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Abstract 

 

Elucidation of VPS13 and PIKfyve Proteins Functioning in the Regulation of Eukaryotic 

Lipid Homeostasis 

PeiQi Li 

2021 

 

In eukaryotic cells, organelles are surrounded by membranes, which act as barriers to the 

cytosolic environment. Each subcellular membrane has a distinct lipid composition that is 

required for its unique organellar function, and is therefore is fundamental for cellular 

physiology. The unique distributions of organellar lipids result from highly regulated 

lipid transport networks and the activity of lipid metabolizing enzymes. Most 

phospholipids are initially synthesized in the ER and transferred to different organelles 

via vesicular or non-vesicular lipid transport pathways. Lipid transfer proteins (LTPs) 

localized at membrane contact sites mediate non-vesicular lipid transport. They contain a 

hydrophobic cavity to solubilize the hydrophobic “tail” of lipids. They either function as 

“shuttles” that typically ferry a single lipid at a time between membranes, or “bridges” 

that harbor hydrophobic channels along which more than one lipid can move between 

membranes at a time. For the first part of my thesis, I investigated the structure and 

function of VPS13, a novel lipid transfer “bridge” protein, and showed that the protein 

accommodates a 16nm long hydrophobic lipid transfer channel that mediates bulk lipid 
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transfer. My work marked the identification of the first lipid transfer bridge in eukaryotes 

and raised several still open questions regarding the molecular mechanism of bridge-like 

LTPs. I further investigated VPS13’s WD40 domain to provide insights into how VPS13 

interacts with membranes at membrane contact sites. 

The second part of my thesis focused on the modification of phosphatidylinositol (PI), 

which is essential in signalling.  Phosphorylation on different positions of the head group 

of PI generates several phosphoinositide (PIP) species. Each of them has a unique 

subcellular localization. PI(3,5)P2 is one of the signature phosphoinositides in 

endolysosomal membranes, whose level is tightly upregulated in response to stimuli. 

PI(3,5)P2 is solely synthesized by the PIKfyve lipid kinase and its turnover is catalyzed 

by the Fig4 lipid phosphatase. Intriguingly, the two proteins, although catalyzing 

antagonistic reactions, are in the same complex together with a third protein, the scaffold 

Vac14. Little is known about how the activities of PIKfyve and Fig4 are regulated to 

prevent futile consumption of ATP. Combining structural and biochemistry studies, I 

gained insights into the overall architecture of the PIKfyve complex and into the 

regulatory mechanisms that govern PIKfyve and Fig4 activities.  
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Chapter 1 Introduction 

Abbreviations 

PC: phosphatidylcholine; PE: Phosphatidylethanolamine; PS: Phosphatidylserine; PI: 

Phosphatidylinositol; GPL: glycerophospholipid; ER: Endoplasm reticulum; PM: plasma 

membrane; MCS: membrane contact site; NVJ: nucleus–vacuole junction; LTP: lipid 

transfer protein; OSBP: Oxysterol-binding protein; ORP: OSBP related protein; PITP: 

Phosphatidylinositol transfer protein; SMP: Synaptotagmin-like mitochondrial-lipid-

binding protein; TULIP: tubular lipid-binding domain protein; CL: Cardiolipin; LPS: 

lipopolysaccharide 

 

Chapter 1.1 Glycerol lipids and membranes 

Lipids are a category of macromolecule defined by their inability to mix with polar 

solvents. They function as primary chemical energy storage molecules and are essential 

nutrients for human health. At the molecular level, they are the primary building blocks 

of cellular and subcellular membranes. Cells are surrounded by membranes, which act as 

barriers to the extracellular environment. Compartmentalization within eukaryotic cells 

into membrane-bound organelles allows for micro-environments adapted for specialized 

functions. The lipid compositions of different organelles are distinct, and the lipid 

composition of organelles can even change in response to stimuli. Membrane lipids are 
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highly diverse, with potentially 100,000 lipid species, and 5% of our genes are related to 

lipid synthesis (Frolov, Shnyrova, & Zimmerberg, 2011; Shevchenko & Simons, 2010; 

van Meer, Voelker, & Feigenson, 2008).  Maintaining the lipid homeostasis of organellar 

membranes is fundamental for cellular life. 

Chapter 1.1.1 Glycerophospholipid basic structure, classification and character  

The lipid components of eukaryotic membranes can be classified into two major 

categories, glycerolipids and sphingolipids, based on their backbones (Figure 1.1). As 

implied by their name, glycerolipids have a glycerol backbone, with two fatty acid lipid 

groups attached to the C1 and C2 positions 

of glycerol known as hydrophobic “tail.” 

The C3 position is also modified via the 

addition of a polar “headgroup” moiety to 

give rise to different sub-classes of 

glycerolipid. Glycerophospholipids have a 

phosphate ester at the C3 position linked to 

choline, ethanolamine, serine, or inositol to 

give rise to phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), 

phosphatidylserine (PS), or 

phosphatidylinositol (PI). Variability in the 

size or electric charge in the headgroup, or 

length or saturation in the “tail,” gives these lipids different properties. Sphingolipids use 

Figure1.1: Overall structure of 

Glycerolipids and Sphingolipids 
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sphingosine as the backbone with a long saturated fatty acid linked via amide linkage 

(Figure 1). Ceramide and sphingomyelin are common sphingolipids, with different head 

groups (Holthuis & Menon, 2014; van Meer & de Kroon, 2011).  

Due to the amphiphilic property of membrane lipids, they naturally form a double layer 

membrane structure with “head” groups facing towards the cytosolic environment and 

“tail” groups embedded inside. PC is the most abundant phospholipid in membrane 

bilayers, accounting for more than 50% of membrane lipids. Because the diameters of the 

“head” and “tail” groups are similar, PC is cylindrical, allowing it to assemble into 

bilayers under normal physiological conditions. Non-bilayer lipids such as PE and 

diacylglycerol (no head group) are cone-shaped due to their relatively small “head” and 

wide “tail,” and so do not form a stable membrane bilayer by themselves. Their conical 

shape introduces packing defects into membranes, promoting the binding of peripheral 

membrane proteins, and induces membrane curvature. The head group of PS is negatively 

charged, allowing it to bind peripheral membrane proteins via electrostatic interactions 

(Chernomordik, Zimmerberg, & Kozlov, 2006; Dowhan, 1997; Frolov et al., 2011; Lee, 

2004). The PI headgroup can be rapidly phosphorylated and dephosphorylated to 

generate seven different species of phosphoinositide lipids that specifically recruit 

adaptor proteins during signal transduction (Balla, 2013).  

Each subcellular membrane has a distinct membrane lipid composition fundamental for 

cellular physiology (Frolov et al., 2011). Global lipid composition largely determines the 

physical properties of cellular membranes including overall shape, curvature, packing, 

and tension. In general, the endoplasmic reticulum (ER) contains mostly unsaturated 

glycerophospholipids, while cholesterol and sphingolipids are enriched at the plasma 
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membrane (PM). Mitochondrial membranes are enriched in PE and cardiolipin. The 

seven phosphoinositides have distinct organellar distributions (Harayama & Riezman, 

2018; van Meer & de Kroon, 2011). The unique distributions of bulk and signaling lipids 

result from directionality and selectivity in lipid transfer, and the activity of lipid 

metabolizing enzymes. Overall, changes in lipid composition are carefully tuned and 

tightly regulated (van Meer et al., 2008).  

 

Chapter 1.1.2 Lipid synthesis and transportation 

Lipid synthesis is compartmentalized to different organelles due to the localization of 

specific enzymes. The ER is the primary site for the synthesis of PC, PA, PI, and PS, 

while PE and cardiolipin are synthesized in mitochondria (Yang, Lee, & Fairn, 2018). 

Most other biological membranes, such as the PM and endosomes, do not have the 

capability to synthesize glycerophospholipids and must acquire newly synthesized lipids 

from ER. In eukaryotic cells, there are two major mechanisms for lipid transport: 

vesicular transport via the secretory pathway or protein-mediated lipid transport at so-

called membrane contact sites (MCSs). Vesicular transport in the secretory pathway has 

long been studied as a means of bulk lipid transfer between the ER, Golgi, endosomes, 

and PM. Non-vesicular protein-mediated lipid transfer also takes place between 

organelles of the secretory pathway but is particularly important for organelles not 

connected to the secretory pathway, such as mitochondria and chloroplasts (Scorrano et 

al., 2019). Non-vesicular protein-mediated lipid transfer is more selective for fine-tuning 

membrane compositions and responds quickly to stimuli, versus having to travel via the 
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secretory pathway. What has been learned about lipid transfer at MCSs in recent years 

will be discussed in more detail below.  

Chapter 1.1.3 Membrane contact sites 

The close proximity between the ER and mitochondria was first observed in the 1950s in 

liver cells after starvation and refeeding (Bernhard & Rouiller, 1956). Later, the concept 

of membrane contact sites started to emerge with discoveries such as ER and PM 

connections in skeletal muscle cells (Kawamoto, Brunschwig, Kim, & Caswell, 1986) 

and the identification of the nuclear–vacuolar junction (NVJ) in yeast (Pan et al., 2000). 

The study of MCSs has gained momentum in the last ten years. Membrane contacts are 

defined as sites where the membranes of two organelles come into close proximity 

without fusing. Although it was initially thought that MCSs always involve the ER, it is 

now clear that any two organelles can form contacts; for example, there are contacts 

between lipid droplets and mitochondria, between mitochondria and the PM, and between 

mitochondria and peroxisomes (Eisenberg-Bord, Shai, Schuldiner, & Bohnert, 2016). The 

distance between two membranes is largely determined by tethering proteins linking the 

membranes and is typically between 10 -30 nm. Contact sites mediate the transportation 

of lipids, ions, amino acids, and metals; the transmission of signaling information for the 

downstream events such as autophagy; and can regulate organelle morphology (Friedman 

et al., 2011; Knoblach & Rachubinski, 2015; Lewis, Uchiyama, & Nunnari, 2016). 

Contacts have also been proposed to allow enzymes in one membrane to access 

substrates in trans on another organelle (Eden, White, Tsapara, & Futter, 2010; Stefan et 
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al., 2011).  Each contact site has unique functions, with a unique set of proteins that carry 

out these functions (Muik et al., 2011; Stathopulos, Zheng, Li, Plevin, & Ikura, 2008).  

One of the major functions of MCSs is lipid transfer, which occurs in response to stimuli, 

either specifically or non-specifically. The importance of lipid transfer has been 

elucidated at ER and mitochondria contact sites. Mitochondria purified from rat liver 

cells contained a fraction of ER enriched with lipid biosynthesis enzymes (Vance, 1990). 

It has long been known that in mammalian cells, PS is synthesized in mitochondria, and 

then transferred back to the ER to synthesize PE. Also, cardiolipin is solely synthesized 

in the mitochondria and transferred back to the ER for the synthesis of PA. To fulfill the 

synthesis of these lipids, they need to be transferred between the ER and mitochondria in 

a selective and specific fashion. Furthermore, mitochondria need bulk lipids from the ER 

to maintain expansion. Given that mitochondria are not connected to vesicular transport, 

the close apposition between the ER and mitochondria serves as an ideal hub for high-

volume lipid transfer. Non-vesicular lipid transport is mediated by lipid transfer proteins 

(LTPs) (Petrungaro & Kornmann, 2019).  

Chapter 1.2 Lipid transfer protein families in cells 

Because of their large hydrophobic moieties, lipids are poorly soluble in aqueous 

environments, and in vitro studies demonstrate that spontaneous lipid exchange between 

even closely apposed membranes is too slow to be physiologically relevant (McLean & 

Phillips, 1984). Lipid transfer proteins extract lipids from membranes and solubilize them 

to accelerate lipid exchange between membranes. The number of known LTPs has 

greatly risen in the past decade and are found in all organisms, from bacteria to humans. 
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LTPs typically have a hydrophobic cavity that binds the hydrophobic portions of the lipid 

normally embedded in the lipid bilayer. Most LTPs involved in glycerolipid transfer that 

have been studied so far are not specific for acyl chain length, where the acyl chains bind 

in the hydrophobic cavity, but many recognize a specific headgroup. In general, LTPs fall 

into two main categories: “shuttles” and “bridges.” They differ in hydrophobic cavity size 

and mechanism. Most eukaryotic LTPs identified so far are “shuttles” that ferry a single 

lipid at a time between membranes, and the cavity is normally selective for certain lipid 

species; in some cases, they exchange two distinct lipid species between membranes. 

Instead, “bridges” are thought to form a static hydrophobic conduit to allow for bulk 

lipids moving along within. It has been speculated that “bridges” have no selectivity since 

lipids are not occupying certain binding sites inside of the hydrophobic conduit (Figure 

1.2). Indeed, our understanding of the molecular mechanism of LTPs is still limited, but 

the identification of several LTPs has improved our knowledge of the field. Several 

typical LTP families will be discussed below.   

 

Figure 2: Comparison of shuttle model and bridge model of lipid transfer protein 
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Chapter 1.2.1 Shuttle-like lipid transfer proteins 

OSBP-related protein family 

Oxysterol-binding proteins (OSBP) and OSBP-related proteins (ORP) are conserved in 

all eukaryotes (Kentala, Weber-Boyvat, & Olkkonen, 2016). In humans, they are encoded 

by 12 genes and classified into six distinct subfamilies (Kentala et al., 2016), and localize 

to ER-PM, ER-Golgi, ER-late endosome, and ER-lipid droplet contact sites. All proteins 

in the ORP family have an ORD (OSBP-related domain) lipid-binding module. 

Additionally, some of the proteins also contain motifs for correct localization, 

recognizing specific phosphoinositides or proteins enriched at particular contact sites 

(Olkkonen, 2015). Several ORD domains of the ORP protein family specifically interact 

with two species of lipid; one of these is a phosphoinositide and the other is sterol or PS 

(Wong, Gatta, & Levine, 2019). These proteins mediate the exchange of lipids between 

membranes: they transport sterol or PS against a gradient by harnessing the energy 

present in the phosphoinositide gradients in the two membranes. For example, OSBP 

transfers cholesterol from the ER to the Golgi, where sterol is enriched, and PI4P from 

the Golgi, where PI4P is enriched, in the opposite direction (Mesmin et al., 2013). PI4P 

flowing forward in the gradient provides the energy for transferring cholesterol 

contrariwise to its gradient. ORP1 and ORP2 facilitate cholesterol transport between the 

ER and other organelles, including lipid droplets and late endosomes (Hynynen et al., 

2009; Rocha et al., 2009). The ORP protein family participates in many cellular 

processes, including phosphoinositide and neutral lipid metabolism, apoptosis, and viral 

replication (Olkkonen, 2015).  
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PITP and Sec14 protein family 

Phosphatidylinositol transfer proteins (PITPs) bind PI and PC, mediating their transfer or 

exchange between organellar compartments (Hsuan & Cockcroft, 2001). Sec14 and PITP 

family proteins are structurally distinct but functionally interchangeable. In humans, PITP 

proteins are divided into two classes. Class I proteins are compact, comprising only a 

lipid binding module, the so-called PITP domain. Class II proteins have additional 

modules, such as DDHD and LNS2 domains responsible for interacting with PM lipids, 

and some contain an FFAT motif to attach them to the ER (Cockcroft, 2012; Saheki & 

De Camilli, 2017). The hydrophobic cavity of the PITP domain binds either PI or PC, 

though the binding affinity to PI is 16-times higher than PC. This is due to a series of 

conserved residues in the cavity that form hydrogen bonds to the inositol group of PI 

(Hsuan & Cockcroft, 2001). Class II PITP proteins are thought to facilitate non-vesicular 

PI transfer at ER-PM contact sites (Saheki & De Camilli, 2017). They are proposed to 

present PI to lipid kinases at the PM during phosphoinositide synthesis there (Cockcroft, 

2012). PITP may be evolutionarily related to the START family of lipid transporters, but 

binds to different lipids species (Radauer, Lackner, & Breiteneder, 2008).  

SMP domain containing protein family (TULIP) 

The synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain belongs to a 

tubular lipid-binding (TULIP) domain superfamily and is conserved across eukaryotes 

(Kopec, Alva, & Lupas, 2010). The SMP domain is characterized by an extended barrel 

shape with an inner cavity lined with hydrophobic residues that binds lipids (Reinisch & 
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De Camilli, 2016; Schauder et al., 2014). SMP domain proteins localize to different 

contact sites to promote lipid transfer between the ER and PM, or between the ER and 

other organelles. Several SMP domain-containing proteins have been identified to 

improve our knowledge about this protein family. The E-syt proteins, known as tricalbins 

in yeast, go to ER-PM contacts. E-syts comprise an N-terminal hairpin that is inserted 

into the membrane of the ER, an SMP domain, and finally 3-5 C2 domains at their C-

terminus (Schulz & Creutz, 2004). The C2 domains interact with the PM depending on 

cytosolic calcium levels or interact with PI(4,5)P2, a phosphoinositide enriched at the 

PM. E-syt2 dimerizes via its SMP domains, which form a 90 Å tube-like structure that 

can accommodate four glycerolipids at a time (Reinisch & De Camilli, 2016; Schauder et 

al., 2014). Because the SMP dimer is too short to bridge the space between membranes at 

contact sites, it was proposed to act as a shuttle, although it remains possible that it could 

be a bridge-like transporter. The E-Syts seem to interact with glycerolipids non-

specifically, and their function in cells is not well understood. They are proposed to 

function in recycling diacylglycerol produced at the PM during phosphoinositide 

signaling to the ER, in order to terminate the signal (Saheki et al., 2016). 

Another SMP-domain protein that localizes to ER-PM contact sites, present only in 

metazoa and expressed in neuroendocrine cells, is TMEM24. It has an N-terminal 

transmembrane helix that anchors it to the ER, followed by the SMP domain, a C2 

domain of a still unknown function, and finally a C-terminal polybasic segment that 

interacts with negatively charged lipids in the PM. The SMP domain in TMEM24 

preferentially binds phosphatidylinositol and plays a role in replenishing PI, which is 

made in the ER, at the PM during insulin secretion (Lees et al., 2017).   
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The ERMES complex localizes to ER-mitochondrial contact sites in yeast. The complex 

comprises four core proteins -- Mdm12, Mdm10, Mmm1, and Mdm34 -- and two 

peripheral proteins, Gem1 and Tom7 (Stroud et al., 2011). Mdm12, Mmm1, and Mdm34 

have SMP domains (AhYoung, Lu, Cascio, & Egea, 2017). Mdm12 and Mmm1 form a 

210 Å-long tubular heterotetramer. An in vitro study using purified protein found that 

Mdm12 and Mmm1, but not Mmm1 alone, is able to transfer lipids between membranes, 

indicating that the formation of the tetramer is essential for lipid transfer (AhYoung et al., 

2015; Jeong, Park, Jun, & Lee, 2017; Kawano et al., 2018). Whether and how Mdm34 

associates with the tetramer is unknown. Also unknown is whether ERMES behaves as a 

shuttle or instead as a bridge-like protein (Wong et al., 2019). Mdm10 is an integral 

membrane protein embedded in the mitochondrial outer membrane (Sogo & Yaffe, 

1994), and Gem1 is a GTPase with a transmembrane helix anchored in the mitochondrial 

outer membrane (Kornmann, Osman, & Walter, 2011).  

The ERMES complex mediates glycerolipid transfer between the ER and mitochondria 

and is thought to be required for PS transfer from the ER, where PS is synthesized, to 

mitochondria, where PS is a precursor for PE. PE is subsequently transferred back to the 

ER, where it is converted to PC. Supporting a role for ERMES in PS transport, a 

mutagenesis study showed that PS transfer from the ER to mitochondria is decreased in 

yeast that does not contain Mdm12 and Mmm1 (AhYoung et al., 2015; Jeong et al., 2017; 

Kawano et al., 2018).  
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Chapter 1.2.2 Bridge-like lipid transfer proteins 

LPS transporter 

Apart from requiring a small volume of certain lipid species, organelles such as 

mitochondria need bulk lipids from ER to maintain membrane expansion, which is also 

true for the autophagosome membrane expansion during autophagy and the prospore 

membrane expansion during sporulation in yeast. It has been widely speculated that such 

bulk transfer could be mediated by bridge-like LTPs, which form hydrophobic conduits 

along which lipids can traverse the cytosol between membranes. Some SMP proteins, in 

particular the ERMES complex, have been proposed to form such bridges (Kornmann, 

2020), although this is still under discussion. In general, until our work, the best 

characterized bridge-like protein was identified from bacteria. 

At the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) functions as 

a barrier for protection from extracellular hazards, such as antibiotics. The LPS 

transporter transfers LPS, which is made at the inner membrane of bacteria, to the outer 

membrane, and maintains the asymmetric distribution of LPS. The LPS transporter is 

composed of seven proteins, LptA – LptG, which localize between inner and outer 

membranes. The LptA protein consists of a β-sheet curved to adopt a taco shape whose 

inner surface is lined by hydrophobic residues. Several LptA proteins linked together 

head-to-tail form a 21 nm-long hydrophobic bridge across the intra-membrane space. The 

bridge accommodates the hydrophobic tail of LPS, enabling the movement of LPS 

between the inner and outer membrane. Other Lpt proteins in the complex mediate LPS 

extraction, insertion, and transfer between membrane leaflets (Wong et al., 2019). The 
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complex utilizes two ATP hydrolysis steps to provide energy, driving LPS against a 

gradient. The entire LPS transfer bridge system is critical for maintaining the 

asymmetrical distribution of LPS in E. coli (Okuda, Freinkman, & Kahne, 2012).  

Chorein-N domain protein family 

Together with our collaborators, our lab recently discovered that large proteins that have 

a chorein-N motif belong to a novel family of lipid transport proteins. The chorein-N 

motif is a ~120 amino acid sequence at the N-terminus of these proteins. Three major 

proteins have been identified belonging to this family: VPS13 (Vacuolar protein sorting-

associated protein 13) (Ueno et al., 2001), ATG2 (autophagy-related protein 2) (Gomez-

Sanchez et al., 2018), and SHIP164 (Syntaxin 6 Habc‐interacting protein of 164 kDa) 

(Otto, Razi, Morvan, Stenner, & Tooze, 2010). Several bacterial proteins may also belong 

to this family based on bioinformatics studies (Levine, 2019). VPS13 and ATG2 are the 

best-studied members of this family. ATG2 plays a critical role in the early steps of 

autophagy, and VPS13 is of high interest because dysfunction in any four human genes 

VPS13 A-D (Velayos-Baeza, Vettori, Copley, Dobson-Stone, & Monaco, 2004) lead to 

severe neurological disorders, including chorea-acanthocytosis, Cohen syndrome, an 

early-onset form of Parkinson’s disease, and ataxia (Lesage et al., 2016; Rampoldi et al., 

2001; Seifert et al., 2011; Seong et al., 2018). 

VPS13 was first identified via yeast genetics, where a VPS13 mutation strain was found 

to bypass ERMES deficiency (Lang, John Peter, Walter, & Kornmann, 2015). Since 

ERMES is not conserved in metazoa, VPS13 was hypothesized to substitute for ERMES 

in higher eukaryotes. VPS13 has a PH-DH domain at the C-terminus that is proposed to 
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mediate interaction with membranes (Kumar et al., 2018). Upstream of the PH-DH 

domain is a WD40-like domain. In yeast, this domain has been shown to interact with 

PxP motifs present in organellar receptor proteins, and likely also functions in VPS13 

localization to particular contact sites (Bean et al., 2018). A small segment at the N-

terminus that includes the chorein-N motif (~10% of the whole protein), VPS13crystal, 

forms a scoop-like structure with the entire inner surface lined with hydrophobic 

residues. A longer fragment of the N-terminus of VPS13 (VPS13α) can bind more lipids 

compared with VPS13crystal, suggesting that the complete lipid transfer module extends 

beyond the crystallized fragment. Interestingly, VPS13α purified from a human cell line 

was able to bind tens of lipids per molecule, as quantified by mass spectrometry (Kumar 

et al., 2018), versus previously identified lipid transfer modules that typically bind 1-2 

lipids. These findings suggest that VPS13 differs from conventional shuttle-like lipid 

transfer proteins and instead might utilize a bridge-like mechanism similar to the LPS 

transporter. To test this hypothesis, I combined structural and biochemical studies to 

investigate the molecular function of VPS13.  

The autophagy protein ATG2 is required for the growth of autophagosome membranes 

(Gomez-Sanchez et al., 2018). ATG2 has an N-terminal chorein-N motif and a C-

terminal PH-DH domain, similar to VPS13. While ATG2 does not have a WD40-like 

domain, it interacts with WD40 proteins, including Atg18 in yeast and the WIPI proteins 

in mammals (Kotani, Kirisako, Koizumi, Ohsumi, & Nakatogawa, 2018; Zheng et al., 

2017). The N-terminal portion of ATG2 adopts a scoop-like fold similar to VPS13, with 

the entire inner surface lined with hydrophobic residues (Osawa et al., 2019). In both 

VPS13 and ATG2, the chorein-N motif is followed by mostly -strand sequences, and 
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low resolution cryo-EM studies suggest, intriguingly, that these fold into a taco shape that 

might function in lipid transport by the bridge-like mechanism (Valverde et al., 2019). 

Such a structural feature can mediate lipid transfer in vitro and is critical for the 

expansion of the autophagosome membrane in vivo (Valverde et al., 2019). Localizing to 

different MCSs, VPS13 and ATG2 have high similarity structurally and functionally.  

In the first part of my thesis work, I showed by cryo-EM that there is a hydrophobic 

channel in VPS13, at least 16nm long, strongly supporting that proteins from this family 

could function as lipid transfer bridges. The structure raised several questions regarding 

the molecular mechanism of lipid transfer bridges.  How is the directionality of bulk lipid 

flow determined, and what provides the energy for driving lipid flow?  

A more detailed understanding as to the mechanisms underlying protein-mediated lipid 

transfer, especially for bridge-like LTP’s, is still lacking. Limitations in technology make 

it difficult to trace the entire process of lipid extraction, lipid flow through the 

hydrophobic conduit, and lipid insertion. However, it possible to speculate about some 

critical steps. It not hard to understand that lipid transfer proteins decrease the activation 

energy of the lipid extraction process by providing a hydrophobic environment. However, 

the energy provided by LTPs is not enough. (Moser von Filseck, Vanni, Mesmin, 

Antonny, & Drin, 2015). The biophysical properties of donor membranes also affect lipid 

desorption and lipid delivery. The regions of ER that form close contacts with other 

organelles contain specialized lipids compositions and thus differ in membrane properties 

such as lipid packing, curvature, and tension (King, Sengupta, Seo, & Lippincott-

Schwartz, 2020). It is intriguing to speculate that the properties of the membrane are 

regulated by integral and peripheral membrane proteins. VPS13 is recruited to 
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membranes via binding with several adaptor proteins (Bean et al., 2018; Kumar et al., 

2018). Little is known about the functions of these adaptor proteins besides tethering 

LTPs. It has been speculated that protein adaptors are required to destabilize donor 

membranes, making it easy for lipid desorption (Petrungaro & Kornmann, 2019), and to 

scramble lipids to the inner leaflet at acceptor membranes to release tension on the outer 

leaflet after receiving bulk lipids. Indeed, several recent studies have demonstrated that 

ATG2 interacts directly with ATG9 (Guardia et al., 2020), and that ATG9 functions as a 

scramblase to facilitate autophagosome inner leaflet membrane expansion (Maeda et al., 

2020; Matoba et al., 2020). Moreover, reminiscent of the LPS transporter, lipid transfer 

bridges might acquire energy from the hydrolysis of ATP. However, our understanding of 

this process is still limited and the investigation of interacting partners is needed.  

Chapter 1.3 Phosphatidylinositol and phosphoinositide 

Overview of signaling function 

Phosphoinositides are low-abundance but essential 

signaling lipids. They are derived from PI, which is 

synthesized in the ER and then redistributed to other 

organelles either via vesicular trafficking or LTPs.  At 

different organelles, PI is phosphorylated at its 3,4, or 

5 positions on the inositol ring, resulting in the 

production of seven 

phosphoinositides: PI(3)P, 

PI(4)P, PI(5)P, PI(3,4)P2, 

Figure 1.3: Overall structure of Phosphatidylinositol 
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PI(3,5)P2, PI(4,5)P2, and PI(3,4,5)P3 (Figure 1.3). These phosphoinositides are distributed 

unevenly at subcellular membranes due to modification by lipid kinases and phosphatases 

resident at different compartments. PI(4)P is the signature phosphoinositide on the Golgi 

apparatus, while the derivatives  PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3 mainly reside at the 

PM. PI(3)P and PI(3,5)P2 are enriched at, and critical for the biology of, endo-lysosomal 

membranes. Phosphoinositides recruit specific effector proteins to their organelles at 

specific times. The PI effectors, in turn, regulate the activity of the cytoskeleton, 

membrane contact sites, and ion channels, and control signaling pathways (Schink, Tan, 

& Stenmark, 2016) (Di Paolo & De Camilli, 2006; Jin, Lang, & Weisman, 2016).  

 

Chapter 1.3.1 PI(3,5)P2 – phenotype and function, synthesis 

PI(3,5)P2 is the least abundant phosphoinositide, accounting for only 0.05% - 0.1% of 

total PIPs, and localizes to the endo-lysosomal system. It regulates many processes, 

including lysosomal ion homeostasis, lysosome acidification, retrograde trafficking 

between the Golgi and lysosomes, membrane fission and fusion, autophagy (Hasegawa, 

Strunk, & Weisman, 2017), and viral replication (Qiu et al., 2018). PI(3,5)P2 levels are 

highly dynamic in response to stimuli, such as insulin or growth factors in human cells, 

or hyperosmotic shock in yeast and plant cells (Dove et al., 1997). PI(3,5)P2 levels are 

correlated with endo-lysosomal size in human and vacuolar compartment sizes in yeast. 

(Gary, Wurmser, Bonangelino, Weisman, & Emr, 1998; Ikonomov, Sbrissa, & Shisheva, 

2001). In humans, PI(3,5)P2 mis-regulation causes developmental disorders, including 
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Charcot-Marie-Tooth syndrome type 4J and forms of amyotrophic lateral sclerosis (Chow 

et al., 2009; Chow et al., 2007).  

 

Chapter 1.3.2 regulation of PI(3,5)P2 level 

In yeast, PI(3,5)P2 levels increase 20-fold within 5 minutes in response to hyperosmotic 

shock (Duex, Nau, Kauffman, & Weisman, 2006), resulting in activation of upstream 

effectors. Such a fast response to stimuli indicates that levels of PI(3,5)P2 are tightly 

regulated.  PI(3,5)P2 is synthesized solely from PI3P by the lipid kinase PIKfyve. 

PIKfyve has an FYVE domain at its N-terminus, which recognizes PI3P at endo-

lysosomes and localizes PIKfyve, a CCT (chaperone-containing TCP1) domain, and a 

CCR (conserved cysteine-rich) domain with unknown function. The kinase domain is at 

the very C-terminus. All the domains are conserved across eukaryotes, suggesting 

conserved mechanisms of action, although little was known about the domain 

arrangement in the context of full-length PIKfyve (Jin et al., 2016). Turnover of PI(3,5)P2 

is catalyzed by Fig4, which contains a phosphatase with a Sac homology domain. 

Paradoxically, the proteins PIKfyve and Fig4, although catalyzing antagonistic reactions, 

exist in a single complex together with the scaffolding protein Vac14 (Botelho, Efe, Teis, 

& Emr, 2008). It was long unclear how the activities of PIKfyve and Fig4 are regulated 

within the complex to prevent futile hydrolysis of ATP. Further, while Fig4 catalyzes the 

dephosphorylation of PI(3,5)P2, deletion of Fig4 causes defects in the upregulation of 

PI(3,5)P2 in response to hyperosmotic shock in yeast (Duex et al., 2006), suggesting that 

PIKfyve might require Fig4 for activity.  
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In the second part of my thesis work, we found that the PIKfyve complex comprises five 

copies of the scaffolding protein Vac14 and one copy each of the PIKfyve and Fig4. In 

the ternary complex, Fig4 is active as a lipid phosphatase, while PIKfyve cannot access 

membrane-incorporated phosphoinositides due to conformational constraints. The 

phosphoinositide-directed activities of both PIKfyve and Fig4 are regulated by protein-

directed activities. In detail, PIKfyve was previously reported to also act as a protein 

kinase, and its autophosphorylation was found to repress its lipid kinase activity (Sbrissa, 

Ikonomov, & Shisheva, 2000). We found that its autophosphorylation stimulates Fig4 

lipid phosphatase activity. Further, we found that in addition to its role as a lipid 

phosphatase, Fig4 is also a protein phosphatase acting on PIKfyve to stimulate its lipid 

kinase activity. This explains why catalytically active Fig4 is required for maximal 

PI(3,5)P2 production in vivo. Our work greatly advances the knowledge of the overall 

architecture and regulatory mechanism of the PIKfyve complex. However, we were 

unable to capture other conformations of the PIKfyve complex, which should exist as 

indicated by our biochemistry assay. Additionally, our work was in the context of 

purified PIKfyve complex that lacked the participation of other interacting partners as it 

normally occurs in vivo. Further investigations of the PIKfyve complex in a more 

biologically relevant context will advance our knowledge of lysosomal membrane 

biology. 
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Abstract. A single particle cryo-EM reconstruction of a ~160 kDa N-terminal fragment 

of the lipid transport protein VPS13 reveals a ~160 Å long channel lined with 

hydrophobic residues suitable for solubilizing multiple lipid fatty acid moieties. The 

structure suggests that VPS13 and related proteins, like the autophagy protein ATG2, can 

act as bridges between organelle membranes to allow bulk lipid flow between organelles. 

 

Introduction.  

In eukaryotic cells, most membrane lipids are synthesized in the endoplasmic reticulum 

(ER), then distributed to other organelles. This occurs through vesicular trafficking or 

else via protein-mediated lipid transport at membrane contact sites, where two organelles 

are closely apposed. The eukaryotic lipid transport proteins characterized so far are 

thought mostly to act as shuttles that extract and solubilize lipids from the membrane of 

the donating organelle, ferry these through the cytosol, then deposit them in the 

membrane of the acceptor organelle (Wong et al., 2019). Typically, these proteins 

comprise domains resembling lidded tea cups, each with a hydrophobic cavity that 

accommodates one or two lipid molecules. Here we describe a different architecture for 

large proteins in the VPS13 family of lipid transporters, whose features suggest that these 

proteins may instead function as bridges along which bulk lipid can traverse the cytosolic 

space between membranes. The VPS13 proteins themselves, present in all eukaryotes, are 

of intense biomedical interest because their loss-of-function mutations give rise to severe 

neurodegenerative diseases, including chorea acanthocytosis and an early onset version 

of Parkinson’s disease (Lesage et al., 2016; Rampoldi et al., 2001; Ueno et al., 2001). In 
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metazoa, they are proposed to mediate lipid exchange between the ER and mitochondria, 

the endo/lysosomal system, or lipid droplets (Kumar et al., 2018). In budding yeast, 

Vps13p plays a role in the biogenesis of the prospore (Park and Neiman, 2012), a double 

membrane structure that surrounds the four meiotic products during sporulation. Lipid 

transport by the VPS13-like protein ATG2 is required for the biogenesis of another 

double membrane structure, the autophagosome (Valverde et al., 2019). 

Results and Discussion.  

The lipid transport functionality of VPS13 resides in a ~200 kDa N-terminal portion rich 

in ß-strand structure, whereas its C-terminus is predicted to comprise a WD40 and a PH 

domain critical in targeting the protein to organelle contact sites (Bean et al., 2018; 

Kumar et al., 2018). To better understand how VPS13 mediates lipid transfer, we imaged 

an N-terminal fragment of Chaetomium thermophilum VPS13, VPS131-1390 comprising 

residues 1-1390, by single particle cryo-electron microscopy, to obtain a 3D 

reconstruction at a nominal resolution of 3.75 Å (Fig. 2.1). The ß-strands in VPS131-1390 

form an extended sheet curved to resemble an open-ended basket, which is twisted by 

~90° along its length. α-helices in the loops between strands trim a long edge of the 

basket and also assemble into a basket “handle”. Because the fragment lacks a protein 

core, so that most side chains and long loops connecting secondary structure elements are 

solvent exposed and poorly resolved, it has not been possible to confidently trace the 

polypeptide chain. We were able to assign a Cα trace for residues 650-830 to the middle 

portion of the basket (shaded blue region in Fig. 2.1B), which corresponds to higher 

resolution regions of the map. Moreover, we can definitively dock the crystal structure of 
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the very N-terminus of the C. thermophilum protein, VPS131-335 comprising residues 1-

335 (PDBID 6CBC) (Kumar et al., 2018), into density at one end of the basket (Fig. 1A, 

2A). Two helical segments (residues 99-118, disordered in 6CBC, and 300-322) were 

repositioned with respect to the crystal structure to form part of the basket handle (Fig. 

1A, 2A). The VPS131-335 fragment is shaped like a scoop, and its concave surface is 

lined exclusively with hydrophobic residues (Kumar et al., 2018). Docked into the EM 

reconstruction, this hydrophobic surface faces the basket interior. As in this smaller 

fragment, the remaining ß-strands in Vps131-1390 feature alternating hydrophobic and 

hydrophilic residues, and it is probable that as in the smaller fragment the hydrophobics 

will face the basket interior while the hydrophilics are solvent exposed. Thus, VPS131-1390 

forms a long channel well suited for solubilizing, as reported before 5, tens of lipid fatty 

acid moieties. The hydrophilic headgroups of the lipids would extrude into solvent. An 

interesting feature of VPS131-1390 is its asymmetry along its longitudinal axis: the channel 

is approximately twice as wide at the end harboring Vps131-335 as at the other, where its 

width across (~12 Å from Cα to Cα) resembles that of a more typical lipid transport 

module. A 3D cryo-EM reconstruction of ATG2, determined at ~15 Å resolution, 

suggests that ATG2 has a long channel similar to that in VPS131-1390 (Valverde et al., 

2019). 

Like ATG2 (Chowdhury et al., 2018; Gomez-Sanchez et al., 2018; Kotani et al., 2018), 

VPS13 is proposed also to act as a tether, since its overexpression promotes the formation 

of more numerous and more extensive membrane contacts (Kumar et al., 2018; Lang et 

al., 2015). Via its C-terminal WD40 domain, VPS13 can interact with membrane 

associated proteins containing a proline-X-proline motif (Bean et al., 2018); and a FFAT 
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motif in human VPS13A and VPS13C, which we would tentatively place in or near the 

“handle” in the VPS131-1390 reconstruction, interacts with the ER-anchored VAP protein 

(Kumar et al., 2018). This suggests that at contact sites VPS13 might be arranged with its 

length approximately normal to the membrane planes, so that lipids would access the 

hydrophobic cavity via its ends, one of which is formed by VPS131-335, then travel 

between membranes through the channel (Fig. 2.2B). In this “bridge” model, lipids move 

through the entire length of the channel, whereas in an alternative “shuttle” model, the 

lipids would be stationary within the channel as the protein carries them between 

membranes. If the “bridge” model is correct, then rendering a band within the VPS13 

channel impassible to lipids, by replacing hydrophobic with hydrophilic residues unable 

to solubilize fatty acid moieties, should disrupt lipid transfer. If instead VPS13 acts as a 

shuttle, then lipid transport should be largely unaffected by the mutations, as most of the 

hydrophobic channel is unaltered and would retain the ability to bind lipids. Since VPS13 

function is required for prospore formation in yeast (Park and Neiman, 2012), and strains 

lacking the protein fail to sporulate (Enyenihi and Saunders, 2003), we tested mutant 

versions of VPS13 for their ability to rescue sporulation in vps13α strains. In one mutant, 

guided by the crystal structure, we altered a band of residues at one end of the channel in 

the N-terminal portion of S. cerevisiae VPS13 (vps13-mut1: 

L64K/I80E/L87E/I162R/L185E/A192E/L217R/V269E/L275D/M293K/L300R; Fig. 1B, 

2B-C). In a second mutant, based on the assignment for residues 650-830 in C. 

thermophilum VPS13, the alterations are in a band midway along VPS131-1390’s length 

(vps13-mut2: 

V690D/L692R/L694E/I715K/A717D/M720K/I722D/I761R/I768E/F790D/M796D/L798
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R/V802E/I816R/G820D/L827E; Fig. 2.1B, Fig. 2.2B). The mutations do not interfere 

with folding as yeast VPS131-1350 constructs incorporating the mutations are mono-

disperse by negative stain electron microscopy, and the mutated constructs still bind 

lipids (Fig. S2.1). Further, GFP-tagged full length wild-type and mutant constructs are 

expressed in yeast and localize as expected (Lang et al., 2015) (Fig. 2.3A, S2.1). 

Consistent with the bridge model, we found that the inability of diploid vps13α cells to 

sporulate could only be rescued by introduction of plasmid-borne copies of VPS13, but 

not of vps13-mut1 or vps13-mut2, even when expressed from high copy number (2 μm) 

vectors (Fig. 2.3B).  

We and others had previously speculated that VPS13 and related proteins like ATG2 

could harbor channels to facilitate the transfer of lipids between membranes (Kumar et 

al., 2018; Osawa et al., 2019; Valverde et al., 2019). Here we provide the first strong 

evidence for a continuous, hydrophobic channel in VPS13, and by analogy in ATG2, and 

a channel versus a shuttle lipid transfer mechanism. The size of the VPS13 lipid binding 

cavity and, hence, ability of these proteins to accommodate many lipids simultaneously 

suggests a role in bulk lipid transfer. Further, in the narrower, more C-terminal portions 

of the channel, lipids will be lined up one behind the other, indicating directional 

transport. Although the architecture of VPS131-1390 is distinct from that of other 

eukaryotic lipid transport modules, it broadly resembles bacterial lipopolysaccharide 

transporters, which feature a channel through which lipopolysaccharide travels from the 

inner to the outer membrane of Gram-negative bacteria (Owens et al., 2019). The 

bacterial channel also is a primarily ß-strand structure, though composed of multiple 

small subunits, and resembles an open-ended basket. Importantly, it is associated with 
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biosynthetic machinery in the inner membrane that pumps lipopolysaccharide into the 

channel as it is produced, thus ensuring efficient, vectorial transfer. It is tempting to 

speculate that this bridge-like transfer mechanism is conserved in eukaryotes, with 

VPS13 and ATG2 similarly collaborating with the lipid biosynthetic machinery for 

effective bulk lipid transfer. 

The density map has been deposited in the EMD databank www.emdatabank.org/ 

(accession no. EMD-21113). 

Materials and Methods 

Protein expression and purification. Vps131-1390, comprising residues 1-1390 from C. 

thermophilum Vps13, was cloned into a pCMV-10 vector containing an N-terminal 

3XFLAG tag, and expressed using the Expi293 Expression System (Thermo Fisher 

Scientific, Table S1). Cells were harvested after 95 hours and resuspended in lysis buffer 

(50 mM HEPES, pH 7.8, 500 mM NaCl, 1 mM TCEP, and 5% glycerol supplemented 

with EDTA-free protease inhibitor tablet (Roche)). Cells were lysed by sonication and 

clarified via centrifugation at 27,216 g for 30 minutes. The protein was purified by batch 

binding with anti-FLAG M2 Affinity Gel (Sigma). The resin was washed three times 

with 5 bed volumes of lysis buffer. The washed resin was incubated overnight (about 15 

hrs) with lysis buffer supplemented with 1 mM ATP and 2 mM MgCl2 in a total volume 

of 10ml. The resin was washed three more times, with 10 bed volumes of lysis buffer and 

eluted with 0.25mg/ml of 3X FLAG peptide (APExBIO). The eluted protein was loaded 

onto a Superdex 200 10/300 column (GE Healthcare). The peak fractions were collected 
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and concentrated by Amicon® Ultra-4 Centrifugal Filter Unit with 30 kDa MWCO. 

Protein at a concentration of 0.3mg/ml was used for CryoEM sample preparation. 

Cryo sample preparation and data collection (Table S2.2). For freezing EM grids, 

freshly purified Vps131-1390 was supplemented with 0.02% n-Octyl-β-D-Glucoside. 4 ul 

of sample was applied to Quantifoil R1.2/1.3 300 mesh copper grids after 30 s glow 

discharge. Grids were plunge-frozen in liquid ethane using an FEI Vitrobot Mark IV 

(Thermo Fisher Scientific) after blotting with a single blotting paper for 5 s at a blot force 

of -2 in 90% humidity at 4°C. Data collection was performed using an FEI Titan Krios 

G2 300 kV transmission electron microscope with K2 summit direct detection camera. 

For the first dataset, 1976 micrographs were collected in super-resolution mode at a 

magnification of 135,000k with 1.05Å/physical pixel with a total exposure of 8 s 

fractionated into 40 frames for a total dose of 50.4 e-/Å2 with a defocus range of 1.9 m 

to 2.8 m. For the second dataset, 970 micrographs were collected in super-resolution 

mode at a magnification of 135,000k with 1.05Å/physical pixel and a total exposure of 

6.2 s fractionated into 31 frames for a total dose of 49.5 e-/ Å2 with a defocus range of 1.4 

m to 2.3 m. 

Image processing (Fig. S2.2, Table S2.2). A total of 2946 micrographs from two datasets 

was analyzed using RELION 3.0(Zivanov et al., 2018). Super-resolution micrograph 

movie frames were binned by a factor of 2 and divided into 5x5 patches for motion 

correction by MotionCor2 (Zheng et al., 2017). Contrast transfer function estimation was 

done by CTFFIND-4 (Rohou and Grigorieff, 2015). Vps131-1390 forms tail-to-tail dimers. 

Half of each dimer, corresponding to a monomer, was used for the 3D reconstruction. For 

the first dataset, 1029 particles were manually picked from micrographs and subjected to 
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2D classification (Fig. S2a). The two best 2D classes were used as references for auto-

picking in RELION 3.0 (Zivanov et al., 2018), which yielded a total of 564503 particles, 

which were extracted using a box size of 250 x 250 pixels. For the second dataset, 

506742 particles were auto-picked in RELION 3.0 (Zivanov et al., 2018) using the 

refined 3D map from the initial dataset to generate 2D projections as references. Particles 

were extracted using the same parameters as for the first dataset. For analyzing the first 

dataset, several rounds of 2D classification with 200 classes were used to remove ice and 

bad particles. An initial model was generated from 20,000 particles using stochastic 

gradient descent with C1 symmetry. A total of 391,836 particles were then put into 3D 

classification using the initial model as a reference. All the particles were classified into 

either three or four classes, and the best classes from these two jobs were selected 

separately. Particles that appeared in both classes were selected using a locally developed 

script and polished using Bayesian polishing in RELION 3.0 (Zivanov et al., 2018). After 

polishing and postprocessing, the resulting map, which was calculated from 61230 

particles, had an estimated resolution of 4.23 Å. This map was used as a reference for 3D 

classification for the second dataset. Following Bayesian polishing, the best final refined 

map from the second dataset, based on 114134 particles, had a resolution of 3.9 Å. 

Polished particles from the two final maps were pooled and subjected to per-particle CTF 

refinement, as in (Wan et al., 2019; Yang et al., 2019), as implemented in RELION 3.0 

(Zivanov et al., 2018). Final gold standard refinement and postprocessing were done with 

the resulting 175,364 particles, producing a map with an estimated resolution of 3.75 Å 

according to the FSC = 0.143 criterion. The map was sharpened during post-processing 
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with a B-factor of -105.771. Local resolution estimation was performed using the 

RELION 3.0 (Zivanov et al., 2018) implementation. 

The Vps131-335 crystal structure (6CBC) was docked into the map manually and fitted 

using UCSF Chimera (Pettersen et al., 2004). The “pseudotrace” interpreting the map in 

terms of secondary structure (in Fig. 2.1B) was built manually in Coot (Emsley et al., 

2010). 

Sporulation assay: Diploid vps13Δ cells were transformed with plasmids (low copy 

CEN/pRS413 or multi-copy 2μm/pRS423) GFP-tagged versions of VPS13, vps13-mut1 

and vps13-mut2 under the control of the endogenous VPS13 promoter and transferred to 

sporulation plates (Table S2.1). Sporulation efficiency was assessed by direct 

visualization of ascospores by light microscopy after 1, 2, and 3 days of incubation at 

30 °C. In these constructs, GFP was inserted after residue 499 of the VPS13 sequence, 

where it is known not to interfere with VPS13 function (Lang et al., 2015). Residues in 

the VPS13 channel were made hydrophilic in vps13-mut1 

(L64K/I80E/L87E/I162R/L185E/A192E/L217R/V269E/L275D/M293K/L300R) and 

vps13-mut2 

(V690D/L692R/L694E/I715K/A717D/M720K/I722D/I761R/I768E/F790D/M796D/L798

R/V802E/I816R/G820D/L827E). Coding sequences for fragments of the genome 

incorporating the mutations were purchased from Genscript and replaced the VPS13 WT 

sequence in the mutant constructs. 

Fluorescence microscopy: Yeast expressing GFP-VPS13 from a plasmid was cultured in 

CSM-His media with 2% of glucose at 30°C. To assess the localization of GFP-VPS13 

constructs, we used a wide-field DeltaVision microsope (Applied Precision/GE 



45 

 

Healthcare) fitted with a 100x, 1.4 NA objective (Olympus) and solid-state laser 

illumination. Images were acquired at 30°C using a CoolSnapHQ2 CCD camera 

(Photometrics) and deconvolved using the iterative algorithm in softWoRx (7.0.0; 

Applied Precision GE Healthcare).  

Immunoprecipitation. Diploid vps13α cells were transformed with linearized integrating 

plasmids (pRS406 backbone) expressing GFP-tagged versions of VPS13, VPS13-mut1, 

VPS13-mut2 under the control of the GAL1 promoter using standard lithium acetate 

transformation methods. Yeast colonies were then streaked on selection plates containing 

2% galactose and GFP-expression and localization confirmed by microscopy. Selected 

clones were grown in 100 ml of YP (1% Yeast Extract, 2% Peptone) media with 2% 

Raffinose at 30°C. A final concentration of 2% galactose was added when the cultures 

reached OD600 of 0.5. For each strain, 2 grams of wet yeast pellet was resuspended with 

15 ml of buffer (50 mM NaCl, 50 mM HEPES, pH 7.4, 0.1% Tween-20, 1 mM EDTA, 1 

mM PMSF) supplemented with EDTA-free protease inhibitor cocktail (Roche). Yeast 

were lysed by vortexing with 5 g glass beads 20 times in 30-second pulses with 1-minute 

rests on ice in between, and the lysates were clarified via centrifugation at 27,216 x g for 

20 minutes. The protein was captured by batch binding with GFP-Trap Agarose 

(Chromotek). The resin was washed three times with 5 bed volumes of buffer. The 

washed resin was incubated with 6x Laemmli gel loading buffer at 95°C for 10 minutes 

and proteins resolved on a 4% - 15% gradient native gel (Bio-Rad, #4568086). 

Lipid-binding gel shift assay: 3XFLAG-tagged S. cerevisiae VPS131-1350 with WT or 

mutant sequences were purified using the same strategy described above for C. 

thermophilum Vps131-1390. For lipid binding, 7 ul of 150 nM purified protein was 
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incubated with 1 mg of dried films of NBD-PA, NBD-PC, or no lipid on ice for two 

hours. 7 ul of 2x native gel sample loading buffer were then added and 14 l of sample 

was loaded onto a 4% - 15% gradient native gel (Bio-rad, #4568086) and run at a 

constant voltage of 90V for 90 minutes.  

 

Negative staining: 3XFLAG-tagged S. cerevisiae VPS131-1350 with WT or mutant 

sequences were purified using the same strategy described above for C. thermophilum 

Vps131-1390, while wild type VPS13 was purified from 50 ml of Expi293 cells and mutant 

constructs 1 and 2 were purified from 200 ml of Expi293 cells. Samples were negatively 

stained on copper grids overlaid with 10 nm amorphous carbon with 2% uranyl acetate. 

Grids were imaged using an FEI Tecnai T12 microscope operated at an accelerating 

voltage of 120 kV with a nominal magnification of 52,000x (2.14 Å/pixel at the specimen 

level). 2D classification was performed in RELION 3.0.4, where 100 manually picked 

particles were selected as references for Auto-pick in RELION 3.0.4. Final 2D 

classification was done using auto-picked particles. 
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Figure 2.1. VPS13 forms a channel for lipid transport. (A) The density map for VPS131-

1390 (contoured at 4.55 signal/noise), which resembles a twisted gathering basket. The 

“basket” is colored light blue and yellow, where yellow corresponds to the portion of C. 

thermophilum VPS13 previously crystallized (PDBID 6CBC, residues 1-335). Helices 

comprising the “handle” are green, except for two helices from 6CBC (yellow). (B) 
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Secondary structure is indicated. Red asterisks mark helices positionally adjusted with 

respect to 6CBC to form part of the “handle”. For functional assays, mutations were 

introduced to render bands within the VPS131-1390 channel hydrophilic and unable to 

bind lipids. The bands are indicated in yellow (mutant 1) and blue (mutant 2) shading and 

arrows. (C) Density map colored by local resolution. In a-c, VPS131-1390 in lower 

panels is rotated by 90° with respect to the top panels. At top, the view is into the basket 

interior at the VPS13 N-terminal end; in the bottom panels, the view is into the interior of 

the basket at its C-terminal end. (See also Movie S1). 
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Figure 2.2. The VPS131-335 fragment is located at the wider end of the VPS131-1390 

“basket”. (A) VPS131-335 coordinates (PDBID 6CBC) were docked into the part of the 

EM map colored yellow in Figure 1 A-B (top) and fitted (bottom). (B) VPS13 may 

function as a channel for lipid transfer between membranes. Intact VPS13 resembles a 

bubble wand(De et al., 2017); the portion corresponding to VPS131-1390 is blue. 

Mutations were introduced to render the N-terminal or middle portion of the channel 

hydrophilic, as indicated here and in Fig. 1B. VPS13 may cooperate with protein partners 

to ensure directional lipid transport. (C) Changes in mutant 1 are indicated here in a 

model of S. cerevisiae VPS13 based on the crystal structure of Vps131-335 (PDBID 

6CBC):  
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(L64K/I80E/L87E/I162R/L185E/A192E/L217R/V269E/L275D/M293K/L300R). 

Mutations in  

mutant 2:  

V690D/L692R/L694E/I715K/A717D/M720K/I722D/I761R/I768E/F790D/M796D/L798

R/V802E/I816R/G820D/L827E. 
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Figure 2.3. Mutations that render portions of the VPS131-1390 channel unable to bind 

lipids (Fig. 2B-C) abrogate VPS13 function in sporulation. (A) Low copy (CEN/pRS413) 

or multicopy (2μm/pRS423) plasmids encoding GFP-tagged VPS13 constructs were 

expressed in vps13  strains and visualized as fluorescent punctae by fluorescence 

microscopy. Also see Fig. S1. (B) Yeast lacking VPS13 fail to sporulate(Enyenihi and 

Saunders, 2003). Sporulation can be rescued by VPS13 but not the channel mutants. The 

experiment was repeated in triplicate. SD indicated. 
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Supplementary Figure 2.1. Characterization of VPS13 mutant constructs. (A) 

Immunoprecipitation of GFP-tagged VPS13 protein from yeast cells expressing the 

protein from an integrated genomic copy under control of a GAL1 promoter. From left to 

right: wild type, mutation 1, mutation 2. Proteins in each lane are purified from equal 

numbers of cells, and the indicated yield is normalized to wild type VPS13 protein. (B) 

Negative staining of 3xFLAG-tagged Saccharomyces cerevisiae VPS131-1350 purified 
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from Expi293 cells, with representative 2D-class averages shown below. Numbers of 

particles included in averages are indicated. from left to right: wild type, mutation 1, 

mutation 2. (C) Lipid binding gel shift assay with Saccharomyces cerevisiae VPS131-

1350. Equal amounts of VPS131-1350 constructs are co-incubated with the indicated 

fluorescent lipids (PA is phosphatidic acid; PC is phosphatidylcholine; NBD is 

nitrobenzoxadiazole) or no lipids and separated on a native gel. Gel imaging performed 

both by fluorescence imaging and Coomassie staining. From left to right: wild type, 

mutation 1, mutation 2. 
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Supplementary Figure 2.2. CryoEM workflow. (A) A representative raw micrograph of 

Vps13 collected on a Titan Krios. Some of the particles are circled red. See Experimental 

Methods for details. (B) CryoEM workflow resulting in a density map at 3.75 Å 

resolution. The box side length of individual averages is 26.2 nm. See Experimental 

Methods for details. (C) FSC curves after gold standard refinement for masked and 

unmasked maps with FSC cut-off at 0.143 shown by a dashed line (D) CryoEM density 

for selected high-resolution regions, consistent with the reported resolution range. (E) 

Particle orientation distribution of the final map. 
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Table S2.1 primer info 

Construct 

Name 

Species Primer 

VPS13 

(1-1390) 

C.Thermo

philum 

cgaattcgagctcggcgcgccaatgttagaaggtctggtagcaggg 

atatcagatctatcgatgaattcttacgtgtgctgctccacgtc 

"VPS13-

mut1, 

VPS13-

mut2, 

pRS413; 

VPS13-

mut1, 

VPS13-

mut2, 

pRS423-

VPS13 

 

 

S. 

Cerevisiae 

gatatcgaattcctgcagcccggggaactgatcagtcctcgcaatattttc 

agactctaacatttaactgttcttaattttccttttttctg 

taagaacagttaaatgttagagtctttagctgctaatttg 

cttgctcaccatatcttcattctcgtcaaattcaatag 

cgagaatgaagatatggtgagcaagggcgag 

gtacaggacctttcttgtacagctcgtccatg 

gagctgtacaagaaaggtcctgtactgcaag 

tttcatatgtgatcataggatagcttcacagtac 

agctatcctatgatcacatatgaaagtatatacccgc 

atcgtaaacgccgccgaggcaactgtagaaggttggacaacacaaacaagaatgggtatt

gagtctttgttggaagac 

accagaagagtaattaacgtaatcgccgttgttttcttcatcatcaatcatagaaggtatagaa

ttagcaatcaaattca 

aaagctggagctccaccgcggtggctcaatctgggggtatgcg 

aaagctggagctccaccgcggtggcatagcacgttcaacatccc 

VPS13-

mut1, 

S. 

Cerevisiae 

actagtggatcccccgggctgcaggaattcatgttagagtctttagctg 

agcgtgacataactaattacatgactcgagtcataggatagcttcacag 
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VPS13-

mut2, 

pRS406-

GAL 

gcttatcgataccgtcgacctcgagatgttagagtctttagctg 

gacataactaattacatgactcgagtcataggatagcttcacag 

cgaagagtaaaaaattgtacttggcg 

aagacagaaaatttgctgacattg 

 

 

 

 

 

 

Table S2.2. Cryo-EM data collection and image processing statistics 

 VPS131390 (EMD – 21113) 

Magnification  13000x 

Voltage (kV) 300 

Electron exposure (e-/Å)  50.4 (Dataset 1) 

49.6(Dataset 2) 

Defocus range (m) -1.9 to 2.9 m (Dataset 1) 

-1.4 to -2.3 m (Dataset 2) 

Pixel size (Å) 1.05 Å 

Symmetry imposed  C1 

Initial particle images (No.) 564503 (Dataset 1) 
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506742 (Dataset 2) 

Final particle images (No.) 175362 

Map resolution (Å) 3.75 

FSC threshold 0.143 

Map resolution range (Å) 21 – 3.5  

Map sharpening B factor (Å) -105.771 
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Chapter 3 Insights into lysosomal PI(3,5)P2 homeostasis from a  

structural and biochemical analysis of the PIKfyve lipid kinase 

complex. 
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Summary 

The phosphoinositide PI(3,5)P2, generated exclusively by the PIKfyve lipid kinase 

complex, is key for lysosomal biology. Here we explore how PI(3,5)P2 levels within cells 

are regulated. We find the PIKfyve complex comprises 5 copies of the scaffolding protein 

Vac14, and one copy each of the lipid kinase PIKfyve, generating PI(3,5)P2 from PI3P, 

and the lipid phosphatase Fig4, reversing the reaction. Fig4 is active as a lipid 

phosphatase only in the ternary complex, whereas PIKfyve within the complex cannot 

access membrane-incorporated phosphoinositides due to steric constraints. We find 

further that the phosphoinositide-directed activities of both PIKfyve and Fig4 are 

regulated by protein directed activities within the complex. PIKfyve autophosphorylation 

represses its lipid kinase activity and stimulates Fig4 lipid phosphatase activity. Further, 

Fig4 is also a protein phosphatase acting on PIKfyve to stimulate its lipid kinase activity, 

explaining why catalytically active Fig4 is required for maximal PI(3,5)P2 production by 

PIKfyve in vivo. 

 

Eukaryotic cells have seven species of phosphoinositide lipids differentially enriched at 

different compartments. Although these lipids are present only in minute quantities, they 

play major roles in organelle dynamics and signaling. Two phosphoinositides critical for 

lysosome biology are PI3P and its derivative PI(3,5)P2, which is generated by the still 

poorly characterized PIKfyve complex (Hasegawa et al., 2017; Jin et al., 2016). PIKfyve 

is conserved in all eukaryotes and is their only source of PI(3,5)P2. Highlighting the 

importance of this complex in cell physiology, mutations in its subunits result in 

disabling neurodegenerative diseases such as forms of Charcot-Marie Tooth (CMT) 
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disease (Chow et al., 2007) and Amyotropic Lateral Sclerosis (ALS) (Chow et al., 2009). 

PIKfyve inhibition has been proposed as an anti-viral treatment (Hulseberg et al., 2019; 

Nelson et al., 2017), and a selective inhibitor of PIKfyve activity, apilimod, is being 

evaluated as a treatment for non-Hodgkins lymphoma (Gayle et al., 2017). 

In addition to the lipid kinase PIKfyve itself (also called Fab1), the complex includes a 

lipid phosphatase in the Sac family, Fig4 (also called Sac3), and a scaffolding protein 

Vac14 (also called ArPIKfyve) (Fig. 1A). While PIKfyve transfers a phosphate group 

from ATP to convert PI3P to PI(3,5)P2, Fig4 dephosphorylates PI(3,5)P2 in the reverse 

reaction. 

How these activities are coordinated within the complex to avoid futile cycles of ATP 

hydrolysis has been enigmatic. Further adding to the mystery is the observation that 

PI(3,5)P2 levels in cells deficient in Fig4 activity, as for example in patients with CMT, 

are reduced rather than upregulated as might have been expected (Chow et al., 2007; 

Duex et al., 2006; Shisheva et al., 2019; Strunk et al., 2020). 

Here we combine negative stain- and cryo-EM studies elucidating the architecture of the 

human PIKfyve complex at medium to low resolution with a biochemical analysis to 

obtain first insights as to how the antagonistic activities within the complex are regulated. 

Our structural studies show that Vac14 pentamerizes into a star-shaped structure, which 

can bind a single copy each of PIKfyve and Fig4. We have found that Fig4 is active as a 

lipid phosphatase only in the intact complex including PIKfyve, whereas the ability of 

PIKfyve to generate PI(3,5)P2 in membranes is suppressed in the complex as compared to 

by itself.  
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Our structural data indicate that complex formation conformationally restrains the kinase 

domain to prevent its access to membranes containing the PI3P substrate. We further 

report that in addition to its activity on lipid, Fig4 is a serine phosphatase that acts on 

PIKfyve to increase its lipid kinase activity. While PIKfyve within the complex cannot 

access PI3P, it may nevertheless be primed by Fig4 for maximal activity following a 

conformational change, such as complex dissociation, in response to a still unknown 

stimulus. This model would explain why the ablation of Fig4 activity depresses PI(3,5)P2 

production in cells. 

 

Vac14 forms a pentameric scaffold through which PIKfyve and Fig4 interact. 

As a first step in understanding the regulation of the PIKfyve complex, we examined its 

architecture and that of its subcomplexes by negative stain electron microscopy. The 

protein assemblies were produced in mammalian cells (Expi293F) by transfecting these 

with DNAs coding for one or combinations of PIKfyve components. Fig4 was N-

terminally 3xFLAG-tagged to capture Fig4/Vac14 complex, PIKfyve was N-terminally 

3xFLAG-tagged to capture PIKfyve alone or ternary complex, and Vac14 alone was 

purified via an N-terminal 2xStrepII tag. Vac14, predicted to comprise almost entirely 

alpha helical HEAT repeats, forms a rod that oligomerizes into a pentameric star-like 

structure (Fig 3.1B). As C-terminal deletions abrogate Vac14 oligomerization (Ikonomov 

et al., 2009), Vac14 self-association at the center of the star-shaped assembly must be via 

its C-terminal portions. The N-terminus of Vac14 is at the other end of each Vac14 “leg”, 

as identified by density corresponding to maltose binding protein (MBP) in 2D class 
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averages of an MBP-Vac14 construct (Fig 3.1B). (We could not find density 

corresponding to MBP in 2D class averages of a Vac14-MBP construct (distinct from the 

MBP-Vac14 construct).) We next produced Fig4/Vac14, unexpectedly finding that only 

one copy of Fig4 associates with each Vac14 pentamer. The density corresponding to 

Fig4 appears between the N-terminal tips of two of the Vac14 “legs” (Fig 3.1C). PIKfyve 

alone is elongated and kinked at one end (Fig 3.1D, top row). In the ternary complex, 

there is density for a single copy of PIKfyve appended to one of the Vac14 legs that 

flanks Fig4, extending away from the Vac14 pentamer (Fig 3.1E). We observed only a 

single stoichiometry, a pentamer of Vac14 associated 

with one copy each of the phosphatase and kinase, irrespective of the ratios of 

Fig4:Vac14 or PIKfyve: Fig4:Vac14 DNAs used in transfection. Addition of 

independently expressed and purified Fig4 and PIKfyve constructs did not change this 

stoichiometry. The five-fold symmetry of the Vac14 pentamer is disrupted in both the 

binary and ternary complexes, apparent as a different spacing between Vac14 legs 

interacting with Fig4 and PIKfyve (Fig. 3.1F). 

 

The Fig4 and PIKfyve active sites cannot access membranes simultaneously in 

the complex.  

A ternary complex comprising PIKfyveS2053E, which harbors a point-mutation in the 

kinase activation loop (see characterization below), along with wildtype versions of Fig4 

and Vac14 was analyzed further by cryo-EM, yielding a map at a final nominal resolution 
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of 5.25 Å (FSC=0.143 criterion). Due to the extended shape and high flexibility of the 

complex, it was not possible to obtain a single map with well-ordered density for all three 

proteins. Rather, a reconstruction of the complete complex was synthesized from three 

independent maps obtained from the same micrograph dataset, centered on different 

portions of the complex, which were 

calculated separately (as described in Methods; Fig. S3.1, S3.2) and superimposed based 

on their overlaps, to form a composite reconstruction (Fig. 3.2). In the reconstruction, the 

Vac14 pentamer is cup-shaped, measuring 240 Å across and 110 Å deep, with both Fig4 

and PIKfyve occupying sites near the “rim” of the cup as defined by the Vac14 N 

termini. Each Vac14 “leg” was modeled as a series of alpha helices, although their 

connectivity could not be established at the resolution of the reconstruction. The Sac 

homology module of Fig4 comprises an N-terminal regulatory and the upstream catalytic 

domain and was modeled based on a crystal structure of the same module in Sac1 (PDB 

4tu3). It could be confidently docked into density between opposite 

surfaces of two neighboring copies of Vac14 (Fig. 3.2), corresponding to the highest 

resolution region in our maps. The Fig4 active site is oriented to face the top of the Vac14 

cup. The catalytic domain of the Fig4 Sac-homology module primarily mediates the 

interactions with both neighboring Vac14’s. This interaction slightly twists one of the 

Vac14 copies, likely modifying a surface on its opposite face to facilitate PIKfyve 

binding, consistent with PIKfyve’s reported inability to bind Fig4 or Vac14 alone 

(Ikonomov et al., 2009). We did not observe density that could be attributed to portions 

of Fig4 downstream of its catalytic domain, although Fig4 C-terminal regions interact 

with Vac14 (Ikonomov et al., 2009). 
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PIKfyve comprises four structured regions, including a FYVE domain and CCR, CCT 

and kinase modules, separated by long unstructured sequences (Fig 3.1A). We generated 

homology models for the kinase and CCT modules of PIKfyve using threading software 

(RaptorX and I-Tasser (Kallberg et al., 2012; Yang et al., 2015), PDB 1e8x and 3pn9). 

The CCT module was manually fitted into PIKfyve density closest to Vac14 (Fig. 3.2B). 

The CCT module consists of three domains, termed axial, intermediate and equatorial in 

the chaperonin TCP1/TRiC where this module is also present, with the so-called 

equatorial domain abutting Vac14. For the best fit into the map, the axial/intermediate 

domains of PIKfyve were reoriented with respect to the equatorial domain as compared 

to in other contexts (PDBIDs 1a6d, 5gw5, 3pn9). Consistent with our assignment, the 

PIKfyve CCT-domain is required for the formation of the ternary complex (Botelho et 

al., 2008; Ikonomov et al., 2009). The kinase domain was docked into the map adjacent 

to the CCT-domain, with the kinase active site twisted by ~45° away from the top of the 

Vac14 “cup” (Fig. 3.2B, C). As the resolution in this part of the map was low (local 

resolutions are ~8-10 Å, Fig. S3.2D), locations of both the CCT and kinase domains were 

independently confirmed by negative stain EM of MBP-labeled PIKfyve alone (Fig. 

3.1D). In the cryo-EM maps, there is additional unassigned density in PIKfyve between 

the CCT and kinase domains as well as adjacent to the kinase domain N-terminus. An 

MBP-label inserted N-terminally to the CCR domain in PIKfyve is positioned between 

the CCT and kinase domains in negative stain micrographs (Fig 3.1D), suggesting that 

the density between the CCT and kinase modules in the cryo-EM maps corresponds to an 

N-terminal portion of the CCR domain. The remaining unassigned density could 
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correspond to C-terminal portions of the CCR region and/or portions or the FYVE 

domain. The fold of the CCR module is unknown. 

The PIKfyve complex is recruited to endo-lysosomal membranes via interactions 

between PI3P and the FYVE domain of PIKfyve (Hasegawa et al., 2017; Jin et al., 2016). 

Given the location of PIKfyve close to one of the Vac14 legs, it is plausible that the 

complex associates with membranes via the “rim” of the Vac14 cup (Fig 3.2C). If the 

complex is bound in this fashion, the Fig4 active site is oriented for optimal access to its 

lipid substrate while the PIKfyve active site is rotated away from the membrane (Fig 

3.2C) and so is sub-optimally positioned for contact with substrate. The different 

orientations of their active site pockets in the complex indicates that either Fig4 or 

PIKfyve, but not both, can access membrane bound phosphoinositides at one time. 

This suggests a structural switching mechanism that controls the relative access of Fig4 

and PIKfyve to substrate, and thus, their activities. 

 

PI3P/PI35P2 metabolism by individual PIKfyve components is modulated within 

the intact complex.  

To better understand how lipid phosphorylation and dephosphorylation activities are 

coordinated within the complex; we next compared these activities in subcomplexes, 

containing either PIKfyve or Fig4/Vac14, and intact complex. To make the intact 

complex for these experiments, we co-expressed Fig4 and Vac14, purified them together, 

and then mixed the Fig4/Vac14 subcomplex with PIKfyve that had been expressed and 

purified separately. We were unable to make Fig4 alone as it is proteolytically degraded 

in the absence of Vac14, likely because its C-terminal portions are unstructured. 
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We monitored PIKfyve lipid kinase activity on soluble diC6-PI3P (C6-C6-BODIPY-

FLPI3P) 

as well as PI3P incorporated in liposomes, with different outcomes. We followed diC6-

PI3P conversion to diC6-PI(3,5)P2 by thin layer chromatography, finding that PIKfyve 

alone and PIKfyve/Fig4/Vac14 phosphorylated diC6-PI3P with similar efficiencies (Fig. 

3A). Although Fig4 in the intact complex dephosphorylates soluble PI(3,5)P2 (see below), 

neither the presence of Fig4 or a catalytically inactivated version (C486S) significantly 

affected PI(3,5)P2 generation. This could be because the PI3P phosphorylation reaction is 

more efficient. In contrast, when we used a radiometric assay to monitor PI(3,5)P2 

production from liposome incorporated PI3P and 32P-ATP, we found that only PIKfyve 

alone but not PIKfyve/Fig4/Vac14 was active (Fig. 3.3B). This supports the notion that 

the kinase domain cannot access PI3P in the membrane because of a conformational 

restraint imposed within the complex, as suggested by the structure. 

We next compared the lipid phosphatase activities of Fig4/Vac14 and 

PIKfyve/Fig4/Vac14 on diC8-PI(3,5)P2 using the malachite green assay, which measures 

the levels of orthophosphate released upon dephosphorylation. Robust Fig4 lipid 

phosphatase activity was observed only in the intact complex, including PIKfyve (Fig. 

3.3C). The conformational changes in Fig4/Vac14 induced when PIKfyve is added may 

relieve an inhibition, perhaps by unblocking or rearranging the Fig4 active site. They may 

also correctly orient the Fig4 active site with respect to the membrane, but such a 

reorientation would not be necessary for activity with respect to the soluble diC8-lipids as 

used in the assay. 
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The protein kinase and phosphatase activities of PIKfyve and Fig4 regulate 

phosphoinositide metabolism.  

PIKfyve has been well established as a ser kinase that auto phosphorylates itself to inhibit 

its lipid kinase activity (Sbrissa et al., 2000). We found, unexpectedly, that PIKfyve 

autophosphorylation is also required for the lipid phosphatase activity of Fig4 within the 

complex, for only wild-type PIKfyve but not a catalytically inactive version (K1877E) 

stimulates lipid hydrolysis by Fig4 in the malachite green assays (Fig. 3.3C). Because 

PIKfyve and Fig4/Vac14 were prepared separately and then mixed in the absence of 

ATP, it is improbable that Fig4 stimulation is due to its phosphorylation by PIKfyve. 

Instead, it is PIKfyve autophosphorylation that must stimulate Fig4 activity.  

 

To determine which sites in PIKfyve are auto phosphorylated and to obtain insights as to 

how PIKfyve autophosphorylation might affect the activities of the complex with respect 

to phosphoinositides, we prepared two versions of PIKfyve/Fig4/Vac14, one containing 

wild-type and another the catalytically inactive PIKfyve (K1877E). We analyzed the 

PIKfyve phosphosites by mass spectrometry (MS/MS), finding serines that were 

phosphorylated only in the wild-type construct (S23, S48, S1522, S1669, S1969, and 

S2053) (Fig. 3.4). One of these sites (S2053) was of particular interest as it is located in 

the activation loop (residues 2036-2069) near the kinase active site, where it might play a 

role in inhibiting kinase activity. Consistent with such a role, we found a ~2-fold 

reduction in lipid kinase activity when we mutated this serine to glutamate, mimicking 

phosphorylation, versus no reduction when the serine was changed to alanine (Fig. 3.3D). 
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This reduction in activity is similar to that reported before for an auto phosphorylated 

versus a dephosphorylated form of the kinase (Sbrissa et al., 2000). It is likely that 

PIKfyve autophosphorylation at one or more of the six phosphosites we identified also 

affects Fig4 lipid phosphatase activity. 

The observations (1) that PIKfyve is both a lipid and a protein kinase whose 

autophosphorylation affects both lipid kinase and phosphatase activities of the PIKfyve 

complex (Sbrissa et al., 2000)(and above) and (2) that a catalytically active version of 

Fig4 is required for normal PIKfyve function in vivo (Chow et al., 2007; Duex et al., 

2006; Shisheva et al., 2019; Strunk et al., 2020) prompted us to explore the possibility 

that Fig4 might affect PIKfyve activity as a protein phosphatase. To determine whether 

Fig4 might act on PIKfyve, we prepared two versions of the PIKfyve/Fig4/Vac14 

complex, as described before, one containing wild-type and the other a catalytically 

inactive Fig4 mutant (C486S). We again analyzed PIKfyve phosphosites in these 

complexes by mass spectrometry, finding that three of the sites phosphorylated by 

PIKfyve are dephosphorylated by Fig4 (S48, S1669, S2053). These sites include Ser2053 

in the 

PIKfyve activation loop, whose phosphorylation state affects lipid kinase activity (Fig 

3.3D). 

As another approach, we also overexpressed the two versions of the complex in 

mammalian cells (Expi293F) and similarly analyzed PIKfyve phosphosites, with similar 

results (S48 and S2053 are differentially phosphorylated). These results strongly support 

the idea that in addition to acting as PI(3,5)P2 phosphatase, Fig4 is a serine phosphatase 

that regulates PIKfyve lipid kinase activity, explaining why an active form of Fig4 is 
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required for normal levels of PI(3,5)P2 in vivo. PTEN, the phosphatase that 

dephosphorylates PI(3,4,5)P3 during PI3K/Akt signaling, also is active on protein 

substrates (Myers et al., 1997), setting a precedent for phosphatases with dual specificity 

on lipids and proteins. 

Although relatively long, the PIKfyve activation loop cannot reach the Fig4 active site if 

PIKfyve and Fig4 are placed as in the cryo-EM structure. It is plausible, though, that the 

kinase and phosphatase active sites can move closer together as the complex flexes, or 

that there are conformational changes that allow for closer proximity, or that PIKfyve and 

Fig4 from different complexes interact in trans, or that Fig4 can act on PIKfyve either as 

the complex assembles or disassembles. Conformational changes within the complex will 

be subject to further investigation. 

 

Concluding thoughts 

The unusual 1:1:5 stoichiometry in the PIKfyve/Fig4/Vac14 complex is intriguing. From 

our structural studies, a key role of Vac14 pentamerization is as a scaffold that 

coordinates Fig4 and PIKfyve activities to avoid futile cycles of ATP hydrolysis. The 

Vac14 scaffold helps to optimally orient Fig4 in the complex with respect to the 

membrane for its lipid-targeted catalytic activities whereas PIKfyve is constrained and 

unable to access membrane incorporated PI3P.  

Still, there may be additional roles for Vac14 pentamerization. For example, the Vac14 

pentamer could help define membrane micro zones that are enriched in either PI3P or 

PI(3,5)P2, and these roles remain to be investigated. Our studies have also uncovered an 
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exquisite interplay between the lipid-directed activities of PIKfyve and Fig4 and their 

protein-directed activities that affect 

phosphoinositide metabolism. We have found that PIKfyve autophosphorylation 

downregulates its lipid kinase activities (as also reported in (Sbrissa et al., 2000)) while 

simultaneously upregulating Fig4 activity with respect to phosphoinositide lipids. We 

have also discovered a new role for Fig4 as a protein phosphatase required for PIKfyve 

activation. Likely, PIKfyve and Fig4 will additionally be regulated by protein kinases and 

phosphatases extrinsic to the complex, and this remains to be explored. 

These studies represent a major advance in understanding the regulation within the 

PIKfyve complex and lysosomal phosphoinositide homeostasis. Additionally, Vac14 has 

been reported to interact with a host of proteins, including Rabs, RabGEFs, RabGAPs, 

BAR domain proteins, scaffolding proteins, and others (Currinn et al., 2016; Ikonomov et 

al., 2015; Jin et al., 2016; Malia et al., 2018; Mayer et al., 2018; Schulze et al., 2014), 

which could modulate and be modulated by its interaction with the membrane and with 

PIKfyve and Fig4. These interactions likely play a role in spatiotemporal regulation of 

PIKfyve and Fig4 enzymatic activities, as well as signaling between the PIKfyve 

complex and downstream effectors. The specifics of these interactions and their relation 

to PIKfyve and Fig4 activities offer another clear avenue for follow-up work. 

 

Materials and methods 

Plasmid construction. Constructs of wildtype Vac14, Fig4, and PIKfyve were PCR 

amplified from plasmids gifted by the laboratory of L.Weisman and cloned into indicated 
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linearized plasmids using Gibson Assembly (NEB). Plasmids were linearized via BamH1 

and Not1 restriction enzymes (NEB). StrepII-tagged Vac14 and His-tagged Fig4 were 

cloned into pcDNA3.1 vector. 3xFLAG-Fig4 and -PIKfyve were cloned into pCMV-10 

vector. The sequence for MBP was inserted into the vectors for PIKfyve or Vac14, as 

indicated in Fig. 1A, using Gibson Assembly (NEB). 

 

Protein expression and purification. For EM specimens, constructs encoding 3xFLAG-

PIKfyve(S2053E), His8-Fig4, and 2xStrepII-Vac14 were co-transfected into Expi293F 

cells according to manufacturer instructions. Proteins were expressed for 48 hours after 

transfection, then harvested by centrifugation and flash-frozen for storage or immediately 

used for protein purification. Cells were lysed by 3 cycles of freezing and thawing in 

buffer containing 100 mM HEPES, 700 mM NaCl, 0.5 mM TCEP, 1 mM ATP, 1 mM 

MgCl2, and 1x EDTA-free protease inhibitor (Roche), pH 7.8. Insoluble debris was 

removed by centrifugation at 15000 x g for 30 minutes. The supernatant was incubated 

with anti-FLAG M2 beads (Sigma) for 2 hours, then 

washed with 3 x 10 bed volumes of buffer and eluted in 3 x 0.5 bed volume of buffer 

containing 0.25 mg/ml 3xFLAG peptide (APExBio). Elutions were immediately analyzed 

by negative-stain electron microscopy to assess sample quality and concentration. Grids 

were frozen immediately for cryoEM data collection. 

For kinase and phosphatase enzymatic assays, constructs encoding 3xFLAG-tagged 

versions of PIKfyve (WT, S2053E, S2053A, and K1877E) were transfected into Expi293 

cells according to manufacturer instructions and expressed for 48 hours. For formation of 

ternary complexes, 3xFLAG-Fig4 and 2xStrepII-Vac14 or 3xFLAGFig4(C486S) and 
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2xStrepII-Vac14 were co-transfected into Expi cells for 48 hours. Cell pellets were 

resuspended and lysed by freeze-thaw in buffer containing 100 mM HEPES, 500 mM 

NaCl, 0.5 mM TCEP, 1x EDTA-free protease inhibitor (Roche), pH 7.8. After 

centrifugation to remove insoluble material, supernatants were incubated with anti-FLAG 

M2 beads, washed with 3 x 10 bed volumes of buffer, then incubated 

overnight in 10 bed volumes buffer with 1 mM ATP and 1 mM MgCl2 added. Beads were 

then washed again with 3 x 10 bed volumes of buffer, then eluted in 3 x 0.5 bed volume 

of buffer containing 0.25 mg/ml 3xFLAG peptide. 

 

Specimen preparation and imaging by negative stain EM. Indicated protein samples 

were diluted to 50nM–100nM. 4ul of sample was loaded onto glow discharged copper 

grids coated with 10nm of carbon film. Samples were negatively stained with 2% of 

uranyl acetate and visualized on a FEI Tecnai T12 electron microscope operating at 

voltage of 120kV with a nominal magnification of 52000x (2.14 Å/pixel at specimen 

level). Images were further analyzed via RELION 3.0.4 (Zivanov et al., 2018) to obtain 

2D class averages. 

 

Cryo-EM specimen preparation and data collection (Table S1). Purified PIKfyve 

complex samples were supplemented with 0.02% ß-octylglucoside immediately before 

freezing and applied to Quantifoil Cu 300 mesh R1.2/1.3 grids glow discharged in 

residual air for 30 seconds at 20 mA. Grids were then blotted and plunge-frozen in liquid 

ethane cooled by liquid nitrogen using a Vitrobot Mark IV plunge-freezing robot (FEI) 

(Fig. S1B). 
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1913 movies were collected in super-resolution mode on an FEI Titan Krios at 300 kV 

equipped with a Gatan K2 Summit direct electron detector, using a nominal 

magnification of 130000x in super-resolution mode with a magnified pixel size of 1.05 Å 

on the specimen level (counting mode). Movies were dose-fractionated into 40 frames of 

0.2 seconds each at a dose rate of 1.6 e-/Å2/frame for a total dose of 64 e-/Å2. All 

micrographs were collected with the stage tilted at a 30º angle to overcome a preferred 

particle orientation bias. 

 

Data processing (Fig. S1 and S2). Motion correction for 1913 micrographs was 

performed in MotionCor2 (Zheng et al., 2017) with a binning factor of 2 and dividing 

micrographs into 5x5 patches. Global CTF calculation was performed with CTFFIND4.1 

(Rohou and Grigorieff, 2015). 954 particles were manually picked and subjected to 2D 

reference-free classification in Relion 3.0.4 (Zivanov et al., 2018). Classes showing good 

particle definition were chosen as references for automated particle picking in Relion, 

yielding a dataset of 649,270 particles. Multiple rounds of 2D classification were used to 

remove ice contamination and bad particles, leaving 218356 particles representing 21 2D 

classes. These particles were used to generate 

an initial model using the stochastic gradient descent algorithm as implemented in 

Relion. The resulting reference model was used for 3D classification and refinement in 

Relion. After Bayesian polishing, followed by further 3D classification, refinement, and 

post-processing, a final model centered on the Vac14 pentamer, comprising 53279 

particles with a resolution of 5.25 Å (FSC=0.143 criterion), was obtained. The density of 

PIKfyve in the 5.25 Å map was diffuse and incomplete. To obtain a more complete map 
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of the region around PIKfyve, particle subtraction was used in Relion to remove partial 

density for Vac14 and Fig4 from the particles, after which 2D classification was 

performed on the subtracted particles, yielding improved 

alignment of the kinase region. Particle selection from these 2D classes was used to re-

center the classes on the center of mass of the remaining density, closer to the kinase, and 

these were used to auto-pick a new dataset, which was subjected to 2D classification, 

initial modeling, 3D classification and refinement. This process of subtraction, re-

centering, auto-picking, and re-processing was repeated twice more before a dataset of 

614008 particles, centered close to the kinase, which showed improved density after 

modeling, was obtained. These were subjected to 2D classification with circular masking 

to remove ice and bad particles, which yielded a good dataset of 39125 particles. Particles 

from the best-defined 2D classes representing a range of different views were used for 

initial modeling by stochastic gradient descent. This model was used for 3D classification 

and refinement. After polishing and re-refinement, a model comprising 19998 particles 

was used for multibody refinement to independently refine the kinase and the region 

around Fig4 comprising two copies of Vac14, yielding maps of these regions with 

nominal resolutions of 6.6 and 5.1 Å according to the FSC=0.143 criterion, respectively, 

after 

post-processing (Fig. S2B, C). Local resolution was estimated using the algorithm 

implemented in RELION 3.0.4, and much of the map for the kinase domain is estimated 

~8-10 Å resolution by this means (Fig. S2D). We attribute the discrepancy in part to the 

inherent difficulty of measuring local resolution in cryoEM maps, which can vary 

between algorithms. Importantly, this map exhibits well-defined tubular densities that 
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closely match the helical arrangements of the CCT and kinase modules, and allowed 

confident fitting of these modules, confirmed further by analysis of MBPtagged 

constructs by negative-stain EM. 

Homology models of Fig4 Sac homology and PIKfyve kinase modules were obtained 

using RaptorX (Kallberg et al., 2012) against coordinates from PDB entries 4tu3 and 

1e8x, respectively. The PIKfyve CCT domain was modeled using I-TASSER (Yang et 

al., 2015) against coordinates from PDB entry 3p9e. For Fig4, models were rigid-body 

fitted into the 5.1 Å cryoEM map, then manually adjusted in Coot (Emsley et al., 2010), 

followed by real-space refinement in Phenix (Adams et al., 2010). The PIKfyve kinase 

domain was rigid-body fitted into congruent density in the map of the kinase, then 

manually adjusted in Coot and real-space refined in Phenix. The PIKfyve CCT was split 

into separate models for the equatorial domain and the remainder of the module, which 

were rigid-body fitted independently to allow for the domains to rotate relative to one 

another. Vac14 helices were modeled de novo as poly-alanine into the 5.5 Å map using 

Coot, but their connectivity could not be ascertained from the density, nor sequence 

assigned. 

 

Liposome preparation. For PIKfyve kinase enzymatic assays, substrate liposomes were 

prepared by mixing lipid stocks dissolved in chloroform in glass test tubes in the 

following molar ratio: 75% DOPC (Avanti Polar Lipids), 20% liver PE (Avanti Polar 

Lipids), 5% PI3P diC16 (Echelon Biosciences). Lipid mixtures were evaporated to 

dryness under a nitrogen stream, then dried further under vacuum for 30 minutes. Dried 

lipid films were rehydrated under 1 ml buffer (100 mM HEPES pH 7.8, 500 mM NaCl, 
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0.5 mM TCEP, 0.75 M sucrose) at 85 C for 30 minutes, then vortexed for 30 seconds to 

generate crude liposomes. Liposomes were subjected to 7 freeze-thaw cycles to eliminate 

multi-lamellar structures, then mixed with 2 volumes sucrose-free buffer and pelleted for 

40 minutes at 16,000 x g. The resulting liposome pellet was resuspended in sucrose-free 

buffer and pelleted again for 30 minutes. The second pellet was resuspended to 5 mM 

total lipid concentration in sucrose-free buffer and used immediately. 

 

Lipid kinase enzymatic assays—on liposome incorporated PI3P. Purified PIKfyve and 

Fig4/Vac14 samples were analyzed by SDS-PAGE and Coomassie staining, then 

quantitated by band densitometry against BSA standards. For complexes, PIKfyve WT or 

K1877E samples were mixed in equimolar amounts with Fig4/Vac14 complexes. All 

protein samples were diluted to a 100 nM final stock concentration (based on kinase 

concentration). Shortly before preparing reactions, liposomes were swollen by pelleting 

and resuspending in sucrose-free buffer containing 150 mM NaCl. Reaction mixtures 

were prepared by combining protein (10 nM final concentration), sucrose-free buffer, a 

10x ATP/Mg2+/Mn2+ solution (1 mM ATP, 20 mM MgCl2, and 5mM MnCl2 final 

concentration), and 32P-ATP (2.5 uCi per reaction), then adding substrate liposomes to a 

final concentration of 2.5 mM total lipid. Reactions were incubated at room temperature 

for one hour, then removed to tubes containing EDTA (10 mM final) and proteinase K 

(0.1 mg/ml final) and incubated for 15 minutes at room temperature. Liposomes were 

then pelleted by centrifugation for 15 minutes at 16,000 x g. Pellets were resuspended in 

100 l buffer, then transferred to scintillation vials for measurement of 32P radioactivity 

in a scintillation counter. 
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Lipid kinase enzymatic assay –on soluble PI3P lipids. For the assays on soluble diC6-

PI3P, the protein samples were diluted to 40nM final stock concentration (based on 

PIKfyve quantitation). Shortly before preparing reactions, green fluorophore labeled C6-

C6-BODIPY-FL-PI3P (Echelon Biosciences) was dissolved in water to make a 50 M 

stock solution. Reaction mixtures (20 l total volume) were prepared by combining 

PIKfyve or the PIKfyve complex (10 nM final concentration) with diC6-PI3P (20 M 

final concentration) in buffer (100 mM HEPES, pH 7.8, 150 mM NaCl, 0.5mM TCEP) 

supplemented with 1 mM ATP, 2 mM MgCl2, and 0.5 mM MnCl2. The reactions were 

incubated at room temperature for 1.5 hours and terminated by introducing ten volumes 

of Chloroform:Methanol (1:2). The samples were dried by SpeedVac (ThermoFisher) at 

35℃ for two hours, then dissolved in chloroform and separated by thin layer 

chromatography as in (Taylor and Dixon, 2001). The phosphoinositide spots were 

visualized under ultraviolet light and quantitated fluorometrically, using ImageJ. 

 

Lipid phosphatase enzymatic assays. Purified PIKfyve was mixed with purified 

Fig4/Vac14 complexes to achieve an equimolar ratio of PIKfyve to Fig4, with a final 

concentration of 100 nM ternary complex. For Fig4/Vac14 only assays, Fig4/Vac14 

complexes were directly diluted to 100 nM. Reactions were carried out in a 50 l volume 

containing 50 nM protein complex, 50 M diC8 PI3P or PI(3,5)P2 (Echelon Biosciences), 

and 2 mM MgCl2 for 1 hour at 37C. Released phosphate was quantitated using a 

malachite green colorimetric assay in 96-well plate format according to the 
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manufacturer’s instructions (Cayman Chemical #30412051), with measurements 

performed on a BioTek Synergy H1M microplate reader. 

 

PIKfyve phosphosite analysis by mass spectrometry. For in vitro 

phosphorylation/dephosphorylation analysis, purified PIKfyve (WT or K1877E) and Fig4 

(WT and C486S)/Vac14 complex samples were quantitated by band densitometry against 

BSA standards after SDS-PAGE and Coomassie staining. PIKfyve WT or K1877E 

samples were mixed in equimolar amounts with Fig4 (WT or C486S)/Vac14 complexes 

to give four different combinations. Samples were incubated in the presence of 1 mM 

ATP, 2 mM MgCl2, and 0.5 mM MnCl2 for 1 hour at room temperature. After incubation, 

samples were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue. 

PIKfyve bands were excised from the gels after extensive washing in deionized water, 

and submitted to the University of Alabama-Birmingham Proteomics core facility for 

tryptic digestion and phosphopeptide identification by MS/MS. Samples of 

PIKfyve/Fig4/Vac14 and PIKfyve/Fig4(C486S)/Vac14 complexes produced by co-

transfection in Expi293 cells were similarly prepared and submitted for phosphosite 

analysis at the University of Alabama-Birmingham Proteomics core facility. 
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Figure 3.1. Assembly and gross architecture of the human PIKfyve complex by 

negative stain EM analysis. (A) Domain organization of PIKfyve, Fig4, and Vac14. (B) 

The Vac14 sample used for negative staining EM is pure as per SDS-PAGE. 2D class 

averages of Vac14 or MBP-Vac14 show that it pentamerizes. Numbers of particles for 

each class average are indicated. Maltose binding protein (MBP) fused to the Vac14 N-

terminus is at the tip of the Vac14 “leg”. (C) The Fig4/Vac14 sample used for negative 

staining EM is pure per SDS-PAGE. 2D class averages of Fig4/Vac14 show density for 

Fig4 between two Vac14 “legs”. (D) Negative stain EM analysis of PIKfyve or 
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MBP+PIKfyve fusions. MBP was inserted into the PIKfyve sequence as indicated by 

arrows in 1A. The left-most column shows PIKfyve density from the cryo-EM maps (Fig. 

2) with docked models of the CCT and kinase modules; the location of MBP in the class 

averages is indicated as a grey ball. The other columns show 2D class averages of 

PIKfyve by itself or with MBP-insertions. (E) The PIKfyve/Fig4/Vac14 sample used for 

negative staining and cryo-EM is pure per SDS-PAGE. 2D class averages of 

PIKfyve/Fig4/Vac14, showing that PIKfyve binds close to Fig4 at the tip of the Vac14 

legs. (F) Schematic overlay of the Vac14 pentamers in Vac14, Fig4/Vac14, and 

PIKfyve/Fig4/Vac14, showing that the 5-fold symmetry of the Vac14 pentamer is 

distorted in the Fig4/Vac14 and PIKfyve/Fig4/Vac14 complexes. 
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Figure 3.2. Cryo-EM reconstruction of the human PIKfyve complex at medium-low 

resolution. (A) The composite reconstruction (see text and Methods) alone and with the 

model. The left panels show the maps only, and the right panels also shows docked 

protein models colored according to panel 1A. (B) Enlarged views showing the fit of the 

Fig4 Sac homology module (top panels) and the PIKfyve CCT and kinase modules 

(bottom panels) to the map. Two different views for Fig4 and PIKfyve are related by 90° 

rotations. (C) Model for PIKfyve complex interacting with membrane. The Fig4 active 

site is oriented to face the membrane, whereas the PIKfyve active site is twisted away 

from the membrane by ~45° and so cannot access membrane incorporated 

phosphoinositides. 
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Figure 3.3. Complex formation affects the enzymatic activities of PIKfyve and Fig4 

with respect to phosphoinositide lipids. (A) PIKfyve alone and in the 

PIKfyve/Fig4/Vac14 complex phosphorylate soluble C6-C6-BODIPY-FL-PI3P with 

similar efficiency, independent of whether the lipid phosphatase Fig4 is catalytically 

active (WT) or not (C486S). (B) PIKfyve alone phosphorylates liposome incorporated 

PI3P in a radiometric assay more efficiently that the PIKfyve/Fig4/Vac14 complex. A 

plausible explanation is that the PIKfyve active site is sterically constrained in the 
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complex and so unable to access membrane-incorporated PI3P. (C) In a malachite green 

assay monitoring dephosphorylation of soluble di-C8 PI(3,5)P2, robust Fig4 

lipid phosphatase activity was observed only for Fig4 in a complex with WT PIKfyve. 

Complexes comprising a catalytically inactivated PIKfyve mutant (K1877E) were 

significantly less active, and a binary complex lacking PIKfyve was the least active. (D) 

PIKfyve lipid kinase activity is inhibited when Ser2053 in the kinase activation loop is 

mutated to glutamate to mimic its phosphorylation but not when it is changed to alanine. 

Experiments were carried out at least 3 times, as indicated. Significance determined by 

Welch’s t-test. 
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Figure 3.4. PIKfyve autophosphorylates itself, and Fig4 is also a protein 

phosphatase that dephosphorylates PIKfyve. Samples of WT PIKfyve or a 

catalytically inactivated mutant (K1877E) were mixed in equimolar amounts with Fig4 

(WT or C486S)/Vac14 complexes to give four different combinations. Samples were 

incubated in the presence of 1 mM ATP, then resolved by SDS-PAGE. The gels were 

stained and the bands corresponding to PIKfyve were excised and submitted to the 

University of Alabama-Birmingham Proteomics core facility for tryptic digestion and 

phosphopeptide identification by MS/MS. Samples produced by co-expressing all three 

proteins, including either WT or catalytically inactivated Fig4 (C486S), were 

similarly prepared and submitted to the same core facility for PIKfyve phosphosite 

analysis. Ser23, Ser28, Ser1522, Ser1669, Ser1969, and Ser2053 were phosphorylated in 

complexes containing WT PIKfyve but not catalytically inactivated K1877E mutant. 

PIKfyve lipid kinase activity is inhibited when Ser2053, in the kinase activation loop, is 

mutated to glutamate to mimic its phosphorylation (in Fig. 3D). Importantly, Ser2053 is 
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among sites that are dephosphorylated in complexes containing WT Fig4 but not a 

catalytically inactivated (C486S) mutant. This suggests a model where Fig4 activates 

PIKfyve by dephosphorylating PIKfyve’s activation loop Ser2053, explaining why 

maximal PI(3,5)P2 production in vivo requires catalytically active Fig4. 
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Figure S3.1: CryoEM work flow (part 1). (A) Cryo-EM work flow resulting in a map 

centered on the Vac14 pentamer (map1) nominally at 5.25 Å resolution. (B) 

Representative raw micrograph as collected on a FEI Titan Krios at 300 kV equipped 

with a Gatan K2 Summit direct electron detector. Particles picked for initial 2D 

classification are circled. See method section for more details. (C) FSC curves after gold 

standard refinement for masked and unmasked map1 (centered on Vac14 pentamer). FSC 

cutoff at 0.143 is shown by a dashed line. (D) Particle orientation distribution of map1. 
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Figure S3.2: CryoEM work flow (part2). (A) Cryo-EM work flow, continued from 

FigS1A, for maps centered on PIKfyve (map2, nominally at 6.6 Å resolution) and Fig4 

(map3, nominally at 5.1 Å resolution). See method section for more details. (B) FSC 

curves after gold standard refinement for masked and unmasked map2. (C) FSC curves 

after gold standard refinement for masked and unmasked map3. (D) Maps colored by 

local resolution. The discrepancy between the FSC=0.143 and local resolution estimate 

for PIKfyve in map 2 is discussed in the Methods. Importantly, the map exhibits well-

defined tubular densities that closely match the helical arrangements of the CCT and 

kinase modules, and allowed confident fitting of these modules. The fitting was further 

confirmed by analysis of MBP-tagged constructs by negative-stain EM. The inset shows 

Vac14 helices placed into density from higher resolution portions of Map 1. 

 

 

Table S3.1 

Data collection and processing Map1 Map2 Map3 

Magnification 130000x 130000x 130000x 

Voltage (kV) 300 300 300 

Electron exposure (e–/Å2) 64 64 64 

Defocus range (μm) -1.5 to -3.5 -1.5 to -3.5 -1.5 to -3.5 

Pixel size (Å) 1.05 1.05 1.05 

Symmetry imposed C1 C1 C1 

Initial particle images (no.) 649270 614008 614008 
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Final particle images (no.) 53279 19998 19998 

Map resolution (Å) 5.25 6.6 5.1 

FSC threshold 0.143 0.143 0.143 

 

 

 

Table S3.2:  

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 

cOmplete™, EDTA-free 

Protease Inhibitor Cocktail 

Roche Applied Science Cat # 11873580001 

3X (DYKDDDDK) Peptide APExBio Cat # A6001 

Critical Commercial Assays 

Gibson Assembly® Master 

Mix 

New England BioLabs Cat # E2611S 

ANTI-FLAG® M2 Affinity 

Gel 

Sigma Aldrich  Cat # A2220 

Octyl-beta-Glucoside 

Detergent 

Thermo Fisher Cat # 28310 

18:1 (Δ9-Cis) PC (DOPC) Avanti Polar Lipids Cat # 850375 

16:0-18:1 PE Avanti Polar Lipids Cat # 850757 
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PI3P diC16 Echelon Biosciences Cat # P-3016 

PI(3,5)P2 diC16 Echelon Biosciences Cat # P-3516 

PI3P diC8  Echelon Biosciences Cat # P-3008 

PI(3,5)P2 diC8 Echelon Biosciences Cat # P-3508 

C6-C6-BODIPY-FL-PI3P Echelon Biosciences Cat # C-03F6 

C6-C6-BODIPY-FL-PI(3,5)P2 Echelon Biosciences Cat # C-35F6 

Malachite Green Phosphate 

Assay Kit 

Cayman Chemical  Cat # 10009325 

Deposited Data 

PIKfyve complex centered on 

Vac14 - map1 

This paper EMD: 22634 

Vac14 backbone models This paper PDB: 7K1Y 

PIKfyve complex centered on 

PIKfyve - map2 

This paper EMD: 22647 

PIKfyve Kinase domain, CCT 

domain models 

This paper PDB: 7K2V 

PIKfyve complex centered on 

Fig4 – map3 

This paper EMD: 22631 

Fig4 Sac homology domain 

model 

This paper PDB: 7K1W 

Experimental Models: Cell Lines   

Expi293F™ Cells Gibco™ Thermo Fisher  Cat # A14527 

Oligonucleotides 
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Primers for Recombinant 

DNA, see Table S2 

This paper N/A 

Recombinant DNA 

Construct of wildtype Vac14, 

Fig4, PIKfyve 

L. Weisman N/A 

Plasmid: pcDNA3.1 - 

2xStrepII-tagged Vac14 

This paper N/A 

Plasmid: pcDNA3.1 - 

2xStrepII-tagged Vac14 - MBP 

This paper N/A 

Plasmid: pcDNA3.1 - His-

tagged Fig4 -WT 

This paper N/A 

Plasmid: pcDNA3.1 - His-

tagged Fig4 -CS 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-Fig4 - WT 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-Fig4 - CS 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve - WT 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – S2053E 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – S2053A 

This paper N/A 
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Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – K1877E 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – 722-

MBP-723 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – 1192-

MBP-1193 

This paper N/A 

Plasmid: pCMV-10 - 

3xFLAG-PIKfyve – 1806-

MBP-1807 

This paper N/A 

Software and Algorithms 

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/ 

RELION 3.0.4 Zivanov et al., 2018 DOI: 10.7554/eLife.42166 

RaptorX  Kallberg et al., 2012 http://raptorx.uchicago.ed

u/ 

I-TASSER  Yang et al., 2015 https://zhanglab.ccmb.me

d.umich.edu/I-TASSER/ 

Other 

Quantifoil®, Orthogonal Array 

of 1.2µm Diameter Holes - 

1.3µm Separation, mounted on 

a 300M Cu grid 

TED PELLA, INC Cat # 658-300-Cu 
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Table S3.3: Recombinant DNA and primers:  

2xStrepII-tagged Vac14 

ATATAGATCTATGAACCCCGAGAAGGATTTCG 

ATATGCGGCCGCTCATCAGAGGACAACCCTCCGG 

2xStrepII-tagged Vac14 - MBP 

ACGATGACAAGCTTGCGGCCGCAAACCCCGAGAAGGATTTCG 

TCGATTTTGAGGACAACCCTCCGGTC 

GGTTGTCCTCAAAATCGAAGAAGGTAAACTGG 

AGGGATGCCACCCGGGATCCTTAAGTCTGCGCGTCTTTCAG 

His-tagged Fig4 -WT 

ATATGTCGACATGCCCACGGCCGCCG 

ATATCTCGAGCAGGTAGCGGTTCCTGATGTACTC 

His-tagged Fig4 -CS 

GCATCCTTCGAACCAACAGTGTGGACTGTTTAGAT 

ATCTAAACAGTCCACACTGTTGGTTCGAAGGATGC 

3xFLAG-PIKfyve - WT 

ATATGTCGACATGGCCACAGATGATAAGACGTC 

ATATGCGGCCGCTCAGCAATTCAGACCCAAGCCTGTC 

3xFLAG-PIKfyve – S2053E 

TGGGACAAAAAGCTTGAGATGGTTGTGAAAGAGACAGGAATTTTAGGTGG

AC 

GTCCACCTAAAATTCCTGTCTCTTTCACAACCATCTCAAGCTTTTTGTCCCA 

3xFLAG-PIKfyve – S2053A 

GACAAAAAGCTTGAGATGGTTGTGAAAGCAACAGGAATTTTAGG 

CCTAAAATTCCTGTTGCTTTCACAACCATCTCAAGCTTTTTGTC 

3xFLAG-PIKfyve – K1877E 



99 

 

GCGGGAGAGTTTCATGAGATGCGTGAAGTGATTC 

GAATCACTTCACGCATCTCATGAAACTCTCCCGC 

3xFLAG-PIKfyve – 722-MBP-723 

CGCGCAGACTTGCATTGATCCTATTGTGCTTCAG 

CTTCGATTTTAGTAAACTTAGTTTCTTCTCTGTAGAG 

TAAGTTTACTAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACG 

GATCAATGCAAGTCTGCGCGTCTTTCAGGGCTT 

3xFLAG-PIKfyve – 1192-MBP-1193 

CGCGCAGACTGAGAGAGGGCTTATTCTGAG 

CTTCGATTTTTTCATCACCCTCATTTTTGC 

GGGTGATGAAAAAATCGAAGAAGGTAAACTGG 

GCCCTCTCTCAGTCTGCGCGTCTTTCAG 

3xFLAG-PIKfyve – 1806-MBP-1807 

CGCGCAGACTCCTCATGTGGAACTTCAATTTTC 

CTTCGATTTTATTTATGAGTTGCTTCTTTTGTG 

ACTCATAAATAAAATCGAAGAAGGTAAACTGG 

CCACATGAGGAGTCTGCGCGTCTTTCAG 
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Chapter 4 Investigation of VPS13 interaction with acceptor 

membrane 

LTP localization at MCS aids in the selective and directional transfer of lipids. Lipids are 

first extracted from the donor membrane, then transferred across the cytosolic space, and 

finally inserted into the acceptor membrane. As a soluble protein without transmembrane 

region, VPS13 likely interacts with additional protein machinery at both membranes to 

perform the extraction and insertion step. To better understand these processes, the nature 

of the interactions between VPS13 and these proteins must be characterized. Several 

domains and motifs are found to mediate the interaction of VPS13 with membranes in 

humans. An FFAT motif at loops in the N-terminal halves of VPS13A and VPS13C 

tethers the protein to the ER by interacting with the ER-resident VAMP-associated 

protein (VAP). The WD40-like domain at the C-terminal end drives VPS13C localization 

to endolysosomal membranes (Kumar et al., 2018). Additionally, the C-terminal PH-DH 

domain recruits VPS13A to mitochondria, while this domain in VPS13A and VPS13C 

recruits them to lipid droplets (Kumar et al., 2018). The slight sequence variations in 

these conserved domains may contribute to the specific localization patterns of the 

VPS13 isoforms to different contact sites. In yeast, Mcp1, Ypt35, and Spo71 have been 

identified as proteins responsible for recruiting VPS13 to mitochondria, the endosome, or 

the prospore membrane, respectively. The three proteins use a similar PxP motif to 

interact with the WD40-like domain of VPS13. The three proteins competitively recruit 

VPS13 to different contact sites by varying their expression levels (Bean et al., 2018). 

The WD40-like domain in VPS13 is reminiscent of another WD40 protein, WIPI4, which 
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is an interacting partner of ATG2 in humans. ATG2 is recruited to autophagosomes by 

interacting with WIPI4, which interacts with PI3P localized on autophagosome. It is 

intriguing to speculate that VPS13, when functioning alone, might mimic the function of 

an ATG2-WIPI4 complex. It is also possible that the VPS13 WD40 domain may play a 

direct role in lipid transfer to the acceptor organelle membrane. To better understand how 

VPS13 MCS localization is regulated by interaction with protein partners at different 

acceptor organelles, I decided to study the structure of the VPS13’s WD40 domain and 

how it binds to the PxP motif.  

 

Chapter 4.1 Identification of soluble VPS13’s WD40 domain fragment 

VPS13 contains an N-terminal lipid transfer domain followed by a WD40 domain and a 

DH-PH domain at the C-terminus (Figure 4.1). However, the exact boundaries of the 

WD40 domain are unknown. As the first step in studying the WD40 domain of VPS13, I 

designed a series of fragments with various N- and C-terminal boundaries and tested their 

ability to fold well using an E. coli expression system. From the 22 constructs that I 

designed and expressed, I hoped to find a soluble, well-behaved fragment that includes 

the entire WD40 domain. The list of fragments can be found in Supplemental Table 4.1. 

Six out of the 22 constructs expressed well. I picked the longest soluble fragment, and 

trimmed its boundaries further to generate a final construct consisting of VPS13 residues 

1944–2635, which has a size of 79kDa. I tried both N- and C-terminally 6xHis tagged 

fragments, and found that the C-terminally tagged variant had comparatively fewer 

degradation products upon purifying the proteins under similar conditions, therefore more 
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selectively enriching for the complete fragment during affinity binding. The construct ran 

as a monodisperse peak at around 15ml from Superdex 200 10/300 size exclusion 

chromatography (Figure 4.1). It ran as a single protein band around 79kDa determined by 

SDS gel electrophoresis. An aliquot from the peak fraction was imaged using negative 

stain electron microscopy (EM), which revealed that the WD40 domain folded into a 

semi-circle shape (Figure 4.3), similar to the structural feature also present in full length 

VPS13 that was also imaged using negative stain EM (De et al., 2017).  

Apart from the WD40 domain, I designed several fragments comprising the PH-DH 

domain and tested their expression in E. coli. The constructs I made and tested by E. coli 

expression are also indicated in Supplemental Table 4.1. However, none of them behaved 

well upon purification from E. coli. I reasoned that it is because some binding partners, or 

other regions of VPS13, might be required for the fragments containing this domain to 

fold properly in vitro.  

 

Chapter 4.2 PxP motif interacts with C-terminus of VPS13’s WD40 domain 

To future investigate the interaction between the WD40 domain of VPS13 and the PxP 

motif, a copy of the PxP motif from Mcp1 (about 10 amino acids long) was fused to the 

N-terminus of the WD40 domain linked by five amino acids (details can be found in the 

Materials and Methods section). The chimeric construct behaved well in E. coli, and its 

yield was comparable to that of WD40 domain alone. Interestingly, the peak of the 

WD40 domain that contained an N-terminally fused PxP motif shifted 2ml to the left in 

Superdex 200 10/300 size exclusion chromatography (Figure 4.2), suggesting an increase 
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in size compared with WD40 domain alone. Negative stain EM of this WD40 domain 

with N-terminally fused PxP motif showed monodisperse particles, and 2D class 

averaging revealed a ring composed of a dimer of semi-circles (Figure 4.3). In another 

scenario, the PxP motif was fused to the C-terminus of the WD40 domain via a six amino 

acid linker. At similar expression and purification conditions, the yield of WD40–PxP is 

three times that of WD40 domain only, suggesting that the fragment with the PxP motif 

fused on the C-terminus is comparatively more stable. However, negative stain EM 2D 

class averages of WD40 with C-terminally fused PxP motif indicates a monomeric semi-

circle (Figure 4.3). Overall, the results above suggest that the PxP motif interacts with the 

C-terminus of VPS13’s WD40 domain.  

 

Chapter 4.3 Crystallization of VPS13’s WD40 domain 

To study the structure of VPS13’s WD40 domain, I chose x-ray crystallography as the 

primary method. Crystal Screen, Index, PEGRx screen (Hampton), Wizard Classic 

Crystallization Screen (Rigaku) and JCSG+ Suite (Qiagen) were used to hunt for initial 

“hits.” Among the three constructs, the WD40 monomer failed to generate any initial 

crystal “hits,” and the PxP-WD40 dimer gave rise to 48 crystal “hits” from initial screens. 

A list of crystallization conditions that gave rise to crystal “hits” can be found in 

Supplemental Table 4.2. In order to optimize crystallization conditions, a customized 

crystallization screen was designed based on the information from the initial 48 crystal 

“hits”; the specific conditions are detailed in Supplemental Table 3. Half of the drops 

from the customized screen grew initial hits, and four of them were promising 3D 
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crystals. Continuing from the four conditions, finally, two of the conditions gave rise to 

crystals that diffracted to 3.5 Å using the home x-ray generator at the Yale Medical 

School (Figure 4.4). (For details on crystallization conditions and x-ray generator settings 

used for exposing the crystals, see the Materials and Methods section and Supplemental 

Table 4.3.) The crystals that diffracted well were highly dependent on the freshness and 

concentration of the protein. The method for determining the concentration of the protein 

is described in Materials and Methods section.  

 

Chapter 4.4 Solving the phase problem for the structure of VPS13’s WD40 domain  

I took two approaches in parallel in order to solve the phase problem for the crystal 

structure of the VPS13’s WD40 domain. I initially planned to take advantage of the 

anomalous dispersion signal from heavy metals incorporated in the crystals for phasing. 

The heavy metal must bind the protein specifically and can either be soaked into a pre-

existing crystal or co-crystallized with the protein. In order to test the heavy metal 

binding properties of the VPS13’s WD40 domain, I set up a heavy metal binding screen 

where I incubated purified protein with a series of heavy metal solutions. I found out that 

the WD40 domain can bind with gold, mercury, cadmium and lead compounds (Figure 

4.5 and Figure 4.6). The result provides several options for heavy metal soaking or co-

crystallization. I tried to co-crystallize the protein with either gold or mercury, but was 

not able to grow a well-diffracting crystal.  

The second approach I took for solving the phase problem was by crystallizing 

selenomethionine-substituted protein. After recently fine-tuning the expression conditions 
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based on our lab’s protocols, I managed to produce milligram quantities of 

selenomethionine-substituted protein. The protein is well-folded as a dimer when 

assessed by negative staining EM. To obtain a high-quality crystal, I tried using similar 

crystallization conditions as the native protein, as well as optimizing crystal growth by 

varying the protein concentration, buffer conditions, temperature, well solution 

composition, the volume of the drop, as well as micro-seeding, but I was only able to 

grow crystals that diffract to 7 Å. To optimize the protein fold, I designed two constructs 

that deleted two different loops (loop1: 2316-2338; loop2: 1964-1976) from the original 

WD40 domain, but none of them yielded well-behaved protein. Compared to native 

protein, selenomethionine-substituted protein is less soluble, as it can only be 

concentrated to two-thirds of the highest concentration of native WD40 domain, and 

crystals appear in two days in comparison to the 10 days required for native protein 

crystal formation. From these findings, I believe that slowing down crystal growth of 

selenomethionine-substituted protein will help with the ordering of crystal. 

Another avenue for structure determination might be cryo-EM. If the molecule is too 

flexible to obtain an atomic resolution structure by cryo-EM, a combination of cryo-EM 

and x-ray crystallography can be used, where a lower resolution version of the structure 

from cryo-EM could be used as a search model for molecular replacement. However, 

after testing four different freezing conditions, I have not yet found freezing conditions in 

order to obtain good cryo grids (Supplemental table 4.4). Ice on the four grids was too 

thick to acquire a good signal for the protein particles. Lowering the glycerol 

concentration in final protein might help with ice thickness on the grids.   
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Materials and Methods 

Plasmid construction. Constructs of wildtype VPS13’s WD40 domain were PCR 

amplified from C. thermophilum genomic DNA and cloned into pET-Duet plasmids 

containing a uncleavable N- or C-terminal 6xHis tag using T4 ligase. Constructs of 

wildtype VPS13 PH-DH domain were PCR amplified from C. thermophilum genomic 

DNA and cloned into pCDF vector containing a uncleavable N- GST tag using T4 ligase.  

Plasmids and insert were linearized via BamH1 and Not1 restriction enzymes (NEB). 

Loop deletion constructs were generated using Q5® Site-Directed Mutagenesis Kit 

(NEB).   

 

Construct information for C. thermophilum VPS13 PxP-linker-WD40-6xHis 

Backbone: Pet-Duet. (Ampicillin resistance; F primer: pet-up; R primer: duet-down)  

Sequence of insert: 

MVSLVELDPAPIA(PxPmotif)EDAVVD(linker)APYRIRNYTGFDVIISTKRQIPGASP

TTEQQLPTMTLRLEDGQEAPWSFEEWEKMRESLMTESSTANSISVQLVGSGFQE

VKSIRLTREGEFLFGLKPKTQQVLHKLLVEIKLGKDNIKYVTLRSPLLVENDTGIV

VELGVYDAHEGHLLKIERINPGESKPAPVGAAYFKSLLVRPDPGFKYGWSSDTL

WWRDLLKRPTKTLVCKSEQYGGEVFYFRLHARWDQANPLTRNYPYMRLKLTA

PLTIENLLPYDFKYKIYDRVNKQEWNNFLRKGGSIPVHMVDLSHTFLLGIEMQDT

PFQASEFVVINTGNADDFKKDSHLVVKDNAGMPLNLRLHYFRIPDGGGSFKVTV

YSPYVILNKTGLDVSVRSKGFMQSARAAAGQTLIDVGGDGQKKARPLMFSFHN

DDHRNRALLKAGDSEWSKPQSFDAIGSTTEVVLQTANRNAEIHLGVTVDSGQGK

YKMVKVVTLAPRYVIHKLGEDINIREPSSSFWIPLKHGAHRPLHWLQRGAVKQL
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CLCYPGVDNQWTAPFNISDLGITHLKIARAGQRQRLIRVEILMEDATIFLNLSMEQ

RNWPFSMRNESDTEFTFYQVNPTIEEDASEDRSGWRPVRYRLPPRSIMPYAWDFP

AAKHKEICICAYNKERHVKLQEIGNLMPMKLALPNGESKTIDINVTADGPTQTLI

LSNYRQSKSLYRQ(CT-VPS13-1944-2635)HHHHHH(6 x His tag without linker) 

 

Expression and purification of native VPS13’s WD40 protein C-terminally tagged 

VPS13’s WD40 domain was expressed in BL21(DE3) codon plus cells (Agilent). Cells 

were grown in LB media supplemented with antibiotic at 37℃ to an OD of 0.6. Protein 

expression was induced by 0.5mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) and 

incubated at 18℃ for 20hrs. Cells were pelleted and resuspend using lysis buffer (NaCl 

500ml, HEPES 20mM: pH 7.8, Imidazole 20mM, TCEP 1mM, Glycerol 10%) 

supplemented with 1mM of PMSF (Phenyl Methyl Sulfonyl Fluoride). Cells were lysed 

with an Emulsiflex-C5 cell disruptor (Avestin). Cell lysate was clarified via 

centrifugation. The protein was purified using affinity chromatography with Ni-NTA 

resin (Qiagen). After washing three times with 10 x bed volume of lysis buffer, protein 

was eluted using lysis buffer supplemented with 500mM imidazole. The elution was then 

purified using Superdex 200 10/60 column (GE Healthcare) equilibrated with FPLC 

buffer (NaCl 500ml, HEPES 20mM: pH 7.8, Tcep 1mM, Glycerol 10%). Peak fractions 

were concentrated using Amicon Ultra 4 with cut-off of 100kDa. 

 

Expression of selenomethionine-substituted protein Selenomethionine-substituted 

protein expression was modified from methods described previously (Doublie, 1997). To 

summarize, an overnight LB culture was inoculated into 1L of 1xM9 media 
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supplemented with 0.2% glucose, 2mM Mg2SO4, 0.1mM CaCl2, 0.1mM thiamine, and 

antibiotic. Cells were grown at 37°C until the OD600 reached 0.5. 100mg each of 

threonine, lysine, phenylalanine; 50mg of leucine, isoleucine, valine; and 120mg of DL-

seleno-methionine were added per 1 liter of cell culture. Cells were shaken at 30°C for 

1hr to deplete methionine. Protein was induced by 0.5mM of IPTG and overexpressed at 

18°C for 20hrs. Selenomethionine-substituted protein was purified using the same 

strategy as native protein.  

 

Protein crystallization trays WD40 dimer protein was concentrated to a final 

concentration of 3mg/ml. (The concentration was measured using Bradford assay. 

Calculation is based on a standard curve: (reads – 0.095) / 0.06943 * 20 / load(l) = Con 

(mg/ml). For example, for 4ul of protein solution into 1ml of 1x Bradford solution, 

normally the reads are around 0.5 – 0.52, meaning the final concentration is around 

3mg/ml).  The Formulatrix NT8 liquid handling robot was used for setting up 96-well 

crystallization screen, where the settings were for 100nl of protein mixed with 100nl of 

mother liquor. The mixture was equilibrated using 50l of mother liquor with 500mM of 

NaCl in an Intelli low-profile plate (Hampton). For  well-diffracting crystals of the native 

protein, 2l of protein was mixed with 2l of 100mM imidazole, pH 8.0 and 80mM 

Li2SO4 (mother liquor A). The mixture was equilibrated using 500l of mother liquor A 

with 55l of 5M NaCl. In another case, 2l of 3mg/ml native protein was mixed with 2l 

of 90mM imidazole, pH 8.0 and 50mM Li2SO4 (mother liquor B). The mixture was 

equilibrated using 500l of mother liquor B with 55l of 5M NaCl in 24 well 

crystallization plate (Hampton M plate). In both cases, crystals appeared after 10 days. 



112 

 

Crystals were mounted in a 0.1-0.2um cryo-loop and dipped serially in mother liquor A/B 

supplemented with 5% glycerol, 10% glycerol, 15% glycerol and then 20% glycerol. The 

loops were then mounted, with the crystals centered onto an AFC 4-axis goniometer. 

Crystals were protected using Oxford Cobra cryo-stream and exposed to Rigaku X-ray 

Generator for 300s, and the diffraction data was collected with a Dectris Pilatus 200K 

Pixel Array Detector (Rigaku) in the Macromolecular X-Ray Crystallography Core at the 

Yale Medical School. 

Heavy metal binding and gel shift assay For heavy metal screening, 4l of purified C-

terminal 6xHis tagged PxP-WD40 protein at 1mg/ml was mixed with 4l of the heavy 

metal stock solutions (Hampton) listed with their concentrations in Figure 4.5 and 4.6. 

Concentrations used for heavy metal solutions are indicated. If the concentrations of 

heavy metal solutions are higher than the indicated concentrations, the protein will 

precipitate out upon mixing. The mixtures were kept on ice for 30 minutes. 8l of native 

gel loading buffer was then mixed with protein and heavy metal before loading onto a 

native gel. 15l of the final mixture was loaded onto a 4% - 15% gradient gel (Bio-Rad). 

The native gel was run at a constant voltage of 100V for 100mins at 4℃.  

 

Supplemental Table 4.1 Construct boundary information for VPS13’s WD40 domain. 

Well-behaved constructs are bolded.  

Constructs domain 

C. thermophilum VPS13 1626 – 2638 WD40 

C. thermophilum VPS13 1807 – 2638 WD40 

C. thermophilum VPS13 1940 – 2638 WD40 
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C. thermophilum VPS13 2040 – 2638 WD40 

C. thermophilum VPS13 1807 – 2798 WD40 

C. thermophilum VPS13 1940 – 2502 WD40 

C. thermophilum VPS13 1940 – 2533 WD40 

C. thermophilum VPS13 1940 – 2571 WD40 

C. thermophilum VPS13 1940 – 2605 WD40 

C. thermophilum VPS13 1977 – 2502 WD40 

C. thermophilum VPS13 1977 – 2533 WD40 

C. thermophilum VPS13 1977 – 2571 WD40 

C. thermophilum VPS13 1977 – 2605 WD40 

C. thermophilum VPS13 2007 – 2502 WD40 

C. thermophilum VPS13 2007 – 2533 WD40 

C. thermophilum VPS13 2007 – 2571 WD40 

C. thermophilum VPS13 2007 – 2605 WD40 

C. thermophilum VPS13 2042 – 2502 WD40 

C. thermophilum VPS13 2042 – 2533 WD40 

C. thermophilum VPS13 2042 – 2571 WD40 

C. thermophilum VPS13 2042 – 2605 WD40 

C. thermophilum VPS13 2649 – 3225 PH-DH-PH 

C. thermophilum VPS13 2649 – 3087 PH-DH 

C. thermophilum VPS13 2811- 3225 DH-PH 

C. thermophilum VPS13 2811 – 3087 DH 
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Supplemental Table 4.2. Crystallization conditions for initial “hits” of WD40 dimer; 

conditions for 2D or 3D crystals are bolded.  

Number Buffer Salt Precipitant 

1 

0.1 M Sodium acetate 

trihydrate pH 4.0 

 

10% w/v Polyethylene 

glycol 4,000 

2 

0.1 M MES 

monohydrate pH 6.0, 

 

14% w/v Polyethylene 

glycol 4,000 

3 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.5 

0.1 M Lithium sulfate 

monohydrate, 

20% w/v Polyethylene 

glycol 1,000 

4 

0.1 M Imidazole pH 

7.0 

2% v/v Tacsimate pH 

7.0, 5% v/v 2-

Propanol 

8% w/v Polyethylene 

glycol 3,350 

5 

0.1 M MES 

monohydrate pH 6.0, 

0.4 M Sodium 

malonate pH 6.0 

0.5% w/v Polyethylene 

glycol 10,000 

6 

0.1 M BIS-TRIS pH 

6.5 

0.2 M Potassium 

sodium tartrate 

tetrahydrate, 

10% w/v Polyethylene 

glycol 10,000 

7 

100 mM Potassium 

phosphate monobasic/ 

Sodium phosphate 

dibasic pH 6.2 

 10% (w/v) PEG 3000 
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8 

100 mM Imidazole/ 

Hydrochloric acid pH 

8.0 

 

1000 mM Ammonium 

phosphate dibasic 

9 

100 mM Tris base/ 

Hydrochloric acid pH 

8.5 

 20% (w/v) PEG 1000 

10 

100 mM HEPES/ 

Sodium hydroxide pH 

7.5 

 30% (v/v) PEG 400 

11 

100 mM HEPES/ 

Sodium hydroxide pH 

7.5 

200 mM Sodium 

chloride 

 

10% (v/v) 2-propanol 

12 0.1 M bis-Tris pH 5.5 1 M Ammonium sulfate 1% w/v PEG 3350 

13 0.1 M HEPES pH 7.0 

1.0 M Succinic acid pH 

7.0 

1% w/v Polyethylene 

glycol monomethyl 

ether 2,000 

14 

0.2 M Ammonium 

citrate tribasic pH 7.0 

 

20% w/v Polyethylene 

glycol 3,350 

15  

0.4 M Ammonium 

phosphate monobasic 

 

16 

0.1 M Sodium acetate 

trihydrate pH 4.6 
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17 

0.1 M MES 

monohydrate pH 6.5 

 

12% w/v Polyethylene 

glycol 20,000 

18 

0.1 M Sodium acetate 

trihydrate pH 4.0 

 

10% w/v Polyethylene 

glycol monomethyl 

ether 2,000 

19 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.5 

 

18% w/v Polyethylene 

glycol 3,350 

20 

0.1 M BIS-TRIS pH 

6.5 

28% v/v 2-Propanol 

3% v/v Polyethylene 

glycol 200 

21 

0.1 M Imidazole pH 

7.0 

 

 

20% v/v Jeffamine ® 

ED-2001 pH 7.0 

22 

100 mM Sodium 

acetate/ Acetic acid pH 

4.5 

1000 mM Ammonium 

phosphate dibasic 

 

23 

100 mM Imidazole/ 

Hydrochloric acid pH 

8.0 

10% (v/v) 2-propanol  

24 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.5 

 

22% w/v Polyethylene 

glycol 1,000 
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25  

0.4 M Potassium 

sodium tartrate 

tetrahydrate 

 

26 

0.1 M Imidazole pH 

6.5 

 

 

1.0 M Sodium acetate 

trihydrate 

27 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.6 

20% v/v 2-Propanol  

28 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.6 

0.5 M Sodium chloride 

2% v/v Ethylene imine 

polymer 

29 

0.1 M tri-Sodium 

citrate pH 5.5 

 20% w/v PEG 3000 

30 

0.2 M di-Ammonium 

citrate pH 5.0 

 20% w/v PEG 3350 

31 

0.1 M Succinic acid pH 

7.0 

 15% w/v PEG 3350 

32 0.1 M bis-Tris pH 5.5 

0.1 M Ammonium 

acetate 

17% w/v PEG 10,000 

33 0.1 M bis-Tris pH 5.5 

0.2 M Ammonium 

sulfate 

25% w/v PEG 3350 
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34 0.1 M bis-Tris pH 5.5 

0.2 M Magnesium 

chloride 

25% w/v PEG 3350 

35 

0.1 M BIS-TRIS pH 

5.5 

0.3 M Magnesium 

formate dihydrate 

 

36 0.1 M HEPES pH 7.0 

1.0 M Ammonium 

sulfate 

0.5% w/v Polyethylene 

glycol 8,000 

37  

0.2 M Ammonium 

citrate tribasic pH 7.0 

20% w/v Polyethylene 

glycol 3,350 

38 

0.1 M BIS-TRIS pH 

5.5 

0.1 M Ammonium 

acetate 

17% w/v Polyethylene 

glycol 10,000 

39 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.0 

 

30% v/v Polyethylene 

glycol monomethyl 

ether 550 

40 0.1 M HEPES pH 7.5  

4% w/v Polyethylene 

glycol 8,000 

41 

0.1 M Imidazole pH 

7.0 

 

 

12% w/v Polyethylene 

glycol 20,000 

42 

0.1 M Sodium citrate 

tribasic dihydrate pH 

5.5 

0.10% w/v n-Octyl-b-

D-glucoside 

22% w/v Polyethylene 

glycol 3,350 

43 

0.1 M HEPES pH 7.5 

 

 

10% w/v PEG 8000, 

8% v/v Ethylene glycol 
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44 

0.1 M Phosphate-citrate 

pH 4.2 

 

40% v/v PEG 300 

 

45 0.1 M Imidazole pH 8  10% w/v PEG 8000 

46 0.1 M HEPES pH 7.5 

0.02 M Magnesium 

chloride 

22% w/v Polyacrylic 

acid 5100 sodium salt 

47   35% v/v 1,4-Dioxane 

48 

0.1 M MES 

monohydrate pH 6.0 

 

20% w/v Polyethylene 

glycol monomethyl 

ether 2,000 

 

 

 

Supplemental Table 4.3 Customized crystallization screen for VPS13’s WD40 dimer. 

Conditions for 3D crystals are bolded.  

B1; S1; B2; S1; B3; S1; B4; S1; B5; S1; B1; S2; B2; S2; B3; S2; B4; S2; B5; S2; 

B1; 

S3; 

B2; S3; B3; S3; B4; S3; B5; 

S3; 

B1; S4; B2; S4; B3; S4; B4; S4; B5; S4; 

B1; P1 B2; P1 B3; P1 B4; P1 B5; P1 B1; P2; B2; P2; B3; P2; B4; P2; B5; P2; 

B1; S1; 

P1 

B2; S1; 

P1 

B3; S1; 

P1 

B4; S1; 

P1 

B5; S1; 

P1 

B1; S2; 

P1 

B2; S2; 

P1 

B3; S2; 

P1 

B4; S2; 

P1 

B5; S2; 

P1 

B1; S3; 

P1 

B2; S3; 

P1 

B3; S3; 

P1 

B4; S3; 

P1 

B5; S3; 

P1 

B1; S4; 

P1 

B2; S4; 

P1 

B3; S4; 

P1 

B4; S4; 

P1 

B5; S4; 

P1 



120 

 

B1; S1; 

P2; 

B2; S1; 

P2; 

B3; S1; 

P2; 

B4; S1; 

P2; 

B5; S1; 

P2; 

B1; S2; 

P2; 

B2; S2; 

P2; 

B3; S2; 

P2; 

B4; S2; 

P2; 

B5; S2; 

P2; 

B1; S3; 

P2; 

B2; S3; 

P2; 

B3; S3; 

P2; 

B4; S3; 

P2; 

B5; S3; 

P2; 

B1; S4; 

P2; 

B2; S4; 

P2; 

B3; S4; 

P2; 

B4; S4; 

P2; 

B5; S4; 

P2; 

B1: imidazole pH 7.5 100mM, B2: Bis-tris pH 6.5 100mM, B3: Sodium Citrate pH 5.0 

100mM, B4: Ammonium Citrate pH 5.0 100mM, B5: HEPES Ph 7.5 100mM,  

S1: Potassium Sodium tartrate 400mM, S2: Ammonium phosphate 500mM, S3: Lithium 

Sulfate 100mM, S4: Ammonium tartrate 400mM 

P1: 2-propanol 10%, P2: PEG300 20% 

 

 

 

 

 

Supplemental Table 4.4 Cryo grid freezing conditions for PxP-WD40 

Protein Force Time 

Grid 

type 

Glow 

Discharge 

Temperature 

Humidity 

Detergent 

Negative 

stain 

Glacios 

Check 

WD40 

dimer 

-2 2s 

Quantifoil 

R1.2/1.3 

300 

Mesh, 

Copper 

30s 4℃/90% None 

Looks 

good 

All 

black 
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WD40 

dimer 

-2 2s 

Quantifoil 

R1.2/1.3 

300 

Mesh, 

Copper 

30s 4℃/90% 

0.02% 

OG 

Looks 

good 

All 

black 

WD40 

dimer 

-2 5s 

Quantifoil 

R1.2/1.3 

300 

Mesh, 

Copper 

30s 4℃/90% None 

Looks 

good 

All 

black 

WD40 

dimer 

-2 5s 

Quantifoil 

R1.2/1.3 

300 

Mesh, 

Copper 

30s 4℃/90% 

0.02% 

OG 

Looks 

good 

No 

particles 

in hole 
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A 

Figure 4.1 (A) Schematic of the putative domain architecture of Chaetomium thermophilum 

VPS13 protein. Position of the boundaries of domains are indicated; (B) Superdex 200 10/30 

chromatography profile of WD40 domain (construct information: CT-VPS13-1944-2635-

6xHis). Peak position at around 15ml. (C) SDS gel electrophoresis of peak fractions. Position 

of protein markers are indicated.  

B 
C 
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Figure 4.2 Comparison of Superdex 200 10/30 chromatography profile of 

WD40 domain (construct information: CT-VPS13-1944-2635-6xHis) and 

PxP-WD40 domain (construct information: CT-VPS13-PxP-5 amino acid 

linker – 1944 – 2635 – 6xHis). WD40 domain has a peak at 15ml while 

PxP-WD40’s peak position is around 13ml.  
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Figure 4.3 2D class averages of WD40 domain, PxP–WD40 and WD40–PxP. Scale 

bar is indicated. WD40 and WD40–PxP adopt the shape of a semi-circle ring. PxP–

WD40 forms a dimer. 
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Figure 4.4 Native PxP-WD40 protein crystals diffract to 3.5 Å in-house. Crystals 

were serially dipped into crystallization buffer supplemented with 5% glycerol, 10% 

glycerol, 15% glycerol and then 20% glycerol. The crystal was then exposed to 

Rigaku X-ray Generator for 300s and the diffraction data (the two frames are 90° 

apart) was collected with a Pilatus 200k Pixel Array Detector. Preliminary analysis 

suggests the crystals may be monoclinic (P2) with a = 80.18, b = 168.79, c = 80.41 or 

Orthorhombic (C2221) with a = 108.61, b = 117.46, c = 168.38.  
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Figure 4.5 Heavy metal screen of PxP–WD40. Purified protein was incubated with heavy metal 

solutions (concentrations are indicated below) with a ratio of 1:1. Shift of protein bands on native gel 

electrophoresis indicates the heavy metal binding. Native: native protein; Au-1: KAu(CN)2, 1mM; 

Au-2: KAuCl4 • xH2O, 1mM; Au-3: NaAuCl4 • 2H2O, 1mM; Au-4: AuCl3, 1mM; Au-5: HAuCl4 • 

3H2O, 1mM; Au-6: KAuBr4 • 2H2O, 1mM; Hg-1: C13H17HgNO6 1mM; Hg-2: C2H5HgH2PO4, 

1mM; Hg-3: HgCl2, 1mM; Hg-4: Hg(OOCCH3)2, 1mM; Hg-5: C9H9HgNaO2S, 1mM; Hg-6: 

C8H8HgO2, 0.3mM; Hg-7: K2HgI4, 1mM; Hg-8: HgBr2, 0.5mM; Hg-9: Hg(NO3)2 • H2O, 1mM; 

Hg-10: HgO, 1mM; Tl-1: Tl(O2C2H3)3 • xH2O, 1mM; Pb-1: Pb(CH3COO)2 • 3H2O, 1mM; Pb-2: 

Pb(NO3)2, 1mM; Pb-3: PbCl2, 1mM; Ag-1: AgNO3, 1mM; Cd-1: CdCl2 • xH2O, 1mM; Cd-2: 

CdI2, 1mM; Ir-1: K2IrCl6, 1mM; Ir-2: K3Ir(NO2)6, 1mM; Os-1:K2OsO4 • 2H2O, 1mM; 
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Figure 4.6 Heavy metal screen of PxP–WD40, continued from last figure.  

Native: native protein; Os-1: (NH4)2OsBr6, 1mM; Os-2: K2OsCl6 1mM; Os-3: OsCl3 • 

xH2O 1mM; Pb-1: CH3CO2Pb(CH3)3 2mM; W-1: Na2WO4 • 2H2O 5mM; W-2: 

(NH4)2WS4 , 5mM; Sm-1: SmCl3 • 6H2O 5mM; Sm-2: Sm(O2C2H3)3 • xH2O 5mM; 

Sm-3: Sm(NO3)3 • 6H2O 5mM;  La-1: La(NO3)3 • 6H2O 5mM; Eu-1: Eu(NO3)3 • 6H2O 

5mM; Eu-2: EuCl3 • 6H2O 5mM;  Gd-1: GdCl3 • xH2O 5mM; Lu-1: LuCl3 • 6H2O 5mM;  

Lu-2: Lu(O2C2H3)3 • Xh2o 5mM;  Yb-1: YbCl3 • Xh2O 5mM; Dy-1: DyCl3 • 6H2O 

5mM; Pr-1: PrCl3 • 7H2O 5mM; Nd-2: NdCl3 • Xh2o 5mM; Ho-1: HoCl3 • 6H2O 5mM; 

Re-1: K2ReCl6 1mM; 



128 

 

Reference:  

Bean, B. D. M., Dziurdzik, S. K., Kolehmainen, K. L., Fowler, C. M. S., Kwong, W. K., 

Grad, L. I., . . . Conibear, E. (2018). Competitive organelle-specific adaptors 

recruit Vps13 to membrane contact sites. J Cell Biol, 217(10), 3593-3607. doi: 

10.1083/jcb.201804111 

De, M., Oleskie, A. N., Ayyash, M., Dutta, S., Mancour, L., Abazeed, M. E., . . . Fuller, 

R. S. (2017). The Vps13p-Cdc31p complex is directly required for TGN late 

endosome transport and TGN homotypic fusion. Journal of Cell Biology, 216(2), 

425-439. doi: 10.1083/jcb.201606078 

Doublie, S. (1997). Preparation of selenomethionyl proteins for phase determination. 

Methods Enzymol, 276, 523-530.  

Kornmann, B. (2020). The endoplasmic reticulum-mitochondria encounter structure: 

coordinating lipid metabolism across membranes. Biol Chem, 401(6-7), 811-820. 

doi: 10.1515/hsz-2020-0102 

Kumar, N., Leonzino, M., Hancock-Cerutti, W., Horenkamp, F. A., Li, P., Lees, J. A., . . . 

De Camilli, P. (2018). VPS13A and VPS13C are lipid transport proteins 

differentially localized at ER contact sites. J Cell Biol, 217(10), 3625-3639. doi: 

10.1083/jcb.201807019 

Olkkonen, V. M. (2015). OSBP-Related Protein Family in Lipid Transport Over 

Membrane Contact Sites. Lipid Insights, 8(Suppl 1), 1-9. doi: 

10.4137/LPI.S31726 

Qiu, S., Leung, A., Bo, Y., Kozak, R. A., Anand, S. P., Warkentin, C., . . . Cote, M. 

(2018). Ebola virus requires phosphatidylinositol (3,5) bisphosphate production 

for efficient viral entry. Virology, 513, 17-28. doi: 10.1016/j.virol.2017.09.028 

Sbrissa, D., Ikonomov, O. C., & Shisheva, A. (2000). PIKfyve lipid kinase is a protein 

kinase: downregulation of 5'-phosphoinositide product formation by 

autophosphorylation. Biochemistry, 39(51), 15980-15989. doi: 10.1021/bi001897f 

 

 

 

 



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28317277

2021


	Elucidation of VPS13 and PIKfyve Proteins Functioning in the Regulation of Eukaryotic Lipid Homeostasis
	Recommended Citation

	tmp.1636576923.pdf.Ru3Kd

