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Introduction

ABSTRACT 

A fully Eulerian approach to predict fluids-membrane behaviours is presented in this 
paper. Based on the numerical mode( proposed by li et al. (2012), we present a sharp 
methodology to account for the jump conditions due to hyperelastic membranes. The 
membrane is considered infinitely thin and is represented by the level set method. lts 
deformations are obtained from the transport of the components of the left Cauchy­
Green tensor throughout time. Considering the linear or a hyperelastic material law, 
the surface stress tensor is computed and gives the force exerted by the membrane on 
the surrounding fluids. The membrane force is taken into account in the Navier-Stokes 
equations as jump conditions on the pressure and on the velocity derivatives by imposing 
suitable singular source terrns in cells crossed by the interface. To prevent stability issues, 
an extension algorithm has been developed to remove the normal derivatives of the scalar 
fields specific to the membrane. ln particular, a subcell resolution at the interface of the 
extrapolated variable is proposed for increasing the accuracy of the extension algorithm. 
These improvements are validated by comparing our numerical results with benchmarks 
from the literature. Moreover, a new benchmark is proposed for fluids with both different 
viscosities and different densities to target applications where a gas and a liquid phase are 
separated by a membrane. 

The fluids-membrane interaction study of this paper is part of a global project on propellant sloshing in satellite tanks. 
e latter phenomenon happens during a satellite manoeuvre and can be a major disturbance of the stability. The tanks 
ntain Jiquid propellant and gas to maintain a sufficient pressure within the tank. During a manoeuvre, inertial forces lead 
 a motion of the fluids and thus of the centre of mass. This generates disturbing forces and torques on the whole structure 

hich may deteriorate the quality of satellite imaging. Considering simple tanks, numerical methods have been developed 

 our home-made code DIVA (Dynamics of Interface for Vaporisation and Atomisation) to model propellant sloshing in 
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micro-gravity conditions [1,2]. A parametric study has been done on typical rotational manoeuvres exerted by satellites 
in space and has been validated by comparisons with data from the FLUIDICS (FLUId DynamICs in Space) experiment, 
performed in the International Space Station (ISS) [1,3,4]. The work presented in this paper is a first step towards the 
extension of the sloshing study to diaphragm tanks for which a hyperelastic membrane separates the liquid propellant 
and the gas. The modelling of the interaction between the membrane and the fluids within the tank is crucial. It must be 
predicted accurately and thus numerical developments are required to do so.

The fluid-membrane interaction is a challenging problem to solve numerically. Peskin [5] developed the Immersed 
Boundary Method (IBM) to predict incompressible flows with moving elastic boundaries. These first applications were the 
modelling of blood flows in the heart [6] and has been extended to many biological problems cited in [7]. With this 
method, the Navier-Stokes equations are solved on a Cartesian mesh and the membrane is described by Lagrangian markers. 
The force exerted by the membrane is deduced from the position of the markers and is interpolated onto the Cartesian 
mesh using Dirac delta functions. The Navier-Stokes equations are then solved with the forcing term corresponding to the 
elastic contribution from the membrane. Finally, the predicted fluid velocity is used to update the location of the marker 
points defining the membrane. This methodology is repeated for each time step. The smoothed Dirac functions induce a 
numerical smearing of the membrane in the fluid grid which may affect the accuracy of the method.

The Immersed Interface Method (IIM) of Leveque and Li [8] replaces the interpolated forcing term due to the elastic 
membrane with sharp jump conditions. This method has been introduced for elliptic equations and extended to Stokes 
flows [9] and incompressible viscous flows [10]. The artificial smearing of the elastic force in the fluid grid generates 
spurious velocities at the membrane and a smoothing of the pressure field where a discontinuous jump must appear. With 
the IIM, the normal component of the elastic force is enforced through a jump condition on the pressure when solving 
the Poisson equation. The tangential component of the force induces jumps in the derivatives of the velocity across the 
membrane.

The Material Point Method (MPM) describes both the solid and the fluid phases using Lagrangian markers in the whole 
computational domain [11]. This method has been used in the case of fluid-membrane interaction [12] and allows large 
deformations of the linear elastic membrane.

Full Eulerian approaches do not use Lagrangian particles to follow the membrane motion and to compute the elastic 
forces. Cottet and Maitre [13] use the level set method to follow the motion of an elastic membrane immersed in a fluid. 
Without the reinitialisation algorithm of the level set function [14], the variation of the level set gradient can be directly 
related to the membrane stretching. The authors use this property to enforce the elastic material law on the zero level set 
and to integrate the resulting force in the Cartesian mesh using delta functions. However, this method only gives the mem-
brane stretching and limits the complexity of the membrane model. Moreover, the membrane is still artificially thickened 
by the delta functions.

Another full Eulerian method consists in defining the components of the deformation tensor of the membrane 
as scalar variables in the whole computational domain [15]. This approach is based on the work of Sugiyama [16]
which developed a full Eulerian fluid-structure interaction model working with hyperelastic solid bodies. The position 
of each phase, fluid and solid, is described by the volume-of-fluid function (VOF) [17] and only one set of govern-
ing equations is solved in the whole domain. In the fluid region, the stress tensor contains the pressure term and 
the viscous stress tensor, in the solid region, the stress tensor is deduced from the solid deformation and the hy-
perelastic material law. The left Cauchy-Green deformation tensor is updated throughout time thanks to a transport 
equation in the whole computational domain. This allows to follow the deformation of the hyperelastic solid in a Eu-
lerian manner. Then, the solid stress tensor can be computed following the hyperelastic material law and enforced in 
the Cartesian mesh. Ii et al. [15] extend this method to fluid-membrane interactions, which means that the solid re-
gion is reduced to a codimension-one subspace. Following the methodology of Barthes-Biesel and Rallison [18], the 
deformation tensor of the membrane is defined as a solid deformation tensor projected onto the tangent plane of the 
membrane. The normal projection of the membrane deformation tensor is not considered because the membrane ma-
terial is supposed to be incompressible. The membrane stresses are computed thanks to the deformation tensor and 
the hyperelastic material law and the resulting force is integrated in the Navier-Stokes equations with delta functions. 
Nevertheless, this method presents losses of accuracy due to the numerical dissipation of the smoothed Dirac func-
tion. Moreover, instability issues may appear over long time periods because the values of the deformation tensor far 
from the membrane may evolve chaotically with the fluid velocity and may influence the computation at the mem-
brane.

In this paper, we propose to improve the full Eulerian method of Ii et al. [15] by adding some aspects of the sharp 
methodology of the IIM. Moreover, we extend this model to handle different fluids on each side of the membrane. In sec-
tion 2, the modelling of two-phase flows and the membrane model are described. The numerical methods implemented 
in the code are explained in section 3. More particularly, the discretisation of the jump conditions from the Ghost Fluid 
Method [19,20] is detailed. Furthermore, an extension algorithm based on a subcell resolution has been developed to re-
duce the numerical instability by removing the spurious normal derivatives. The validation of the methodology is done 
in section 4 with several benchmarks of growing complexity from the literature: from the simple case of a bubble ris-
ing due to a surface tension gradient until the much more complex cases of a stretched membrane separating different 
fluids and a capsule immersed in a shear flow. Finally, the paper is concluded by some remarks and perspectives in sec-
tion 5.



2. Eulerian fluid membrane model

2.1. Two-phase flow model

We consider a domain � with a boundary ∂� which contains two different fluids defined by �+ and �− such as 
� = �+ ∪ �− . The interface between the two fluids regions is denoted � and its outward normal vector is n. Each fluid is
incompressible and Newtonian and follows the Navier-Stokes equations.

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p + ∇ ·

(
2μ ¯̄D

)
, (2)

with u = (u, v, w) the velocity field, t the time, ρ the fluid density, μ the fluid viscosity, p the pressure and ¯̄D the rate of 
deformation tensor defined as

¯̄D = ∇u + ∇uT

2
. (3)

Considering the entire domain �, special care must be taken at the interface � between the two fluids regions. The 
following jump conditions must be accounted for,

[ρ]� = ρ+ − ρ−, (4)

[μ]� = μ+ − μ−, (5)

[n · ¯̄σ ]� = f�, (6)

with ¯̄σ the stress tensor and f� the local force density at the interface. In the case of two-phase flows with surface tension, 
the local force density becomes f� = γ κn with γ the surface tension and κ = ∇ · n the mean curvature of the interface. 
When a membrane separates the two fluids, the local force is defined in section 2.2.

Considering the entire domain �, we define the density and viscosity field as

ρ(x) = ρ− + (ρ+ − ρ−)H(x), (7)

μ(x) = μ− + (μ+ − μ−)H(x), (8)

with H the Heaviside function defined as H(x) = 0 in �− and H(x) = 1 in �+ .
The Navier-Stokes equations in the entire domain � can therefore be written as

∇ · u = 0, (9)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p + ∇ ·

(
2μ ¯̄D

)
+ δ�f�, (10)

with δ� the Dirac function located at the interface.

2.2. Membrane model

In this section, the large deformable membrane model of Barthes-Biesel and Rallison [18] is described. The local force 
density of the membrane on the fluids is computed with a full Eulerian formulation. This formulation is inspired by the 
work of Sugiyama et al. [16] for 3D solid problems and adapted to the membranes by Ii et al. [15].

In a stress-free state, each particle of a solid is defined by its coordinate vector X. We denote by x(X, t) the position, at 
time t , of a particle located in X in the stress-free state. The link between the current state and the stress-free state is the 
deformation gradient tensor ¯̄F defined as

¯̄F = ∂x

∂X
. (11)

The material time derivative of the deformation gradient tensor ¯̄F follows

d ¯̄F
dt

= (∇us)
¯̄F , (12)

with us the velocity of the membrane particles. This velocity vector is obtained by extending u from its values at the 
membrane toward the normal direction. The extension method is defined in section 3.6.



Now, we consider the special case of a membrane which thickness is very small compared to its other dimensions. 
Therefore, we will neglect the thickness and represent the membrane as a surface in a 3D space. Each fibre dX of the 
membrane in the reference state belongs to the tangent plane of the membrane. Similarly, each deformed fibre dx belongs 
to the tangent plane of the membrane in the current state. This means that only the components perpendicular to the 
normal direction of the membrane must be considered by the deformation gradient tensor. Let nR be the outward normal 
of the membrane in the reference state and n the outward normal in the current state, the previous condition can be 
expressed respectively as ¯̄F s.nR = 0 and n. ¯̄F s = 0 with ¯̄F s the surface deformation gradient tensor of the membrane. This 
tensor can then be written

¯̄F s = ¯̄P ¯̄F ¯̄P R , (13)

with ¯̄P = ¯̄I − n ⊗ n the surface projection tensor in the current state and ¯̄P R = ¯̄I − nR ⊗ nR in the reference state. The local 
deformation of the membrane can be obtained with the surface left Cauchy-Green tensor,

¯̄Bs = ¯̄F s
¯̄F T

s . (14)

The Cauchy-Green tensor ¯̄Bs is symmetric and its eigenvalues λ2
1 and λ2

2 correspond to the square of the two principal 
strains of the membrane in its tangent plane and the third eigenvalue zero corresponds to the deformation in the normal 
direction which has no existence because of the projections performed previously. The scalar invariants of the surface left 
Cauchy-Green tensor are

I1 = tr( ¯̄Bs) = λ2
1 + λ2

2, (15)

I2 = 1

2

(
tr( ¯̄Bs)

2 − tr(
¯̄

B2
s )

)
= λ2

1λ
2
2, (16)

I3 = det( ¯̄Bs) = 0. (17)

This strain tensor, considering (13) and (14), can be written thanks to an intermediate tensor ¯̄G s ,

¯̄Bs = ¯̄P ¯̄G s
¯̄P with ¯̄G s = ¯̄F ¯̄P R

¯̄F T . (18)

Considering (12) and (18), the material time derivative of ¯̄G s is given by

d ¯̄Gs

dt
= (∇us)

¯̄Gs + ¯̄Gs(∇us)
T . (19)

In the case of hyperelastic materials, the stress tensor ¯̄σ can be written according to the surface strain energy func-
tion W (I1, I2, I3) which depends on the left Cauchy-Green tensor and its scalar invariants. In the case of a membrane, 
Barthes-Biesel and Rallison [18] show that the surface stress tensor ¯̄σ s is,

¯̄σ s = 2√
I2

(
∂W

∂ I1

¯̄Bs + I2
∂W

∂ I2

¯̄P
)

. (20)

Several strain energy functions [21–24] exist to describe different hyperelastic behaviours. All functions depending on the 
scalar invariants of the Cauchy-Green tensor can be considered with this methodology. We will consider in this study the 
strain energy function of the neo-Hookean solid [25], adapted to the membrane case by considering the incompressibility 
of the membrane as

W = Es

6
(I1 + 1

I2
− 3), (21)

with Es the surface elastic modulus defined as Es = EhR with E the Young’s modulus of the membrane and hR the thickness 
of the membrane in the reference state. The surface stress tensor becomes for this material model,

¯̄σ s = Es

3
√

I2

(
¯̄Bs −

¯̄P
I2

)
. (22)

Finally, the local force density exerted by the membrane is given by the surface divergence of the membrane stress 
tensor,

f� = ∇s · ¯̄σ s, (23)

with ∇s the surface gradient operator defined by ∇s = ¯̄P .∇ . Considering the distance property of the level set function, 
which implies (n · ∇)n = 0, and the geometric properties of the membrane, some simplifications can be made,



¯̄P ¯̄σ s = ¯̄σ s, n · ¯̄σ s = 0, (24)

and the local force becomes

f� = ∇ · ¯̄σ s. (25)

The local force density can be divided into two components, respectively toward the normal and the tangent directions 
of the membrane such as

fn = f� · n = − ¯̄σ s : ∇n = − ( ¯̄σ s∇
) · n, (26)

because the stress tensor is symmetric, and

fτ = ¯̄P f� = ¯̄P (∇ · ¯̄σ s). (27)

3. Numerical methods

This section describes specific numerical methods implemented to model the membrane behaviour and its interaction
with the surrounding fluids. These developments have been integrated in the home-made code DIVA. This solver is based on 
several numerical methods dedicated to the computation of two-phase flows. The DIVA code can also consider liquid-vapour 
phase change [26–30] and compressible flows [31]. Complex geometry can be accounted for by using the irregular domain 
method proposed in [32] for single phase flows and extended to two-phase flows in irregular domains in [2]. In this study, 
the interface between the two fluids corresponds to the membrane and is represented by the level set method [33,14]. 
The Ghost-Fluid method [19,34–36,20,37] is used to consider the sharp jump conditions at the membrane. It should be 
pointed out here that Ghost Fluid Method is first order accurate for imposing jump conditions, but some recent works have 
proposed extensions to second order accuracy as in [38–40].

3.1. Interface tracking method

The level set method [33,14] is used to track the infinitely thin membrane throughout time. We define the scalar field φ
which corresponds to the signed distance from the membrane �. Each fluid region corresponds to the sign of the level set 
function as �+ = {x : φ(x) > 0}, �− = {x : φ(x) < 0} and the membrane corresponds to the zero level set � = {x : φ(x) = 0}. 
The motion of the membrane is updated by solving the following transport equation

∂φ

∂t
+ u · ∇φ = 0. (28)

To keep the signed distance property of the level set function throughout time, we consider the reinitialisation algorithm 
[14]. The following equation is solved iteratively to correct the distance between each level set⎧⎨

⎩
∂d

∂τ
+ sign(φ)(1 − ||∇d||) = 0,

d(τ = 0) = φ,

(29)

with τ a fictitious time along which the reinitialised distance function d is corrected to maintain the distance property 
||∇d|| = 1. The smoothed sign function sign(φ) is defined in [19,14].

The level set method allows us to compute the geometric properties of the membrane such as its outward normal using 
simple differencing,

n = ∇φ

||∇φ|| , (30)

and thus, the projection tensor ¯̄P = ¯̄I − n ⊗ n can be computed in the whole domain.
The spatial derivatives of the transport equation and the reinitialisation algorithm are computed using the WENO-Z 

scheme [41]. The temporal scheme of the transport equation is the second order TVD Runge-Kutta scheme. The reinitialisa-
tion algorithm is solved at the end of each time step.

3.2. Two-phase flow solvers

In this section, we describe the methodology to solve the Navier-Stokes equations with two different ways to consider 
the membrane contribution. The first one is the “delta” formulation for which the elastic force is a source term in the 
right-hand side. The second method integrates the elastic force through sharp jump conditions on the pressure and on the 
velocity derivatives.



3.2.1. The “delta” formulation
The “delta” formulation [42,14] solves the Navier-Stokes equations for two-phase flows by smoothing the interface on an 

artificial thickness. The method is based on a projection method inspired by Chorin [43] in the case of single phase flows. For 
two-phase flows, the method we use is derived from the Ghost-Fluid viscous Conservative Method with an Implicit scheme 
of Lepilliez et al. [2], inspired by the work of Sussman et al. [37]. First, given a velocity field un at the time tn = n�t , an 
intermediate velocity u∗ is computed without considering the pressure term,

ρn+1u∗ − �t∇ ·
(

2μn+1 ¯̄D∗) = ρn+1 (
un − �t

(
un · ∇)

un) + �tδεf�
n. (31)

The viscous term is considered implicitly to avoid its time step restriction. This leads to the resolution of a large linear 
system where the three components of the velocity are coupled. The advection term is computed with WENO-Z schemes 
[41] and the viscous term with central differencing schemes [2]. The local force f�

n is multiplied by the smoothed Dirac
distribution δε defined below and added to the right-hand side. As the resulting matrix is diagonally dominant, the system
is solved using a few steps of the Gauss-Seidel algorithm.

Then, the pressure field pn+1 serves as the scalar potential function of the Hodge decomposition which satisfies the 
following Poisson equation

∇ ·
(∇pn+1

ρn+1

)
= ∇ · u∗

�t
, (32)

with homogeneous Neumann boundary conditions on ∂�. The resolution of this equation is done with the Black Box 
Multigrid method [44,45] to reduce the computation time.

Finally, the velocity field un+1 is defined as the projection of the intermediate velocity u∗ onto the divergence-free space

un+1 = u∗ − �t

ρn+1 ∇pn+1. (33)

In the framework of the Whole Domain Formulation, the density and viscosity fields are updated with the level set 
function using a smoothed Heaviside distribution

ρ(x) = ρ− + (ρ+ − ρ−)Hε(x), (34)

μ(x) = μ− + (μ+ − μ−)Hε(x), (35)

with Hε(x) the smoothed Heaviside distribution defined as

Hε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if φ(x) < −ε,

1

2

(
1 + φ(x)

ε
+ sin(πφ(x)/ε)

π

)
if |φ(x)| < ε,

1 if φ(x) > ε,

(36)

with ε the fictitious thickness of the membrane, which is equal to two or three times the size of a cell [46]. Similarly, the 
smoothed Dirac distribution δε(x) is defined as the derivative of the smoothed Heaviside function,

δε(x) =

⎧⎪⎨
⎪⎩

0 if |φ(x)| > ε,

1

2ε

(
1 + cos

(
πφ(x)

ε

))
if |φ(x)| < ε.

(37)

3.2.2. The sharp formulation
Let us consider that n is the normal vector to the membrane and 

(
eτ 1 ,eτ 2

)
are two orthogonal vectors belonging to the

tangent plane of the membrane. The no-slip condition on both sides of the membrane enforces [u]� = 0 and gives[
∂u

∂eτ1

]
�

= 0 and

[
∂u

∂eτ2

]
�

= 0. (38)

The incompressibility condition ∇ · u = 0 in both fluids ensures that there is no jump at the membrane [∇ · u]� = 0 and 
gives the following relation from [47][

∂u

∂n

]
�

· n = 0. (39)

The density and viscosity fields are piecewise constant and their jumps at the membrane correspond to equations (4) and 
(5). With the sharp formulation, the local density force corresponding to the membrane contribution is expressed as three 
primary jump conditions:



[p]� = 2

[
μ

∂u

∂n

]
�

· n + f� · n = 2[μ]� ∂u

∂n
· n + fn, (40)[

μ
∂u

∂n

]
�

· eτ 1 +
[
μ

∂u

∂eτ 1

]
�

· n = −
( ¯̄P f�

)
· eτ 1 = −fτ · eτ 1 , (41)[

μ
∂u

∂n

]
�

· eτ 2 +
[
μ

∂u

∂eτ 2

]
�

· n = −
( ¯̄P f�

)
· eτ 2 = −fτ · eτ 2 . (42)

These jump conditions have been proven by Xu and Wang [48] in single phase flows and extended to piecewise constant 
viscosity by Tan et al. [49,47]. In this study, we only consider these primary jump conditions which account for all the 
physical phenomena of interest for this study. It is noticeable that higher accuracy numerical methods have been achieved 
in [49,47,48] in the simpler case of linear elasticity, by imposing further secondary jump conditions on the second order 
velocity derivatives and first order pressure derivatives. However, these numerical methods have not been generalised to 
more complex configurations such as hyperelastic membranes.

Following the Ghost-Fluid Conservative viscous Method (GFCM), Lalanne et al. [46] show that only the normal component 
of the force must be considered in the projection and the correction steps because the viscous component is already taken 
into account in the predictor step of the projection method. The remaining jump condition on the pressure is then

[p]� = f� · n = fn. (43)

From equations (38), the jump conditions (41) and (42) can be written as[
μ

∂u

∂n

]
�

· eτ 1 + [μ]�
∂u

∂eτ 1

· n = −fτ · eτ 1 , (44)[
μ

∂u

∂n

]
�

· eτ 2 + [μ]�
∂u

∂eτ 2

· n = −fτ · eτ 2 . (45)

Following a similar approach to that of Lalanne et al. [46], the source terms due to the tangential components of the 

elastic force are considered as jumps that are only enforced on the first term: 
[
μ

∂u

∂n

]
�

· eτk with k = [1, 2]. The second

terms of equations (44) and (45) will be zero if there is no viscosity jump, even in the case where the tangential com-
ponent of the local force is not zero. This approach still stands with a viscosity jump and has been used in [50] where 
several simulations with surfactants were performed. Consequently, the splitting of the jump conditions allows a simple nu-
merical implementation of the source terms in the cells cut by the membrane. Indeed, the jump conditions on the tangent 
components of the viscosity-scaled velocity gradient in the first step of the GFCM can be taken into account by imposing[

μ
∂u

∂n

]
�

· eτk = −fτ · eτk , (46)

with k = [1, 2]. Because the jump of the normal component of the viscosity-scaled velocity gradient is only due to the jump 
on the viscosity, the following source term is considered in the first step of the algorithm[

μ
∂u

∂n

]
�

= − ¯̄P f� = −fτ . (47)

In section 4.1, a validation of this methodology to deal with jumps of both tangential and normal stresses is presented 
by comparing simulations and the theoretical solution of a droplet rising in a surface tension gradient in the Stokes regime. 
The second terms of equations (44) and (45) are zero in this case, with or without viscosity jump. As the simulations match 
to the theoretical solution, this comparison demonstrates the relevance of the presented approach. For a general case with 

nonzero terms [μ]�
∂u

∂eτ 1

· n and [μ]�
∂u

∂eτ 2

· n and viscosity jump, we assume that all the terms of equations (44) and (45)

are well taken into account. To our knowledge, a demonstration for this general case has never been provided and further 
investigation would be appreciated. It appears from this discussion that the key-point is to introduce a consistent numerical 
approximation of the source term resulting from the jump condition. Finally, the jump condition will be automatically 
satisfied if a consistent approximation of the source term is added at the right place. Other general considerations on this 
specific point can be found in Appendix B. From this, some analogies can be found between jump condition formulations 
and δ formulations for two-phase flows Navier-Stokes equations.

To solve the Navier-Stokes equations for two-phase flows with the Ghost Fluid viscous Conservative Method, the same 
projection method inspired by [43] is considered with jump conditions to describe the membrane force. First, the interme-
diate velocity is computed using the same implicit scheme for the viscous term,⎧⎪⎨

⎪⎩
ρn+1u∗ − �t∇ ·

(
2μn+1 ¯̄D∗

)
= ρn+1

(
un − �t

(
un · ∇)

un
)
,[

μ
∂u

]
= −fτ ,

(48)
∂n �



with the source term due to the tangent component of the singular force imposed as a jump on the viscous stress. It 
is noteworthy that, unlike the delta formulation, the prediction step of the projection method only contains this tangent 
component, since the normal component is accounted for in the projection and correction steps. The analogy between sharp 
methods using jump conditions and the “delta” formulation is thoroughly explained in [46]. The linear system resulting from 
(48) is a single linear system where all the velocity components are coupled. This allows a fully implicit discretization of the
viscous term without additional time step constraints due to viscosity jump and it can be solved easily with a Gauss-Seidel
algorithm as pointed out by Lepilliez et al. in [2]. The numerical implementation of the jump conditions on the viscous
stress tensor is detailed in section 3.5.

Then the Poisson equation is solved with

∇ ·
(∇pn+1

ρn+1

)
= ∇ · u∗

�t
, (49)

with the following pressure jump condition accounting for the normal component of the local force

[p]� = fn , (50)

and the following jump condition on the pressure normal gradient[
n · ∇pn+1

ρn+1

]
=

[
μn · �un

ρn+1

]
, (51)

details of which can be found in Appendix B. The numerical discretization of this singular source term is identical to the 
one described by Liu et al. in [20] and is detailed in section 3.4.

These equations based on a jump condition formulation can also be rewritten in a similar way with singular source 
terms instead of jump condition. It will give a mathematically identical system that will express as

ρn+1u∗ − �t∇ ·
(

2μn+1 ¯̄D∗) = ρn+1 (
un − �t

(
un · ∇)

un) + �tfτ δ�, (52)

to compute the velocity field in the predictor step. Next, the pressure field can be computed with the appropriate jump 
condition with the following equation

∇ ·
(∇pn+1

ρn+1

)
= ∇ · u∗

�t
+ ∇ ·

(
fnnδ�

ρn+1

)
, (53)

which is identical to equations (49) and (50). Indeed, the term 2[μ]� ∂u

∂n
· n is included in ∇ · u∗ , for more details, see

Appendix B. Finally, the velocity is corrected,

un+1 = u∗ − �t

ρn+1 (∇pn+1 − fnnδ�). (54)

By considering that modifications of the numerical schemes accounting for jump conditions act as sharp approximations 
of singular source terms, it can be understood that the two presented formulations are identical. See for instance [46] for 
more details on this specific point.

3.3. Discretisation of the membrane model

Considering the Cartesian mesh, the standard MAC grid is used: the scalar variables are located in the centre of the 
mesh cells and the components of the velocity field are staggered at the cell faces in each direction. Unlike in [15], all 
the components of the different solid tensors are located at the centre of the mesh cells in this study. The location of the 
different variables in a 2D mesh cell is illustrated in Fig. 1.

At each time step, the position of the interface is updated using (28). The six components of the intermediate strain 
tensor ¯̄Gs in 3D are then computed using equation (19)

¯̄Gn+1
s = ¯̄Gn

s − �t
(
(us

n · ∇) ¯̄Gn
s − (∇us

n) ¯̄Gn
s − ¯̄Gn

s (∇us
n)T

)
. (55)

The advection term is computed with the WENO-Z scheme [41] and the velocity derivatives are obtained with central 
differencing schemes. For example, in 2D, the advection term corresponding to the first component of the intermediate 
strain tensor is computed as

(us
n · ∇)Gn

11 = us
∣∣
i, j

∂G11

∂x

∣∣∣
i, j

+ vs
∣∣
i, j

∂G11

∂ y

∣∣∣
i, j

(56)

with



Fig. 1. Location of the variables on a 2D mesh cell.

us
∣∣
i, j = 1

2

(
us

∣∣
i−1/2, j + us

∣∣
i+1/2, j

)
and vs

∣∣
i, j = 1

2

(
vs

∣∣
i, j−1/2 + vs

∣∣
i, j+1/2

)
. (57)

Considering now the derivatives of the x-component of the velocity,

∂us

∂x

∣∣∣
i, j

= us|i+1/2, j − us|i−1/2, j

�x
and

∂us

∂ y

∣∣∣
i, j

= us|i, j+1/2 − us|i, j−1/2

�y
, (58)

with

us
∣∣
i, j±1/2 = 1

4

(
us

∣∣
i−1/2, j + us

∣∣
i+1/2, j + us

∣∣
i−1/2, j±1 + us

∣∣
i+1/2, j±1

)
. (59)

The computation of the components of the surface left Cauchy-Green tensor and the stress tensor at the cell centres 
follows equations (14) and (20).

The components of the surface density force f� are computed at the centre of the faces of the cells following (25). Con-
sidering the sharp methodology and the force decomposition (26, 27), the normal component of the force is computed at the 
centre of the cell and the tangent components are staggered at the cell faces. Considering a 2D example, the discretisation 
of the normal component of the force, following (26), is

fn
∣∣
i, j = σ11

∣∣
i, j

∂nx

∂x

∣∣∣
i, j

+ σ12
∣∣
i, j

∂nx

∂ y

∣∣∣
i, j

+ σ21
∣∣
i, j

∂ny

∂x

∣∣∣
i, j

+ σ22
∣∣
i, j

∂ny

∂ y

∣∣∣
i, j

= σ11
∣∣
i, j

nx|i+1, j − nx|i−1, j

2�x
+ σ12

∣∣
i, j

nx|i, j+1 − nx|i, j−1

2�y
+ σ21

∣∣
i, j

ny|i+1, j − ny|i−1, j

2�x

+ σ22
∣∣
i, j

ny|i, j+1 − ny|i, j−1

2�y
. (60)

The tangent component of the force in the x-direction from (27) gives

fτ · ex
∣∣
i+1/2, j = P11

∣∣
i+1/2, j

(
∂σ11

∂x

∣∣∣
i+1/2, j

+ ∂σ12

∂ y

∣∣∣
i+1/2, j

)
+ P12

∣∣
i+1/2, j

(
∂σ12

∂x

∣∣∣
i+1/2, j

+ ∂σ22

∂ y

∣∣∣
i+1/2, j

)

= P11
∣∣
i+1/2, j

(
σ11|i+1, j − σ11|i, j

�x
+ σ12|i+1/2, j+1/2 − σ12|i+1/2, j−1/2

�y

)

+ P12
∣∣
i+1/2, j

(
σ12|i+1, j − σ12|i, j

�x
+ σ22|i+1/2, j+1/2 − σ22|i+1/2, j−1/2

�y

)
, (61)

with

Pkl
∣∣
i+1/2, j = 1

2

(
Pkl

∣∣
i+1, j + Pkl

∣∣
i, j

)
and σkl

∣∣
i+1/2, j+1/2 = 1

4

(
σkl

∣∣
i, j + σkl

∣∣
i+1, j + σkl

∣∣
i, j+1 + σkl

∣∣
i+1, j+1

)
. (62)

With the “delta” formulation, the discretisation of the elastic force corresponds to equation (61) with ¯̄I instead of ¯̄P to 
consider all the components of the force. This method is identical in the other directions and can easily be extrapolated 
in 3D.



3.4. Jump condition on the pressure

The pressure jump is taken into account following the Ghost Fluid Method [19,20]. The Poisson equation on the pressure 
(53) can be written as

∇ · (β∇p) = R H S, (63)

with β = 1/ρ the diffusion coefficient. The equation contains jump conditions on the pressure denoted a = fn and on the 
diffusion coefficient [β]� .

The discretisation of the 2D Poisson equation at point (i, j) gives

βi+1/2, j

(
pi+1, j−pi, j

�x

)
− βi−1/2, j

(
pi, j−pi−1, j

�x

)
�x

+
βi, j+1/2

(
pi, j+1−pi, j

�y

)
− βi, j−1/2

(
pi, j−pi, j−1

�y

)
�y

= R H Si, j + gi, j, (64)

with (βi+1/2, j, βi−1/2, j, βi, j+1/2, βi, j−1/2) the harmonic averages of the diffusion coefficient at the centre of the cell borders. 
If the interface crosses the right mesh segment [xi, j, xi+1, j],

βi+1/2, j =

⎧⎪⎪⎨
⎪⎪⎩

β+β−

β−θ R + β+(1 − θ R)
if φi, j < 0 and φi+1, j > 0,

β+β−

β+θ R + β−(1 − θ R)
if φi, j > 0 and φi+1, j < 0,

(65)

with

θ R = |φi+1, j|
|φi+1, j| + |φi, j| . (66)

Similarly, if the interface crosses the left mesh segment [xi−1, j, xi, j],

βi−1/2, j =

⎧⎪⎪⎨
⎪⎪⎩

β+β−

β−θ L + β+(1 − θ L)
if φi, j < 0 and φi−1, j > 0,

β+β−

β+θ L + β−(1 − θ L)
if φi, j > 0 and φi−1, j < 0,

(67)

with

θ L = |φi−1, j|
|φi−1, j| + |φi, j| . (68)

The gi, j term in (64) corresponds to the jumps enforced when the interface crosses at least one of the four neighbouring 
mesh segments. The latter are denoted by the superscripts R, L, T and B which correspond respectively to the right, left, top 
and bottom borders. As a general rule,

gi, j = g R
i, j + gL

i, j + gT
i, j + g B

i, j . (69)

Each one of these values exists only if the membrane crosses the mesh segments and then equals

g R
i, j = ±βi+1/2, jaR

�

�x2
, gL

i, j = ±βi−1/2, jaL
�

�x2
, gT

i, j = ±βi, j+1/2aT
�

�y2
, g B

i, j = ±βi, j−1/2aB
�

�y2
, (70)

with ± corresponding to the opposite sign of φi, j and

aR
� = ai, jθ

R + ai+1, j(1 − θ R), aL
� = ai, jθ

L + ai−1, j(1 − θ L), (71)

aT
� = ai, jθ

T + ai, j+1(1 − θ T ), aB
� = ai, jθ

B + ai, j−1(1 − θ B). (72)

The extension of these schemes to 3D problems is straightforward.

3.5. Jump condition on the velocity derivatives

The discretisation of each component of the viscous-stress tensor is described in this section with a specific emphasis 
on how to enforce suitable jump conditions. Considering a 2D example, the divergence of the viscous-stress tensor gives

∇ · (2μ ¯̄D) =
⎛
⎝ ∂

∂x

(
2μ∂u

∂x

) + ∂
∂ y

(
μ

(
∂u
∂ y + ∂v

∂x

))
∂
∂x

(
μ

(
∂u
∂ y + ∂v

∂x

))
+ ∂

∂ y

(
2μ∂v

∂ y

)
⎞
⎠ . (73)



With (47), the jump condition of each velocity derivative can be expressed as[
μ

∂u

∂x

]
�

= nx

[
μ

∂u

∂n

]
�

= −nx (fτ · ex) ,

[
μ

∂u

∂ y

]
�

= ny

[
μ

∂u

∂n

]
�

= −ny (fτ · ex) , (74)[
μ

∂v

∂x

]
�

= nx

[
μ

∂v

∂n

]
�

= −nx
(
fτ · ey

)
,

[
μ

∂v

∂ y

]
�

= ny

[
μ

∂v

∂n

]
�

= −ny
(
fτ · ey

)
. (75)

Considering the first term of the viscous-stress tensor in (73), let β = 2μ be the diffusion coefficient and b = −nx (fτ · ex)

be the jump condition on the velocity derivative computed at the right and left cell borders. The discretisation of this term 
at point (i + 1/2, j) gives

∂

∂x

(
β

∂u

∂x

)∣∣
i+1/2, j =

βi+1, j

(
ui+3/2, j−ui+1/2, j

�x

)
− βi, j

(
ui+1/2, j−ui−1/2, j

�x

)
�x

− hi+1/2, j (76)

with βi, j and βi+1, j the harmonic averages of the diffusion coefficient at the centre of the cells which are computed with 
the same methodology as in equations (65) to (68).

The jump conditions to be enforced are hi+1/2, j = hR
i+1/2, j + hL

i+1/2, j if the membrane crosses respectively the interval
[xi+1/2, j, xi+3/2, j] or [xi−1/2, j, xi+1/2, j] defined as

hR
i+1/2, j = ±βi+1, jbR

�θ R

β±�x
and hL

i+1/2, j = ∓βi, jbL
�θ L

β±�x
(77)

with ± the opposite sign of φi+1/2, j , ∓ the sign of φi+1/2, j ,

bR
� = bi+1/2, jθ

R + bi+3/2, j(1 − θ R) and bL
� = bi+1/2, jθ

L + bi−1/2, j(1 − θ L), (78)

with

θ R = |φi+3/2, j|
|φi+3/2, j| + |φi+1/2, j| and θ L = |φi−1/2, j|

|φi−1/2, j| + |φi+1/2, j| . (79)

The same method is applied for all the second derivatives of the same variable. Special care must be taken in the 
case of mixed derivatives. Considering the last term of the divergence of the viscous stress tensor in the x-direction, the 
discretisation at point (i + 1/2, j) gives

∂

∂ y

(
β

∂v

∂x

)∣∣
i+1/2, j =

βi+1/2, j+1/2

(
vi+1, j+1/2−vi, j+1/2

�x

)
− βi+1/2, j−1/2

(
vi+1, j−1/2−vi, j−1/2

�x

)
�y

− hi+1/2, j. (80)

The diffusion coefficient is now β = μ and the jump condition on the mixed derivative is b = −nx
(
fτ · ey

)
. The harmonic

averages of the diffusion coefficient are similarly computed following equations (65) to (68). The jump conditions hi+1/2, j =
hT

i+1/2, j + hB
i+1/2, j exist only if the membrane crosses respectively the interval [xi+1, j+1/2, xi, j+1/2] or [xi+1, j−1/2, xi, j−1/2]

and are computed similarly as in equation (77),

hT
i+1/2, j = ±βi+1/2, j+1/2bT

�θ T

β±�y
and hB

i+1/2, j = ∓βi+1/2, j−1/2bB
�θ B

β±�y
, (81)

with ± corresponding to the opposite sign of φi+1/2, j and ∓ the same sign than φi+1/2, j .
Considering that the membrane crosses the top mesh segment, the sign of the level set function at the calculation point 

(i + 1/2, j) gives the expression of bT
� and θ T . If φi+1/2, jφi, j+1/2 < 0, the computation of the jump condition becomes

bT
� = bi+1, j+1/2θ

T + bi, j+1/2(1 − θ T ) with θ T = |φi, j+1/2|
|φi, j+1/2| + |φi+1, j+1/2| . (82)

Conversely, if φi+1/2, jφi, j+1/2 > 0, the jump condition becomes

bT
� = bi+1, j+1/2(1 − θ T ) + bi, j+1/2θ

T with θ T = |φi+1, j+1/2|
|φi, j+1/2| + |φi+1, j+1/2| . (83)

Considering that the membrane crosses the bottom mesh segment, the same methodology is applied: if φi+1/2, jφi, j−1/2 <

0, the computation of the jump condition becomes

bB
� = bi+1, j−1/2θ

B + bi, j−1/2(1 − θ B) with θ B = |φi, j−1/2|
|φ | + |φ | . (84)
i, j−1/2 i+1, j−1/2



Conversely, if φi+1/2, jφi, j−1/2 > 0, the jump condition becomes

bT
� = bi+1, j−1/2(1 − θ B) + bi, j−1/2θ

B with θ B = |φi+1, j−1/2|
|φi, j−1/2| + |φi+1, j−1/2| . (85)

The jump conditions of each term of the viscous stress tensor are added to the right-hand side of the first step of the 
projection method without changing the coefficients of the coupled linear system. More details about the linear system to 
solve the velocity are presented in [2]. The extension of these schemes to 3D problems is straightforward.

3.6. Extension algorithm

The components of the solid tensors and the solid velocity us are scalar fields defined in the whole computational 
domain. Nevertheless, they are only physically meaningful at the interface (where φ = 0). The values of these scalar 
fields in the fluids domain are not physical and must not influence the computation at the membrane position. Through 
equation (19), shear flows or vortices, even far from the interface, may affect the solid tensors by generating parasitic 
strains. The tensors components may grow exponentially and lead to numerical instability [15]. To avoid this problem, 
the authors replace the surface left Cauchy-Green tensor by the current projection tensor in the regions remote from 
the membrane. This method improves the computation near the membrane but stability problems still occur in the long 
run [15].

In this paper, an extension algorithm has been developed to avoid these stability issues by extending the components of 
the velocity field and the solid tensor from the membrane toward its normal direction. Therefore, only the physical values 
are extended in the whole domain and the gradient of the scalar fields in the normal direction of the membrane equal zero. 
The methodology is inspired by the reinitialisation algorithm of level set functions [51–53] where a subcell resolution has 
been proposed. The extension of a scalar function h is described by the following equation⎧⎨

⎩
∂h

∂τ
+ (sign(φ)n) · ∇h = 0,

h(x, τ ) = h(x,0) for τ > 0 and x ∈ �,

(86)

with τ a fictitious time. After the convergence, the normal derivative of the function tends toward zero in the whole domain 
and the scalar field h tends toward its value at the closer point of the membrane.

The spatial derivatives are discretised using second order ENO finite differences in each direction. In the x-direction, two 
one-sided ENO finite differences exist,

∂h

∂x

∣∣
r = hi+1 − hi

�x
− �x

2
minmod

(
hi+1 − 2hi + hi−1

�x2
,

hi+2 − 2hi+1 + hi

�x2

)
, (87)

∂h

∂x

∣∣
l = hi − hi−1

�x
+ �x

2
minmod

(
hi+1 − 2hi + hi−1

�x2
,

hi − 2hi−1 + hi−2

�x2

)
, (88)

with the minmod function defined as minmod(a, b) =
{

min (|a|, |b|) if ab > 0,

0 else.

The choice of the one-sided finite difference depends on the sign of (sign(φ)n) · ex to propagate the function values from 
the membrane toward the fluid domain,

∂h

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

∂h

∂x

∣∣
l if (sign(φ)n) · ex > 0,

∂h

∂x

∣∣
r else.

(89)

The method is identical in the other directions. The value of the function at the interface is of utmost importance because 
it will be extended to the whole domain. The interface does not conform with the mesh grid and special care is needed to 
compute the interface values within mesh cells. We propose in this paper a subcell method to improve the accuracy on the 
cells cut by the membrane.

First, considering that the membrane cuts the interval [xi, xi+1], we define θq�x the distance between xi and the mem-
brane (cf. Fig. 2). This distance can be computed using the level set function and second order Taylor expansions

φ(xm) = 0 = φi + θq�x
∂φ

∂x

∣∣
i + (θq�x)2

2

∂2φ

∂x2

∣∣
i + O (�x2). (90)

We construct the derivatives of φ using central finite differences and solve the quadratic polynomial to find θq ,
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Fig. 2. The membrane r crossing the x-grid. 

I
.!_ (-<4'+> -4'-ü-,;gn(4'l✓(</>;+' -4'-ü' -84'<4'+> - 2,J,; +4'-•l) if I a2

f l;I > E,
0 _ 2 </,;+1 -2</,; +</J;-1 ax 

q-

2<Pî 
else 

<Pi+l - <Pi-1 , 

ith E = 1 o-8
, the limiting value below which we consider the quadratic polynomial linear. 

Similarly, if the membrane cuts the interval [x;_1 ,x;], Bq becomes 

I
.!_ ( (</,;+1 - <Pi-1) - sign(<f,;)J (</,;+1 - <Pi-1)2 - 8<f,;(</J;+1 -2</,; + </J;-1)

) if 1 82t I; 1 > E,

0 _ 2 </,;+1 -2</,; +<Pi-1 ax 

q-

2<Pi 
else. 

<Pi+l - <Pi-1 

(91) 

(92) 

The value of the scalar field hm at the membrane location can then be computed. If the membrane cuts the interval 
;,Xi+tl, 

1 1 
hm= 

2
(-0q + BJ)h;-1 + (1 -0J)h; + 

2
(0q +0J)h;+1, 

d, if the membrane cuts the interval [x;_1 ,x;], 

(93) 

(94) 

e choice of the data points allows us to not favour values of points from one region instead of the other. Even if there 
ight have a ditference in the computation of h at the membrane, the computation is consistent because the error decreases 
ith the mesh size. 

Finally, the gradient computation of the extension algorithm is modified so that the point located at the membrane is 
nsidered in the numerical scheme. For example, if the membrane eut the interval [x;,X;+ 1 J, 

élh
1 

_hm-h;_0q6.X .
(

hi+1-2h;+hi-1 h;+2-2h;+1+h;
) élx r - 0q6.X 2 

mmmod 6.x2 , 6.x2 

d, if the membrane eut the interval [x;_1 ,x;], 

élh
1

_h;-hm 0q6.X . 
ct(

hi+1-2h;+hi-1 h;-2h;-1+hî-2
) 

" t 
-

0 
+ 

2 
mmmo 2 , 2 . 

oX q6.X 6.X 6.X 

(95) 

(96) 

This method is identical in the other directions. The example in section 4.2 justifies the use of the subcell method by 
mparing results from the extension algorithm with or without the subcell resolution. 
To avoid the time step restriction due to the subcell method, the extension algorithm is solved implicitly with the 

auss-Seidel method. The extension algorithm can then be written as 

The fictitious time step 6. r is defined as 

6.r =amin(6.x, 6.y, 6.z),

(97) 

(98) 

ith a = 0.3 which minimises the computation time to reach the fully extended field. Few iterations of the Gauss-Seidel 
gorithm are needed to reach the extended state because the scalar field at the membrane faintly evolves at each time 

ep. 



In our fluid-membrane solver, the extension algorithm is applied at each time step on the solid velocity field us which 
allows to compute the components of the Cauchy-Green tensor (see section 3.3). The solid velocity field corresponds to the 
fluid velocity at the membrane extended in the whole domain. This algorithm is also applied directly on the components 
of ¯̄Gs every 10 temporal iteration. The execution of the extension algorithm on the tensor components at each time step 
would increase the computation time and decreasing the extension frequency would generate fictitious normal derivatives 
at the membrane location.

3.7. Time step constraints and stability condition

The effects of the convection and the membrane elasticity lead to time step restrictions to ensure the numerical stability:

�tconv = 1
max (|u|)

�x
+ max (|v|)

�y
+ max (|w|)

�z

and �telas = 1

2

√
max(ρ+,ρ−)

Es
min(�x,�y,�z)3/2. (99)

The restriction due to the elasticity is similar to the restriction due to the surface tension effects in two-phase flow cases 
[36]. There is no restriction due to viscosity because of the implicit computation of the viscous term. The global condition 
on the time step becomes

1

�t
>

1

�tconv
+ 1

�telas
. (100)

All the numerical algorithms, from the transport of the level set function to the solving of the Navier-Stokes equations 
with the elastic contribution, are integrated in a second order TVD Runge-Kutta scheme.

To fully resolve the dynamics near the membrane, the mesh grid must be fine enough to compute accurately the 
elastic contribution on the flow field. This results in a stability condition depending on a mesh Reynolds number. This 
mesh Reynolds number is based upon the characteristic velocity due to the membrane elasticity defined as Uelas =√

Es/(max(ρ+,ρ−)L) and on the mesh size �x such as

Re�x = Uelas�x

min(ν+, ν−)
= �x

min(ν+, ν−)

√
Es

max(ρ+,ρ−)L
, (101)

with ν = μ/ρ the kinematic viscosity. The stability condition requires a mesh Reynolds number around one or less.

4. Numerical results

In this section, we compute some well-known benchmarks and compare our numerical results with those from the 
literature. In a first time, we present a detailed comparison between the proposed numerical solver against a theoretical 
solution involving the droplet migration induced by a prescribed surface tension gradient. This preliminary test-case allows 
us demonstrating the correct behaviour of the proposed numerical discretization to impose the jump condition on the 
normal derivative of the tangential velocity. Next, the improved extension algorithm is implemented on the benchmark 
from [54] to highlight the efficiency of the method and its convergence rate. Then, the stretched and pressurized membrane 
immersed in a fluid, first introduced in [55], is considered with these new numerical methods. After the grid sensitivity 
study, the results on the radii evolution, the pressure jump and the velocity fields are compared to the results from [49]. The 
test case is extended to different fluids in the computational domain. First, different viscosities, and then, different densities, 
are enforced on each side of the membrane. Finally, the capsule immersed in a shear flow from [56] is implemented and its 
deformation throughout time is compared to the results from the literature.

4.1. Test-case: rising of a droplet in a quiescent liquid due to Marangoni stresses

In this section, we provide a numerical example to test the accuracy of the jump condition computation on the normal 
derivatives of the tangential velocity, by performing a simulation of an axisymmetric droplet with surface tension gradient. 
This configuration is based on the Marangoni effects test-case presented in [57]. Along a droplet interface, non uniform 
local temperature or surfactants concentration can trigger gradients of surface tension γ , which generates a tangential 
stress jump. Then, a flow, called Marangoni convection, occurs to balance the gradients of γ , leading to a rising motion of 
the droplet in the quiescent liquid. This viscous tangential stress jump is assimilable to the jump condition of equation (46)
where

fτ = ∇sγ . (102)



Fig. 3. Pressure field and streamlines of the rising droplet. (For interpretation of the colours in the figures, the reader is referred to the web version of this
article.)

We performed axisymmetric simulations in a domain of size [lr , lz] in respectively radial and longitudinal directions, in 
a moving frame until a steady state. We consider a droplet of radius R , viscosity μ+ and density ρ+ , in a quiescent liquid 
(μ−, ρ−), with a gradient of surface tension imposed by

γ (z) = γ0

(
1 − β

z

lz

)
, (103)

where γ0 = 10, β = 0.27, lz = 16R , and lr = lz/2. To ensure that the motion is solely due to Marangoni stresses, we impose 
μ+ = μ− = 0.1, and ρ+ = ρ− = 0.02. From the theoretical studies of [58] and [59], where the Stokes equations are solved 
around and within a spherical droplet, an analytical expression of the droplet rising velocity is proposed in [60] accounting 
for the jump condition due to Marangoni stresses. In [57], the authors have adapted this analytical velocity to propose a 
benchmark case without any gravity:

u∞ = 2γ0βR

lz(6μ− + 9μ+)
. (104)

This expression is valid for a spherical droplet, i.e. at Capillary number Ca = μ−ud/γ0 
 1, and for the creeping flow limit 
at Reynolds number Re = ρ−ud D/μ− 
 1, where ud is the droplet velocity and D its diameter. The parameters were chosen 
in a such a way that Re = 0.045 and Ca = 0.0023, based on the terminal velocity of equation (104). From the studies of 
[58], [59] and [60], and considering the tangential stress jump as a boundary condition, we have calculated the analytical 
expression of tangential velocity around and within the droplet (more details are provided in the Appendix C),

u−
θ = −u∞

(
1 + 1

2
R3r−3

)
sin(θ) (105)

u+
θ = −3u∞

2R2

(
2r2 − R2

)
sin(θ) (106)

with u−
θ and u+

θ the tangential velocities respectively outside and inside the droplet. From this solution, the tangential 
velocity at the interface is given by the following expression,

u−
θ |r=R = u+

θ |r=R = 3

2
u∞ sin(θ) . (107)

In Fig. 3, are plotted the droplet shape and the pressure field inside the droplet which generates its migration. In Figs. 4
and 5, the dimensionless rising velocity of the bubble is plotted until steady state for four meshes with respectively implicit 
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Fig. S. Rising velociry of the droplet as a function of rime, for the explicit resolution, with the error rate when comparing to the theoretical solution. 

d explicit resolutions for the temporal discretization of the viscous terms. The error rates were calculated by comparison 
ith the analytical solution. The numerical results are in good agreement with the theoretical expression of the rising 
locity provided by eq. (104), for both resolutions. 
ln Figs. 6 and 7, we plot the dimensionless tangential velocity profile along the droplet surface, compared to the analytical 

pression eq. (107) that we present in the appendix. The more the mesh is refined, the better the agreement is with the 
eoretical solution. 
ln Figs. 8 and 9, the tangential stress profile µ,ôu8/ôn is plotted along the axis z = 0 for the most refined mesh, at 

e droplet equator, and compared to the tangential stress calculated from the solutions eq. (105) and eq. (106). Then, the 
merical accuracy of this jump condition is verified in Table 1 by comparing the tangential stress jump from simulations 

 the calculated v'sY value from eq. (103). At each mesh refinement, the error rate is divided by two, typical of a first 
der accuracy as it was expected for the numerical discretization of the singular source terms. 

. F.xtension algorithm

ln this section, we present numerical results of the extension algorithm coupled with the subcell resolution on an 

ample inspired by (54). Let us consider a 2D computational domain [-rr, rr] x [-rr, rr]. Initially, a level set function is 

fined as <f>(x, y) = Jx2 + y2 
- Ro, the zero level set of which corresponds to a circle of radius Ro = 2. A scalar field 

noted by h is initialised as
n

e

x
h

h
u
o
r

2

x

e

e

h(X, y) = COS(X) sin(y), (108)
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Fig. 9. Tangential viscous stress profile along the radius, at z = 0 for the explicit resolution.

Table 1
Numerical accuracy of tangential stress
jump compared to the calculated value
of ∇sγ from eq. (103).

Grid Implicit Explicit

64 × 128 15.98% 17.21%
128 × 256 8.68% 9.22%
256 × 512 4.49% 4.68%
512 × 1024 2.28% 2.37%

Fig. 10. Initial and final scalar fields h(x, y) with the circular zero level set represented by the bold solid black line.

and some contours are shown in the left plot of Fig. 10 with the zero level set line depicted in solid black.
The extension algorithm described in section 3.6 is enforced on the scalar field h and the result is plotted on the right 

plot of Fig. 10. We observe that the contours of the obtained scalar field respect well the condition of no normal derivative 
at the membrane. The exact solution of the extended field h is easily computable and equals

h(x, y) = cos

(
R0

x√
x2 + y2

)
sin

(
R0

y√
x2 + y2

)
. (109)
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Table2 
Numerical accuracy of the extension method with the subcell resolution in the circular case. 

Grid Whole domain <f,(x, y)> -1.6 Near the membrane l,f,(x, y)I < 1.2.1.x 

f1 R1 foo Roo f1 R1 foo Roo 

642 1.19 X 10-J 4.17 X 10-2 5.37 X 10-S 3.18 X 10-4 

1282 3.38 X 10-4 1.82 1.76 X 10-2 1.25 6.56 X 10-6 3.03 4.37 X 10-S 2.87 
2562 9.01 X 10-S 1.91 5.71 X 10-J 1.62 8.24 X 10-7 2.99 6.20x 10- 6 2.82 
5122 2.30 X 10-S 1.97 1.65 X 10-J 1.79 1.01 X 10-7 3.03 7.27x 10-7 3.09 

Table3 
Numerical accuracy of the extension method without the subcell resolution in the circular case. 

Grid Whole domain <f,(x, y)> -1.6 Near the interface l,f,(x, y)I < 1.2.1.x 

f1 R1 foo Roo f1 R1 foo Roo 

642 1.11 X 10-2 6.12 X 10-2 1.06 X 10-2 2.82 X 10- 2 

1282 3.47 X 10-J 1.68 2.38 X 10-2 1.36 3.50 X 10-J 1.59 8.72 X 10-J 1.69 
2562 1.66 X 10-J 1.06 9.30 X 10-J 1.35 1.68 X 10-J 1.06 5.77 X 10-J 0.60 
5122 6.93 X 10-4 1.26 3.68 X 10-J 1.34 6.91 X 10-4 1.28 2.74 X 10-J 1.07 

Fig. 11 focuses on the scalar field h near the membrane, represented by a bold solid black line, in the specific region 
, 1.1) x [1.3, 2.4). The initial contours of h are plotted with solid black lines and the extended scalar field with dashed 
ack lines. ln the left plot of Fig. 11, we obseive that the values of the scalar field h at the membrane do not change after 
e extension. The solid lines correspond exactly to the dashed lines at the membrane location. The same computation is 
ne without the subcell method and the result is illustrated in the right plot of Fig. 11. We obseive that the contours do 
t correspond as well. The zero normal derivative at the membrane is well respected but the values of the scalar field 
 the membrane have been modified. The scalar field variation is more important where the initial scalar field is tangent 
 the membrane. lndeed, the contour h (x, y) = 0.9 after the extension without the subcell method exhibits an important 
riation at the membrane position. 
Table 2 summarises the errors of the extended scalar field with the subcell resolution compared to the exact solution 

 equation (109). Iwo errors are computed: in the whole domain, except from the centre of the circle where the normal 
rections to the membrane meet up, and in the region near the membrane. The extension algorithm with the subcell 
ethod is third order accurate near the zero level set and almost second order in the whole region. 
Considering the extension algorithm without the subcell method, the accuracy decreases notably, as shown in Table 3. 

ear the membrane, the order of magnitude of the error is at least two times higher than with the subcell resolution. The 
nvergence rate of the method is around one in the whole domain and near the zero level set. The study of the accuracy 
d the contour plots of the scalar field h explains that the subcell method must be considered to extend the right value of 
e scalar field at the membrane toward its normal direction. 
Now, the level set function is modified to obtain an ellipse of major axis a = 2.5 and minor axis b = 1.25 as the zero 
vel set. The initialisation of the scalar field h(x, y) stays identical and the exact solution of the extended field is obtained 



Fig. 12. Initial and final scalar fields h(x, y) with the zero level set represented by the bold solid black line.

Table 4
Numerical accuracy of the extension method with the subcell resolution in the case of the ellipse.

Grid Whole domain |y| > 0.15 Near the membrane |φ(x, y)| < 1.2�x

E1 R1 E∞ R∞ E1 R1 E∞ R∞
642 6.49 × 10−4 7.93 × 10−3 8.83 × 10−5 8.60 × 10−4

1282 1.74 × 10−4 1.90 4.25 × 10−3 0.90 9.74 × 10−6 3.18 1.23 × 10−4 2.80
2562 4.37 × 10−5 1.99 1.36 × 10−3 1.64 1.31 × 10−6 2.90 1.65 × 10−5 2.90
5122 1.10 × 10−5 1.99 3.89 × 10−4 1.81 1.68 × 10−7 2.96 2.28 × 10−6 2.85
10242 2.75 × 10−6 2.00 1.04 × 10−4 1.90 2.24 × 10−8 2.91 2.95 × 10−7 2.95

Table 5
Numerical accuracy of the extension method without the subcell resolution in the case of the ellipse.

Grid Whole domain |y| > 0.15 Near the interface |φ(x, y)| < 1.2�x

E1 R1 E∞ R∞ E1 R1 E∞ R∞
642 4.95 × 10−2 1.60 × 10−1 5.62 × 10−2 1.58 × 10−1

1282 9.15 × 10−3 2.44 4.46 × 10−2 1.84 1.05 × 10−2 2.42 4.24 × 10−2 1.89
2562 1.75 × 10−3 2.38 1.07 × 10−2 2.06 2.05 × 10−3 2.36 9.88 × 10−3 2.10
5122 5.08 × 10−4 1.79 2.95 × 10−3 1.86 5.69 × 10−4 1.85 2.78 × 10−3 1.83
10242 2.19 × 10−4 1.22 9.58 × 10−4 1.62 2.38 × 10−4 1.26 9.32 × 10−4 1.58

by an iterative process. Fig. 12 shows the initial and final scalar field h(x, y) with the ellipse corresponding to the zero level 
set represented in bold solid black. The same study on the extension algorithm is done on the ellipse case with and without 
the subcell resolution and are detailed in Tables 4 and 5 respectively.

The errors with the exact solution are computed in the whole domain, except from the region |y| < 0.15 where singular-
ities due to the computation of the normal direction to the membrane appear, and in the region near the membrane. With 
the subcell resolution, the errors in the whole domain and near the membrane are always at least one order of magnitude 
lower than without it. The extension algorithm is still third order accurate near the membrane with the subcell resolution 
and second order accurate in the whole domain. Without the subcell resolution, the computed order of convergence is 
important, around 2, for the coarser meshes but decreases significantly with finer meshes.

The study on the ellipse case shows that the third order accuracy obtained near the interface is due to the subcell 
resolution and is not an artefact due to the simple circular membrane. Without the subcell resolution, the computed order 
of convergence oscillates between 1 and 2 depending on the membrane shape and the mesh considered.

4.3. Stretched and pressurized membrane immersed in a fluid

The stretched and pressurized membrane immersed in a viscous fluid is implemented in this section. It has been used 
by several authors to test the immersed boundary method and the immersed interface method [61,9,55]. In this example, 
the elastic contribution will be implemented using the Ghost-Fluid viscous Conservative Method of section 3.2.2. It consists 
in a 2D membrane, the shape of which is an ellipse of major axis a = 0.75 and minor axis b = 0.5, relaxing in a fluid at rest. 



Fig. 13. The membrane in different states.

In its stress-free state, we consider that the membrane is a circle of radius r0 = 0.5. The equilibrium shape of the initially 
stretched membrane is a circle with the same amount of liquid within. The equilibrium radius equals re = √

ab ≈ 0.61237. 
The domain is a closed square of length L = 3 and wall boundary conditions are considered. The ellipse is initially centred 
in the domain. The three different states of the membrane are depicted in Fig. 13. Different densities and viscosities of 
the fluid are considered: ρ ∈ [1, 10, 100] and μ ∈ [0.01, 0.1, 1]. Depending on the fluid properties, the membrane will relax 
toward its circular shape differently.

In this benchmark, the membrane follows the linear Hooke law. However, the numerical methods presented previously in 
this paper deal with hyperelastic material laws. Fortunately, in 2D cases, the linear Hooke law can be considered using the 
following methodology because the membrane is only stretched along its tangent direction denoted eτ . The first invariant 
of the Cauchy-Green tensor gives directly the square of the principal strain λτ . The linear Hooke law corresponds to the 
following surface stress tensor

¯̄σ s = Es(
√

I1 − 1) ¯̄P , (110)

with I1 = λ2
τ , ¯̄P = eτ ⊗ eτ and the value of the surface elastic modulus Es = 10.

Therefore, the surface stress tensor can directly be computed with the projection tensor and the first invariant of the 
surface Cauchy-Green tensor. The latter tensor is initialised by the projection tensor multiplied by the initial stretching 
of the membrane. Considering a uniform stretching, it corresponds to the square of the ratio of the membrane perimeter 
between its initial state P0 and its stress-free state P R ,

¯̄Bs(t = 0) = λ2
τ (t = 0) ¯̄P (t = 0) =

(
P0

P R

)2 ¯̄P (t = 0) (111)

with P0/P R ≈ 1.262.
The evolution of the radii is investigated and compared to the results from [49]. First, to ensure the validity of our 

computation, a grid sensitivity study has been performed for ρ = 1 and two different viscosities μ = 0.1 and μ = 0.01. 
The computations have been performed on three different meshes for each viscosity. Fig. 14 shows that for μ = 0.1, the 
three meshes, 1282, 2562 and 5122, give the same radii evolution. In this case, the 1282 mesh is fine enough to do the 
comparison. With μ = 0.01, finer grids are needed to reach a steady radii evolution. The temporal evolutions are close to 
each other at early flow time but deflect with time. This deviation decreases when refining the mesh. For meshes containing 
more than 512 cells in each direction, the same solution is obtained and gives consistent results with [49]. In what follows, 
the 5122 mesh will be considered in case of a viscosity of μ = 0.01. For lower values of the viscosity, the 1282 mesh is 
considered.

We observe in Fig. 14 that in both cases, the membrane oscillates around its equilibrium value. The magnitude of the 
oscillations decreases with time until the membrane reaches the circular shape. The theoretical radius re is obtained for the 
horizontal rx and vertical ry radii in the steady state. The damping of the oscillations increases with the viscosity but its 
frequency remains stable.

Fig. 15 shows the pressure distribution in the computational domain at t = 0.5 and t = 2. The sharp jump on the pressure 
is clearly visible at the membrane location. At early flow time, the pressure field exhibits important variations in each fluid 
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Fig. 15. Pressure distribution with µ, = 0.1 at r = 0.5 on the lert and r = 2 on the right. 
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Fig. 17. Radii evolution with ρ = 10 on the left and ρ = 100 on the right for three different meshes.

Fig. 18. Pressure distribution with ρ = 10 at t = 1.5 on the left and with ρ = 100 at t = 5 on the right.

region because of the fluid motion. At t = 2, the pressure field is almost constant inside and outside the membrane. In the 
steady state, only the pressure jump remains with constant values of the pressure in each phase.

Fig. 16 shows the velocity field at two different times with μ = 0.1 in the whole domain. At t = 0.5 and t = 2, four 
main vortices are located in the fluid outside the membrane leading the membrane to deform in the vertical direction. The 
pressure and velocity fields of Figs. 15 and 16 are in good agreement with the results from [49].

These simulations have also been implemented without the extension algorithm and the results are presented in Ap-
pendix A. This study shows that the extension algorithm is necessary to keep the computation stable throughout time by 
removing the normal derivatives of the solid scalar fields.

The membrane behaviour is investigated for higher values of the density. The viscosity is kept at μ = 0.1 and the density 
is increased to ρ = 10 and ρ = 100. A grid sensitivity study is done on several meshes. We observe in Fig. 17 that the radii 
evolution reaches the same solution from 128 cells onwards in each direction with ρ = 10 and from 512 cells onwards in 
each direction with ρ = 100. In what follows, the 5122 mesh will be considered when the density reaches ρ = 100, the 
1282 mesh will be used otherwise.

We observe that the time to relax the membrane increases with the density. The frequency of the oscillations seems to 
decrease with the square root of the density. Fig. 18 exhibits two examples of the pressure field for the two higher densities. 
The sharp jump condition on the pressure is well predicted by the numerical simulations even in the right plot of Fig. 18
where the pressure variation is important in each region.

4.4. Stretched and pressurized membrane immersed in fluids with different viscosities

Now, we distinguish the fluids inside and outside the membrane. In this section, the two fluids have different viscosities 
μ+ and μ− . As depicted in Fig. 13, the superscript + corresponds to the fluid outside the membrane and the superscript −



Fig. 19. Radii evolution with μ+ = 1 and μ− = 0.1 on the left and μ+ = 0.1 and μ− = 1 on the right.

Fig. 20. Radii evolution with μ+ = 0.1 and μ− = 0.01 on the left and μ+ = 0.01 and μ− = 0.1 on the right.

to the fluid inside the membrane. The same density ρ+ = ρ− = 1 is enforced and following the work of [49], the viscosity 
ratio takes the values of 0.1 and 10.

First, we consider two cases with large viscosities: μ+ = 1, μ− = 0.1 and μ+ = 0.1, μ− = 1. Fig. 19 shows the radii 
evolution throughout time in both cases. The membrane does not oscillate in the first case, it relaxes gradually to its final 
position. When the fluid with the higher viscosity is inside the membrane, the latter performs only one small oscillation. 
The vertical and horizontal radii tend toward the theoretical value re in both cases.

Then, the same viscosity ratios are maintained but the fluid viscosities are divided by 10. Fig. 20 shows the radii evolution 
for these two cases. The vertical and horizontal radii oscillate around the equilibrium value with frequencies of the same 
order of magnitude. Similarly to Fig. 19, the damping is more important when the fluid with the higher viscosity is outside 
the membrane. The two plots of Fig. 19 and 20 are really close to the results from [49].

An example of the jump on the velocity derivatives is shown in Fig. 21. The evolution of both components of the 
velocity at y = 0.3 is plotted at the same time t = 1 with μ+ = 0.1 and μ− = 1. We observe that in both cases, the velocity 
is continuous but its derivatives are discontinuous at the membrane location (represented by the vertical dashed lines). This 
validates the sharp methodology of the jump condition on the viscosity-scaled velocity gradient.

4.5. Stretched and pressurized membrane immersed in fluids with different densities

In this section, we consider that the fluids inside and outside the membrane have the same viscosity μ+ = μ− = 0.1 but 
different densities. First, we enforce densities of 1 and 10 on both sides of the membrane. The radii evolutions of these two 
cases are represented in Fig. 22. As observed in the left plot of Fig. 17, the relaxing time of the membrane increases with 
the density. The membrane oscillates around its circular shape, the radius of which corresponds to the theoretical value re

at the end of the simulation. It takes longer to reach the equilibrium state when the heaviest fluid is inside the membrane. 
The frequency of the oscillations has the same order of magnitude in both cases.

Then, the fluids densities are multiplied by 10. Fig. 23 exhibits the radii evolutions throughout time. We observe that the 
radii evolution with ρ+ = 10 and ρ− = 100 is close to the radii evolution with ρ = 100 in the whole domain (cf. Fig. 17). 



Fig. 21. Components of the velocity u = (u, v) at t = 1 and y = 0.3 with μ+ = 0.1 and μ− = 1.

Fig. 22. Radii evolution with ρ+ = 10 and ρ− = 1 on the left and ρ+ = 1 and ρ− = 10 on the right.

Fig. 23. Radii evolution with ρ+ = 100 and ρ− = 10 on the left and ρ+ = 10 and ρ− = 100 on the right.

Similarly, the damping rate of the oscillations is less efficient when the heaviest fluid is inside the membrane. The oscillation 
frequency has the same order of magnitude in these two cases.

Because the viscosity stays constant in the whole domain, the jumps on the velocity derivatives are directly linked to the 
tangent component of the elastic force. Fig. 24 shows the profiles of the two components of the velocity at y = 0.3 with 
ρ+ = 10 and ρ− = 1. The jump on the velocity derivatives is clearly visible at the membrane location.



Fig. 24. Components of the velocity at y = 0.3 with ρ+ = 10 and ρ− = 1 at t = 1.5.

4.6. Immersed capsule in a shear flow

In this section, we consider a 3D spherical membrane immersed in a shear flow. The membrane deforms until the 
equilibrium between the viscous and the elastic forces is reached. This study case has been first introduced by Pozrikidis 
[56] and has been used to validate several immersed boundary methods [62,63]. This example aims at validating the use of
hyperelastic laws with our model.

Initially, the membrane is a sphere of radius a. It is located in the centre of the computational domain, a cube with a 
side of 4a. The shear flow enforced in the domain is characterised by the shear rate k such as u = (ky, 0, 0) at the top and 
bottom sides. On the other sides of the domain, periodic boundary conditions are imposed. We consider that the same fluid 
is inside and outside the membrane. Its physical properties are its density ρ and viscosity μ. The membrane is made of a 
hyperelastic material following the neo-Hookean model. The surface elastic modulus of the membrane is denoted Es . The 
membrane is initially at rest, leading to ¯̄Bs = ¯̄Gs = ¯̄P at t = 0. We define the dimensionless parameter G which compares 
the effect of the viscosity of the fluid over the elasticity of the membrane

G = μka

Es
. (112)

Five different values of G are considered: G ∈ [0.0125, 0.025, 0.05, 0.1, 0.2]. The deformation of the membrane is expressed 
through the Taylor deformation parameter

Dxy = L − l

L + l
, (113)

with L and l the maximum and minimum radii of the contour of the membrane with the (x, y)-plane computed with the 
non-linear least square method.

In this example, we use the “delta” formulation described in section 3.2.1. Sharp methods cannot be used in this example 
because of the compression zones on the membrane [64,65,63]. Indeed, where at least one of the two principal membrane 
stresses becomes negative, a buckling instability appears [65]. Because no bending stiffness is considered, a zone of the 
membrane which is not under tension may buckle and break down the computation. In this case, folds appear at the 
membrane surface which may overlap and lead to a stability issue. Fig. 25 shows an example of folds which appear in the 
equatorial area in our computation with G = 0.0125 after kt = 0.8. Sharp methods, based on the local equilibrium at the 
nodes crossed by the membrane, become unstable when compression zones appear [64]. The use of the smoothed method 
introduces a numerical dissipation which stabilises the computation and allows the solver to tolerate negative stress locally. 
Nevertheless, in specific cases such as G = 0.0125, stability issues appear in the long run whatever the numerical methods 
used.

Fig. 26 shows the evolution of the deformation parameter Dxy throughout time for 5 different values of G and three 
different meshes. We observe that the membrane deformation increases with G . At early flow time, the membrane loses its 
spherical shape and deforms with different magnitudes until it reaches a steady shape. The computations have been done 
on a maximum time of kt = 2 to be able to compare with the results from the literature. For the two lowest G , the buckling 
instability described below appears before kt = 2 and prevents us to compute the deformation parameter in the whole time 
period.

With G = 0.0125 and G = 0.025, the membrane deformation stays low and can be approached by the linear elasticity 
theory for which theoretical values of the membrane deformation have been computed in [18]. The evolution of the Taylor 
parameter with the linear theory is depicted by triangle markers in Fig. 26. The Taylor deformation parameter obtained 



Fig. 25. Folds due to the buckling instability at the membrane surface with G = 0.0125 at kt > 0.8.

Fig. 26. Temporal evolution of the Taylor deformation parameter for the five values of G and three different meshes: 323, 643 and 1283.

Fig. 27. Steady state or final state of the membrane for a) G = 0.0125, b) G = 0.05 and c) G = 0.2.

at kt = 0.8 with G = 0.0125 is Dxy = 0.086 and the theoretical value is about Dxy = 0.078. With G = 0.025, the steady 
deformation parameter computed is Dxy = 0.164 and the theoretical value from [18] is Dxy = 0.156.

Considering higher values of G , the linear theory cannot be used because the non-linearity of the material cannot be 
neglected. Our numerical results are compared to simulations done with the Immersed Boundary method and the Boundary 
Element method [62,56,63]. The Taylor parameter obtained by Pozrikidis [56] for the highest values of G are plotted in 
Fig. 26 with filled triangles. Pictures of the steady state of the membrane for G ∈ [0.0125, 0.05, 0.2] are depicted in Fig. 27
and show different deformations computed with our numerical methods.

We observe in Fig. 26 the good convergence of the proposed numerical methods since the solution depends weakly 
on the grid size. In particular, the Taylor deformation parameter is the same for both finest grids for all values of G . 
Our numerical results are in close agreement with the reference results presented in Fig. 26. However, we report a slight 
overestimation on the Taylor deformation parameter whatever the considered case.
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Conclusion

ln this paper, we propose a full Eulerian method to deal with fluids-membrane interaction inspired by the work of lto et
. in [15). The main advantage of the Eulerian approach is to replace the use of l.agrangian markers to follow the membrane 
otion and deformations by scalar fields transported in the whole domain. Significant improvements are proposed in this 
per to extend the method firstly introduced in [15). A sharp methodology has been implemented to consider the elastic 
rces as jump conditions in the fluid equations. Specific developments have been done to be able to predict the behaviour 
 a membrane separating different fluids in the Eulerian framework. Because of important stability issues, an extension 
gorithm has been developed to remove the parasitic normal derivative of the scalar fields specific to the membrane. 
ese achievements have been tested on benchmarks from the literature and ensure the suitable prediction of the proposed 
merical methods. The jump conditions on the pressure and the velocity derivatives are well predicted, even in cases 

here the viscosity or the density are piecewise constant across the membrane. 
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pendixA. Stretched and pressurized membrane without the extension algorithm 

The objective of this appendix is to show through an example that the extension algorithm is necessary. We consider 
e benchmark of section 4.3, the stretched and pressurized membrane immersed in a fluid with p = 1 and µ, = 0.1 in 
e whole computational domain. The computation breaks down after a few hundreds of temporal iterations without the 
tension algorithm, whatever the mesh. The comparison is done at early flow time, at t = 0.1. 
Fig. A.28 exhibits the scalar field /1 obtained with the 1282 mesh without the extension algorithm on the left and with 

on the right at t = 0.1. The first invariant 11 = À� is the trace of the surface Cauchy-Green tensor, it represents the square 
 the principal strain of the membrane and has no physical meaning in the fluid regions. 
We observe in the left plot that the first scalar invariant of the strain tensor exhibits important variations at the mem­

ane. Where the membrane crosses the axis y = 0, the first invariant increases sharply between the outside and inside 
id regions. Moreover, strong tangential variations of the scalar invariant are visible at the membrane. ln the right plot, 
e scalar field does not present variations in the normal direction and the tangential variation along the membrane is 
ooth and does not present singularities. Without the extension algorithm, nothing prevents the appearance of jumps in 

e solid variables. 
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Fig.A.28. Contour fields of /1 wichouc the extension algorithm on the left and wich ic on the righc, wich p = 1 and JL = 0.1 ac r = 0.1. 
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Fig.A.29. Velociry fields wichouc the extension algorithm on the left and with ic on the righc, with p = 1 and JL = 0.1 ac r = 0.1. 

Fig. A.29 depicts the velocity fields for the same configurations as in Fig. A.28. We observe that the velocity field is 
sturbed at the membrane without the extension algorithm. Far from the zero level set, the two plots of Fig. A.29 are quite 
milar but some peaks of velocity appear in the left plot near the membrane. 

This instability phenomenon appears for ail the benchmarks tested in section 4 without the extension algorithm. To 
nclude, the extension algorithm stabilises the computation by cancelling the normal derivatives of the solid variables 
hich enables improving the computations stability. 

pendix B. About primary and secondary jump conditions 

We present in this section some developments to show how secondary jump conditions can be taken into account by 
posing primary jump conditions. Indeed, it is well-known that primary jump conditions, especially the one on viscosity, 

ill involve several secondary jump conditions on the pressure field or on the pressure gradient for instance. However, if 
e solves the Navier-Stokes equations for two-phase flows, these secondary jump conditions can be accounted for when 
posing the primary jump conditions. For the sake of simplicity we will consider here a Stokes flow without elastic con­

raints and an explicit solver for viscous terms, but such a development can be generalized to more complex configurations. 
om (46), one can write the Poisson equation for incompressible flows as 

V. (
Vpn+l

) = 
V. u* 

V. (
yKRô

) pn+l .ô.t 
+ 

pn+1 ' 

here u* is expressed as 

V· (2µ,o)"
u* = (u" -.ô.t (u". V) u") + t.t-...a......,....;.­p"+1 

Remarking that the divergence of the viscous stress tensor can be split in two parts, as previously stated in (46), 

V. ( 2µ,D) = µ,.ô.u + 2[µ,]D. n8,

 injecting (B.2) and (B.3) in (B.1), one can write the Poisson equation as 

V. (
Vp"+ 1) =V. (

u" _ u". Vu"+ µ,.ô.u" + 2[µ,]D. n8 + yKn8) = f,
pn+1 t.t pn+1 pn+1 pn+1 

here the right hand side f can be decomposed in a continuous part /c and a discontinuous part !d with 

fc=V• --u".Vu"+ --
u* µ,.ô.u" ±

(8.1) 

(8.2) 

(8.3) 

(8.4) 
( ( ) ) .ô.t pn+1 (8.5) 



fd = ∇ ·
(

γ κn + 2[μ] ¯̄D · n

ρn+1 δ

)
+

[
μ�un

ρn+1

]
δ (B.6)

where the following term has been decomposed in a continuous part and a discontinuous part

∇ ·
(

μ�un

ρn+1

)
= ∇ ·

(
μ�un

ρn+1

)±
+

[
μ�un

ρn+1

]
δ (B.7)

Finally, following previous developments presented in [46], the equation (B.6) enables showing that equation (B.1) for 
the pressure field contains both a numerical approximation for imposing the correct jump condition on the pressure,

[p] = γ κ + 2[μ]n · ¯̄D · n (B.8)

and also for the jump condition on the pressure normal gradient such as[
n · ∇pn+1

ρn+1

]
=

[
μn · �un

ρn+1

]
(B.9)

As a result of these developments, one can understand that secondary jump conditions due to the viscosity jump are 
involved by the resolution presented here. In particular, the jump condition on the normal derivative of the normal com-
ponent velocity is imposed by keeping the viscosity inside the divergence operator in (B.1) as previously stated in [46]. 
As a consequence, this term has not to be further imposed in (43), since it is already contained in the divergence of u∗ . 
These elements are supported by theoretical and experimental benchmarks [66,46] for which space convergence toward the 
correct solution has been showed in several configurations involving a significant effect of the viscosity jump.

Appendix C. Capillary rising of a drop

The performed simulations are based on the theoretical study of [60] and the test-case in [57]. In the latter, we consider 
a drop of radius R in micro-gravity conditions (g = 0) immersed in another fluid where a linear profile of surface tension γ
is imposed along z direction:

γ (z) = γ0 + γ ′z (C.1)

The constant surface tension gradient induces a movement of the drop at a steady-state velocity u∞ . Both fluids are sup-
posed to be incompressible, and their thermo-physics properties are chosen such that Capillary, Marangoni and Reynolds 
numbers are small enough to consider a Stokes flow around the droplet which remains spherical. Thus, the flow remains 
axisymmetrical, and the conservation equation can be written in the moving referential as:

μ∇2u = ∇p , (C.2)

∇ · u = 0 , (C.3)

with the asymptotic boundary conditions u → u∞ez and p → 0 as r → ∞. The solution of those equations has been derived 
by Hadamard in [58], in the cylindrical coordinates:

u−
r =

(
a−

μ−

(
1

r
− R2

r3

)
+ u∞

(
1 − R3

r3

))
cos(θ) , (C.4)

u−
θ = −

(
a−

μ−

(
1

r
+ R2

r3

)
+ u∞

(
1 + 1

2

R3

r3

))
sin(θ) , (C.5)

p− = a−

r2
cos(θ) , (C.6)

u+
r = −

(
a+

10μ+

)(
r2 − R2

)
cos(θ) , (C.7)

u+
θ = −

(
a+

10μ+

)(
2r2 − R2

)
sin(θ) , (C.8)

p+ = a+r cos(θ) + a+
0 , (C.9)

where u−
r and u+

r are respectively the radial velocities outside and inside the droplet, u−
θ and u+

θ the tangential velocities, 
p− and p+ the pressures, μ− and μ+ the dynamic viscosities, a− , a+ and a+

0 three integration constants. These ones are
calculated with the boundary conditions at the interface:

u−(r = R, θ) = u+(r = R, θ) , (C.10)
θ θ



[
μ

(
∂uθ

∂r
− uθ

r

)]
�

= 1

R

∂γ

∂θ
, (C.11)

[
p − 2μ− ∂ur

∂r

]
�

= 2γ

R
. (C.12)

The no-slip condition gives the first equation. The second one takes into account the Marangoni effect through the discon-
tinuity of the tangential viscous stress across the interface. The latter gives the pressure jump due to both viscosity jump 
and capillary pressure.

By replacing the theoretical expressions in eq. (C.12) and eq. (C.11), and combining the equations, we deduce the inte-
gration constants:

a− = 0 , (C.13)

a+
0 = 2γ0

R
. (C.14)

Then, eq. (C.10) gives:

a+ = 15μ′u∞
R2

. (C.15)

The droplet velocity u∞ is obtained by replacing the integration constants by their expression in eq. (C.11):

u∞ = 2

3

γ ′R
(3μ+ + 2μ−)

. (C.16)

This expression is actually the same as in [57] with γ ′ = −βγ0/lz . Finally, we obtain the following analytical expressions:

u−
r = u∞(1 − R3

r3
) cos(θ) (C.17)

u−
θ = −u∞(1 + 1

2

R3

r3
) sin(θ) (C.18)

p− = 0 (C.19)

u+
r = 3u∞

2R2
(r2 − R2) cos(θ) (C.20)

u+
θ = −3u∞

2R2
(2r2 − R2) sin(θ) (C.21)

p+ = 15μ+u∞
R2

r cos(θ) + 2γ0

R
(C.22)
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