult as ellipses have various degrees of freedom. Numerical methods could be used, but approximation errors are introduced. Current analytic methods are limited to computing the area of only two overlapping ellipses, but area-proportional Euler diagrams in diverse application areas often have three curves. This paper provides an overview of different methods that could be used to compute the region areas of Euler diagrams drawn with ellipses. We also detail two novel analytic algorithms to instantaneously compute the exact region areas of three general overlapping ellipses. One of the algorithms decomposes the region of interest into ellipse segments, while the other uses integral calculus. Both methods perform equally well with respect to accuracy and time
    corecore