32,428 research outputs found

    Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations

    Full text link
    We present algorithms for the type-IV discrete cosine transform (DCT-IV) and discrete sine transform (DST-IV), as well as for the modified discrete cosine transform (MDCT) and its inverse, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~2NlogN to ~(17/9)NlogN for a power-of-two transform size N, and the exact count is strictly lowered for all N > 4. These results are derived by considering the DCT to be a special case of a DFT of length 8N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DST-IV and MDCT follow immediately from the improved count for the DCT-IV.Comment: 11 page

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

    Full text link
    A polynomial transform is the multiplication of an input vector x\in\C^n by a matrix \PT_{b,\alpha}\in\C^{n\times n}, whose (k,)(k,\ell)-th element is defined as p(αk)p_\ell(\alpha_k) for polynomials p_\ell(x)\in\C[x] from a list b={p0(x),,pn1(x)}b=\{p_0(x),\dots,p_{n-1}(x)\} and sample points \alpha_k\in\C from a list α={α0,,αn1}\alpha=\{\alpha_0,\dots,\alpha_{n-1}\}. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. Important examples include the discrete Fourier and cosine transforms. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel O(nlogn)O(n\log{n}) general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.Comment: 19 pages. Submitted to SIAM Journal on Matrix Analysis and Application

    Discrete Cosine Transforms on Quantum Computers

    Get PDF
    A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size NxN and types I,II,III, and IV with as little as O(log^2 N) operations on a quantum computer, whereas the known fast algorithms on a classical computer need O(N log N) operations.Comment: 5 pages, LaTeX 2e, IEEE ISPA01, Pula, Croatia, 200

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    On algebras related to the discrete cosine transform

    Get PDF
    AbstractAn algebraic theory for the discrete cosine transform (DCT) is developed, which is analogous to the well-known theory of the discrete Fourier transform (DFT). Whereas the latter diagonalizes a convolution algebra, which is a polynomial algebra modulo a product of various cyclotomic polynomials, the former diagonalizes a polynomial algebra modulo a product of various polynomials related to the Chebyshev types. When the dimension of the algebra is a power of 2, the DCT diagonalizes a polynomial algebra modulo a product of Chebyshev polynomials of the first type. In both DFT and DCT cases, the Chinese remainder theorem plays a key role in the design of fast algorithms

    Fast Split-Radix and Radix-4 Discrete Cosine Transform Algorithms

    Get PDF
    The Discrete Fourier Transform (DFT) has a plethora of applications in applied mathematics and electrical engineering. Discrete Cosine Transform (DCT) is a real-arithmetic analogue of DFT. DCTs with orthogonal trigonometric transforms have been especially popular in recent decades due to their applications in digital video technology and high efficiency video coding. One can say that DCT is the key transform in image processing, signal processing, finger print enhancement, quick response code (QR code), multi-mode interface, etc. In this talk, we first introduce sparse and scaled orthogonal factorization for the DCT and inverse DCT. Afterwards, we present fast split-radix and radix-4 DCT and inverse DCT algorithms. We show that the proposed algorithms attain the lowest theoretical multiplication complexity and arithmetic complexity for 8-point DCT II/III matrices. We perform execution time of the proposed algorithms while verifying the connection to the order of the arithmetic complexity. Finally, the language of signal flow graph representation of digital structures is used to describe potential for real-world circuit implementation
    corecore