15 research outputs found

    Conservative discretization of multiphase flow with high density ratios

    Get PDF
    The computation of multiphase flows presenting high density ratios, where the fluids involved are considered immiscible, are of great importance for fundamental physics and industrial applications; such as the study of liquid-gas interfaces, wave motion, simulation of bubbly flows and atomization, injection in diesel engines, chemical processes and others. This work presents and analyzes a collocated and staggered finite-volume mesh discretizations suitable for three-dimensional unstructured meshes, which are able to simulate immiscible multiphase flows with high density ratios. More over, these mesh schemes numerically conserve mass and momentum while minimize errors in the conservation of kinetic energy.Peer ReviewedPostprint (published version

    Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/l Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to similar to 12x with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances. (C) 2014 Elsevier Inc. Allrights reserved.Peer ReviewedPostprint (author's final draft

    A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves

    Get PDF
    This paper is focused on the numerical simulation of the interaction of an ultrasound wave with a bubble. Our interest is to develop a fully compressible solver in the two phases and to account for surface tension effects. As the volume oscillation of the bubble occurs in a low Mach number regime, a specific care must be paid to the effectiveness of the numerical method which is chosen to solve the compressible Euler equations. Three different numerical solvers, an explicit HLLC (Harten–Lax–van Leer-Contact) solver [48], a preconditioning explicit HLLC solver [14] and the compressible projection method , and , are described and assessed with a one dimensional spherical benchmark. From this preliminary test, we can conclude that the compressible projection method outclasses the other two, whether the spatial accuracy or the time step stability are considered. Multidimensional numerical simulations are next performed. As a basic implementation of the surface tension leads to strong spurious currents and numerical instabilities, a specific velocity/pressure time splitting is proposed to overcome this issue. Numerical evidences of the efficiency of this new numerical scheme are provided, since both the accuracy and the stability of the overall algorithm are enhanced if this new time splitting is used. Finally, the numerical simulation of the interaction of a moving and deformable bubble with a plane wave is presented in order to bring out the ability of the new method in a more complex situation

    Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions

    Get PDF
    The fluids behaviour within a spherical tank under microgravity conditions is investigated through a comparison between the original data from the FLUIDICS experiment carried out in the ISS and Direct Numerical Simulations for two-phase flows. The study case consists in the rotation of a spherical tank around a fixed axis. The tank is filled with a liquid with physical properties similar to those of liquid propellants and gases used in the space industry. Two tanks with different filling ratios have been tested in space. Cameras and sensors allow extracting the fluids dynamics and the temporal evolution of the force and torque exerted by the fluids on the tank wall. Several manoeuvres corresponding to different angular velocities and angular accelerations are submitted on both tanks. The velocity profile is divided into four phases: from zero, the angular velocity around the vertical axis increases linearly until it reaches the required constant value for which the fluids stabilise in the second phase, then the angular velocity decreases until it recovers zero. Numerical simulations are computed with the home-made code DIVA which is based on the Level Set method coupled with the Ghost Fluid Method. The force in the radial direction gives the value of the centrifugal force during the constant angular velocity phase. The average centrifugal force is well predicted by the simulations, the comparison with the experimental data exhibits errors lower than 3% for the half-filled tank. Considering the vertical torque, the effect of the Euler acceleration is clearly visible through the important peaks of opposite sign observed during the acceleration and the deceleration phases. Moreover, the oscillations of the gas bubble during the second phase can be observed from the torque evolution. Their magnitude decreases throughout time until the steady state is reached. The measured and predicted temporal evolutions match together until the magnitude of the oscillations reaches the noise level of the data. The bubble oscillations are much more damped for the tank containing a larger amount of liquid (75%). The frequency of these oscillations are investigated applying the Fourier transform of the torque signals and by looking at the videos taken during the experiment. Similar oscillation frequencies are observed with the experimental setup and the numerical simulations, even for the manoeuvre with the lower Bond numbers. We verify that the oscillation frequency increases with the angular velocity. Finally, the comparison exhibits that the numerical simulations provide an accurate prediction of the fluids behaviours in microgravity conditions for this range of Bond numbers

    Direct numerical simulation of a bubble motion in a spherical tank under external forces and microgravity conditions

    Get PDF
    We present, in this paper, numerical simulations of bubble sloshing in a spherical tank, resulting from a tank rotation around a fixed axis in microgravity conditions. This configuration is of great interest in space applications where sloshing can have harmful effects on the stability of satellites. Depending on the dimensionless numbers characterising this phenomenon, our study is focused on the motion and the deformation of a bubble, initially at rest, which is set in motion when the manoeuvre is starting until it reaches a constant rotation speed around the axis. It is shown in this article that, during the first stage of the manoeuvre, the motion of the bubble is essentially driven by the inertial force that depends on the angular acceleration. Next, when the angular velocity is increasing, the centrifugal force being dominant, the trajectory of the bubble is pushed towards the direction between the centre of the tank and the axis of rotation. Finally, when the angular velocity becomes constant, the bubble, reaching a quasi-steady position, is deformed and pressed against the solid boundary of the tank. A quantified description of these phenomena is proposed through a parametric study varying the essential dimensionless numbers, i.e. the Bond number based on the angular velocity, and another Bond number based on the angular acceleration. As the temporal evolution of the forces acting on the satellite wall is of utmost importance for designing satellites and manoeuvres, we also present an analysis characterising the latter. We also detail the first comparisons between the numerical simulations and the Fluidics experiment performed in the International Space Station (ISS) in microgravity conditions. Thanks to these comparisons, we can validate the simulations in configurations of interest

    Implementation of the deflated variants of the conjugate gradient method

    Get PDF
    Sdružené gradienty jsou jednou z nejpoužívanějších metod pro řešení rozsáhlých soustav lineárních rovnic se symetrickou pozitivně-semidefinitní maticí. Jeden ze způsobů urychlení konvergence metody je deflace. Principem deflace je skrývání té části spektra matice, která způsobuje zpomalení konvergence. Tato diplomová práce se zabývá efektivní implementací různých deflated verzí sdružených gradientů. Velká pozornost je také věnována teorii a volbě deflačního prostoru. Možnosti implementace jsou demonstrovány na rozsáhlém množství příkladůThe conjugate gradient algorithm is one of the most popular methods for the solution of large systems of linear equations with symmetric positive semi-definite matrix. One of the schemes accelerating the convergence of conjugate gradients is deflation which effectively hides parts of the matrix spectrum that slows down the convergence. This master's thesis deals with efficient parallel implementation of the deflated conjugate gradient method with various modifications. Detailed theoretical considerations and the crucial choice of the deflation space are also discussed. The implementation is showcased on a wide range of benchmarks9600 - IT4Innovationsvýborn

    Constraint bubbles and affine regions: reduced fluid models for efficient immersed bubbles and flexible spatial coarsening

    Get PDF
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. © 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0730-0301/2020/7-ART43 $15.00 https://doi.org/10.1145/3386569.3392455We propose to enhance the capability of standard free-surface flow simulators with efficient support for immersed bubbles through two new models: constraint-based bubbles and affine fluid regions. Unlike its predecessors, our constraint-based model entirely dispenses with the need for advection or projection inside zero-density bubbles, with extremely modest additional computational overhead that is proportional to the surface area of all bubbles. This surface-only approach is easy to implement, realistically captures many familiar bubble behaviors, and even allows two or more distinct liquid bodies to correctly interact across completely unsimulated air. We augment this model with a per-bubble volume-tracking and correction framework to minimize the cumulative effects of gradual volume drift. To support bubbles with non-zero densities, we propose a novel reduced model for an irregular fluid region with a single pointwise incompressible affine vector field. This model requires only 11 interior velocity degrees of freedom per affine fluid region in 3D, and correctly reproduces buoyant, stationary, and sinking behaviors of a secondary fluid phase with non-zero density immersed in water. Since the pressure projection step in both the above schemes is a slightly modified Poisson-style system, we propose novel Multigrid-based preconditioners for Conjugate Gradients for fast numerical solutions of our new discretizations. Furthermore, we observe that by enforcing an incompressible affine vector field over a coalesced set of grid cells, our reduced model is effectively an irregular coarse super-cell. This offers a convenient and flexible adaptive coarsening strategy that integrates readily with the standard staggered grid approach for fluid simulation, yet supports coarsened regions that are arbitrary voxelized shapes, and provides an analytically divergence-free interior. We demonstrate its effectiveness with a new adaptive liquid simulator whose interior regions are coarsened into a mix of tiles with regular and irregular shapes.This work was supported in part by the Natural Sciences and En- gineering Research Council of Canada (RGPIN-04360-2014), the Rutgers University start-up grant, and the Ralph E. Powe Junior Fac- ulty Enhancement Award. We would like to thank Cristin Barghiel and SideFX for their generous software donation and Ryoichi Ando for his insightful discussion on comparing our constraint method with stream functions

    Fluids-membrane interaction with a full Eulerian approach based on the level set method

    Get PDF
    A fully Eulerian approach to predict fluids-membrane behaviours is presented in this paper. Based on the numerical model proposed by Ii et al. (2012), we present a sharp methodology to account for the jump conditions due to hyperelastic membranes. The membrane is considered infinitely thin and is represented by the level set method. Its deformations are obtained from the transport of the components of the left Cauchy-Green tensor throughout time. Considering the linear or a hyperelastic material law, the surface stress tensor is computed and gives the force exerted by the membrane on the surrounding fluids. The membrane force is taken into account in the Navier-Stokes equations as jump conditions on the pressure and on the velocity derivatives by imposing suitable singular source terms in cells crossed by the interface. To prevent stability issues, an extension algorithm has been developed to remove the normal derivatives of the scalar fields specific to the membrane. In particular, a subcell resolution at the interface of the extrapolated variable is proposed for increasing the accuracy of the extension algorithm. These improvements are validated by comparing our numerical results with benchmarks from the literature. Moreover, a new benchmark is proposed for fluids with both different viscosities and different densities to target applications where a gas and a liquid phase are separated by a membrane
    corecore