1,812 research outputs found

    Finding Exogenous Variables in Data with Many More Variables than Observations

    Full text link
    Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations (p<n, p: the number of variables and n: the number of observations). However, modern datasets including gene expression data need high-dimensional causal modeling in challenging situations with orders of magnitude more variables than observations (p>>n). In this paper, we propose a method to find exogenous variables in a linear non-Gaussian causal model, which requires much smaller sample sizes than conventional methods and works even when p>>n. The key idea is to identify which variables are exogenous based on non-Gaussianity instead of estimating the entire structure of the model. Exogenous variables work as triggers that activate a causal chain in the model, and their identification leads to more efficient experimental designs and better understanding of the causal mechanism. We present experiments with artificial data and real-world gene expression data to evaluate the method.Comment: A revised version of this was published in Proc. ICANN201

    Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes

    Full text link
    Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a {\it Hes1} promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5' LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package.Comment: 36 pages, 17 figure

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Learning and comparing functional connectomes across subjects

    Get PDF
    Functional connectomes capture brain interactions via synchronized fluctuations in the functional magnetic resonance imaging signal. If measured during rest, they map the intrinsic functional architecture of the brain. With task-driven experiments they represent integration mechanisms between specialized brain areas. Analyzing their variability across subjects and conditions can reveal markers of brain pathologies and mechanisms underlying cognition. Methods of estimating functional connectomes from the imaging signal have undergone rapid developments and the literature is full of diverse strategies for comparing them. This review aims to clarify links across functional-connectivity methods as well as to expose different steps to perform a group study of functional connectomes

    Inferential Modeling and Independent Component Analysis for Redundant Sensor Validation

    Get PDF
    The calibration of redundant safety critical sensors in nuclear power plants is a manual task that consumes valuable time and resources. Automated, data-driven techniques, to monitor the calibration of redundant sensors have been developed over the last two decades, but have not been fully implemented. Parity space methods such as the Instrumentation and Calibration Monitoring Program (ICMP) method developed by Electric Power Research Institute and other empirical based inferential modeling techniques have been developed but have not become viable options. Existing solutions to the redundant sensor validation problem have several major flaws that restrict their applications. Parity space method, such as ICMP, are not robust for low redundancy conditions and their operation becomes invalid when there are only two redundant sensors. Empirical based inferential modeling is only valid when intrinsic correlations between predictor variables and response variables remain static during the model training and testing phase. They also commonly produce high variance results and are not the optimal solution to the problem. This dissertation develops and implements independent component analysis (ICA) for redundant sensor validation. Performance of the ICA algorithm produces sufficiently low residual variance parameter estimates when compared to simple averaging, ICMP, and principal component regression (PCR) techniques. For stationary signals, it can detect and isolate sensor drifts for as few as two redundant sensors. It is fast and can be embedded into a real-time system. This is demonstrated on a water level control system. Additionally, ICA has been merged with inferential modeling technique such as PCR to reduce the prediction error and spillover effects from data anomalies. ICA is easy to use with, only the window size needing specification. The effectiveness and robustness of the ICA technique is shown through the use of actual nuclear power plant data. A bootstrap technique is used to estimate the prediction uncertainties and validate its usefulness. Bootstrap uncertainty estimates incorporate uncertainties from both data and the model. Thus, the uncertainty estimation is robust and varies from data set to data set. The ICA based system is proven to be accurate and robust; however, classical ICA algorithms commonly fail when distributions are multi-modal. This most likely occurs during highly non-stationary transients. This research also developed a unity check technique which indicates such failures and applies other, more robust techniques during transients. For linear trending signals, a rotation transform is found useful while standard averaging techniques are used during general transients

    Maximum Likelihood Estimation of the Multivariate Normal Mixture Model

    Get PDF
    The Hessian of the multivariate normal mixture model is derived, and estimators of the information matrix are obtained, thus enabling consistent estimation of all parameters and their precisions. The usefulness of the new theory is illustrated with two examples and some simulation experiments. The newly proposed estimators appear to be superior to the existing ones.Mixture model; Maximum likelihood; Information matrix

    Sparse Linear Identifiable Multivariate Modeling

    Full text link
    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully Bayesian hierarchy for sparse models using slab and spike priors (two-component delta-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear Identifiable Multivariate modeling) and allowing for correlations between latent variables, called CSLIM (Correlated SLIM), for the temporal and/or spatial data. The source code and scripts are available from http://cogsys.imm.dtu.dk/slim/.Comment: 45 pages, 17 figure
    corecore