854 research outputs found

    Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution

    Get PDF
    Publisher Copyright: © 2022, The Author(s).The origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses with a major capsid protein composed of two upright β-sandwiches. The minimalistic structure of ΦCjT23 suggests that this phage serves as a model for the last common ancestor between ssDNA and dsDNA viruses in the Bamfordvirae. Both ΦCjT23 and the related phage FLiP infect Flavobacterium species found in several environments, suggesting that these types of viruses have a global distribution and a shared evolutionary origin. Detailed comparisons to related, more complex viruses not only expand our knowledge about this group of viruses but also provide a rare glimpse into early virus evolution.Peer reviewe

    Elucidation of VPS13 and PIKfyve Proteins Functioning in the Regulation of Eukaryotic Lipid Homeostasis

    Get PDF
    In eukaryotic cells, organelles are surrounded by membranes, which act as barriers to the cytosolic environment. Each subcellular membrane has a distinct lipid composition that is required for its unique organellar function, and is therefore is fundamental for cellular physiology. The unique distributions of organellar lipids result from highly regulated lipid transport networks and the activity of lipid metabolizing enzymes. Most phospholipids are initially synthesized in the ER and transferred to different organelles via vesicular or non-vesicular lipid transport pathways. Lipid transfer proteins (LTPs) localized at membrane contact sites mediate non-vesicular lipid transport. They contain a hydrophobic cavity to solubilize the hydrophobic “tail” of lipids. They either function as “shuttles” that typically ferry a single lipid at a time between membranes, or “bridges” that harbor hydrophobic channels along which more than one lipid can move between membranes at a time. For the first part of my thesis, I investigated the structure and function of VPS13, a novel lipid transfer “bridge” protein, and showed that the protein accommodates a 16nm long hydrophobic lipid transfer channel that mediates bulk lipid transfer. My work marked the identification of the first lipid transfer bridge in eukaryotes and raised several still open questions regarding the molecular mechanism of bridge-like LTPs. I further investigated VPS13’s WD40 domain to provide insights into how VPS13 interacts with membranes at membrane contact sites.The second part of my thesis focused on the modification of phosphatidylinositol (PI), which is essential in signalling. Phosphorylation on different positions of the head group of PI generates several phosphoinositide (PIP) species. Each of them has a unique subcellular localization. PI(3,5)P2 is one of the signature phosphoinositides in endolysosomal membranes, whose level is tightly upregulated in response to stimuli. PI(3,5)P2 is solely synthesized by the PIKfyve lipid kinase and its turnover is catalyzed by the Fig4 lipid phosphatase. Intriguingly, the two proteins, although catalyzing antagonistic reactions, are in the same complex together with a third protein, the scaffold Vac14. Little is known about how the activities of PIKfyve and Fig4 are regulated to prevent futile consumption of ATP. Combining structural and biochemistry studies, I gained insights into the overall architecture of the PIKfyve complex and into the regulatory mechanisms that govern PIKfyve and Fig4 activities

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain.

    Get PDF
    Nonribosomal peptide synthetases (NRPSs) are modular assembly-line megaenzymes that synthesize diverse metabolites with wide-ranging biological activities. The structural dynamics of synthetic elongation has remained unclear. Here, we present cryo-EM structures of PchE, an NRPS elongation module, in distinct conformations. The domain organization reveals a unique "H"-shaped head-to-tail dimeric architecture. The capture of both aryl and peptidyl carrier protein-tethered substrates and intermediates inside the heterocyclization domain and L-cysteinyl adenylate in the adenylation domain illustrates the catalytic and recognition residues. The multilevel structural transitions guided by the adenylation C-terminal subdomain in combination with the inserted epimerase and the conformational changes of the heterocyclization tunnel are controlled by two residues. Moreover, we visualized the direct structural dynamics of the full catalytic cycle from thiolation to epimerization. This study establishes the catalytic trajectory of PchE and sheds light on the rational re-engineering of domain-inserted dimeric NRPSs for the production of novel pharmaceutical agents

    Computational Investigations of Biomolecular Mechanisms in Genomic Replication, Repair and Transcription

    Get PDF
    High fidelity maintenance of the genome is imperative to ensuring stability and proliferation of cells. The genetic material (DNA) of a cell faces a constant barrage of metabolic and environmental assaults throughout the its lifetime, ultimately leading to DNA damage. Left unchecked, DNA damage can result in genomic instability, inviting a cascade of mutations that initiate cancer and other aging disorders. Thus, a large area of focus has been dedicated to understanding how DNA is damaged, repaired, expressed and replicated. At the heart of these processes lie complex macromolecular dynamics coupled with intricate protein-DNA interactions. Through advanced computational techniques it has become possible to probe these mechanisms at the atomic level, providing a physical basis to describe biomolecular phenomena. To this end, we have performed studies aimed at elucidating the dynamics and interactions intrinsic to the functionality of biomolecules critical to maintaining genomic integrity: modeling the DNA editing mechanism of DNA polymerase III, uncovering the DNA damage recognition/repair mechanism of thymine DNA glycosylase and linking genetic disease to the functional dynamics of the pre-initiation complex transcription machinery. Collectively, our results elucidate the dynamic interplay between proteins and DNA, further broadening our understanding of these complex processes involved with genomic maintenance

    Allosteric control of Ubp6 and the proteasome via a bidirectional switch

    Get PDF
    The interplay of the proteasome and deubiquitinase Ubp6 is crucial for the degradation of ubiquitylated substrates. Here, the authors provide structural insights into the allosteric mechanism by which the activities of both Ubp6 and the proteasome are regulated. The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome
    • …
    corecore