1,600 research outputs found

    Energy-Aware Mobile Learning:Opportunities and Challenges

    Full text link

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    JPEG XR scalable coding for remote image browsing applications

    Get PDF
    The growing popularity of the Internet has opened the road to multimedia and interactivity, emphasizing the importance of visual communication. In this context, digital images have taken a lead role and have an increasing number of applications. Consider, for example, the spread that digital cameras and mobile devices such as mobile phones have become in recent years. Thus, it arises the need for a flexible system that can handle images from different sources and are able to adapt to a different view. The importance of this issue lies in the application scenario: today there are datastores with a large number of images saved in JPEG format and systems for rendering digital images are various and with very different characteristics with each other. The ISO/IEC committee has recently issued a new format, called JPEG-XR, created explicitly for the modern digital cameras. The new coding algorithm JPEG-XR, can overcome various limitations of the first JPEG algorithm and provides viable alternatives to the JPEG2000 algorithm. This research has primarily focused on issues concerning the scalability of the new format of digital images.Additional scalability levels are fundamental for image browsing applications, because enable the system to ensure a correct and efficient functioning even when there is a sharp increase in the number of resources and users.Scalability is mostly required when dealing with large image database on the Web in order to reduce the transferred data, especially when it comes to large images. The interactive browsing also requires the ability to access to arbitrary parts of the image. The starting point is the use of a client-server architecture, in which the server stores a database of JPEG XR images and analyzes requests from a client. Client and server communicate via HTTP and use an exchange protocol. In order to minimize the transferred information, the JPEG XR coded file format should make use of the frequency mode order and partitioning of images into optimized tiles. The main goal is transmitting only some subset of the available sub-band coefficients. This is necessary to allow access an interactive access to portion of images, that are downloaded and displayed, minimizing the amount of data transferred and maintaining an acceptable image quality.The proposed architecture has of course prompted a study of errors in transmission on unreliable channel, such as the wireless one, and the definition of possible optimizations/variants of the codec in order to overcome its own limitations. Image data compressed with JPEG XR when transmitted over error-prone channels is severely distorted. In fact, due to the adaptive coding strategies used by the codec, even a single bit error causes a mismatch in the alignment of the reading position from the bit-stream, leading to completely different images at the decoder side. An extension to the JPEG XR algorithm is proposed, consisting in an error recovery process enabling the decoder to realign itself to the right bit-stream position and to correctly decode the most part of the image. Several experiments have been performed using different encoder parameter and different error probabilities while image distortion is measured by PSNR objective metric. The simplicity of the proposed algorithm adds very little computational overhead and seems very promising as confirmed by objective image quality results in experimental tests

    Overlay networks for smart grids

    Get PDF

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    COSPO/CENDI Industry Day Conference

    Get PDF
    The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF
    corecore