114 research outputs found

    Compression vidéo basée sur l'exploitation d'un décodeur intelligent

    Get PDF
    This Ph.D. thesis studies the novel concept of Smart Decoder (SDec) where the decoder is given the ability to simulate the encoder and is able to conduct the R-D competition similarly as in the encoder. The proposed technique aims to reduce the signaling of competing coding modes and parameters. The general SDec coding scheme and several practical applications are proposed, followed by a long-term approach exploiting machine learning concept in video coding. The SDec coding scheme exploits a complex decoder able to reproduce the choice of the encoder based on causal references, eliminating thus the need to signal coding modes and associated parameters. Several practical applications of the general outline of the SDec scheme are tested, using different coding modes during the competition on the reference blocs. Despite the choice for the SDec reference block being still simple and limited, interesting gains are observed. The long-term research presents an innovative method that further makes use of the processing capacity of the decoder. Machine learning techniques are exploited in video coding with the purpose of reducing the signaling overhead. Practical applications are given, using a classifier based on support vector machine to predict coding modes of a block. The block classification uses causal descriptors which consist of different types of histograms. Significant bit rate savings are obtained, which confirms the potential of the approach.Cette thèse de doctorat étudie le nouveau concept de décodeur intelligent (SDec) dans lequel le décodeur est doté de la possibilité de simuler l’encodeur et est capable de mener la compétition R-D de la même manière qu’au niveau de l’encodeur. Cette technique vise à réduire la signalisation des modes et des paramètres de codage en compétition. Le schéma général de codage SDec ainsi que plusieurs applications pratiques sont proposées, suivis d’une approche en amont qui exploite l’apprentissage automatique pour le codage vidéo. Le schéma de codage SDec exploite un décodeur complexe capable de reproduire le choix de l’encodeur calculé sur des blocs de référence causaux, éliminant ainsi la nécessité de signaler les modes de codage et les paramètres associés. Plusieurs applications pratiques du schéma SDec sont testées, en utilisant différents modes de codage lors de la compétition sur les blocs de référence. Malgré un choix encore simple et limité des blocs de référence, les gains intéressants sont observés. La recherche en amont présente une méthode innovante qui permet d’exploiter davantage la capacité de traitement d’un décodeur. Les techniques d’apprentissage automatique sont exploitées pour but de réduire la signalisation. Les applications pratiques sont données, utilisant un classificateur basé sur les machines à vecteurs de support pour prédire les modes de codage d’un bloc. La classification des blocs utilise des descripteurs causaux qui sont formés à partir de différents types d’histogrammes. Des gains significatifs en débit sont obtenus, confirmant ainsi le potentiel de l’approche

    Optimal coding unit decision for early termination in high efficiency video coding using enhanced whale optimization algorithm

    Get PDF
    Video compression is an emerging research topic in the field of block based video encoders. Due to the growth of video coding technologies, high efficiency video coding (HEVC) delivers superior coding performance. With the increased encoding complexity, the HEVC enhances the rate-distortion (RD) performance. In the video compression, the out-sized coding units (CUs) have higher encoding complexity. Therefore, the computational encoding cost and complexity remain vital concerns, which need to be considered as an optimization task. In this manuscript, an enhanced whale optimization algorithm (EWOA) is implemented to reduce the computational time and complexity of the HEVC. In the EWOA, a cosine function is incorporated with the controlling parameter A and two correlation factors are included in the WOA for controlling the position of whales and regulating the movement of search mechanism during the optimization and search processes. The bit streams in the Luma-coding tree block are selected using EWOA that defines the CU neighbors and is used in the HEVC. The results indicate that the EWOA achieves best bit rate (BR), time saving, and peak signal to noise ratio (PSNR). The EWOA showed 0.006-0.012 dB higher PSNR than the existing models in the real-time videos

    Weighted bi-prediction for light field image coding

    Get PDF
    Light field imaging based on a single-tier camera equipped with a microlens array – also known as integral, holoscopic, and plenoptic imaging – has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.info:eu-repo/semantics/acceptedVersio

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    Reducing Complexity on Coding Unit Partitioning in Video Coding: A Review

    Get PDF
    In this article, we present a survey on the low complexity video coding on a coding unit (CU) partitioning with the aim for researchers to understand the foundation of video coding and fast CU partition algorithms. Firstly, we introduce video coding technologies by explaining the trending standards and reference models. They are High Efficiency Video Coding (HEVC), Joint Exploration Test Model (JEM), and VVC, which introduce novel quadtree (QT), quadtree plus binary tree (QTBT), quadtree plus multi-type tree (QTMT) block partitioning with expensive computation complexity, respectively. Secondly, we present a comprehensive explanation of the time-consuming CU partitioning, especially for researchers who are not familiar with CU partitioning. The newer the video coding standard, the more flexible partition structures and the higher the computational complexity. Then, we provide a deep and comprehensive survey of recent and state-of-the-art researches. Finally, we include a discussion section about the advantages and disadvantage of heuristic based and learning based approaches for the readers to explore quickly the performance of the existing algorithms and their limitations. To our knowledge, it is the first comprehensive survey to provide sufficient information about fast CU partitioning on HEVC, JEM, and VVC

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor
    • …
    corecore