1,004 research outputs found

    A general weak nonlinearity model for LNAs

    Get PDF
    This paper presents a general weak nonlinearity model that can be used to model, analyze and describe the distortion behavior of various low noise amplifier topologies in both narrowband and wideband applications. Represented by compact closed-form expressions our model can be easily utilized by both circuit designers and LNA design automation algorithms.\ud Simulations for three LNA topologies at different operating conditions show that the model describes IM components with an error lower than 0.1% and a one order of magnitude faster response time. The model also indicates that for narrowband IM2@w1-w2 all the nonlinear capacitances can be neglected while for narrowband IM3 the nonlinear capacitances at the drainterminal can be neglected

    A 0.18 μm CMOS low noise, highly linear continuous-time seventh-order elliptic low-pass filter

    Get PDF
    This paper presents a fast procedure for the system-level evaluation of noise and distortion in continuous-time integrated filters. The presented approach is based on Volterra's series theory and matrix algebra manipulation. This procedure has been integrated in a constrained optimization routine to improve the dynamic range of the filter while keeping the area and power consumption at a minimum. The proposed approach is demonstrated with the design, from system- to physical-level, of a seventh-order low-pass continuous-time elliptic filter for a high-performance broadband power-line communication receiver. The filter shows a nominal cut-off frequency of fc = 34MHz, less than 1dB ripple in the pass-band, and a maximum stop-band rejection of 65dB. Additionally, the filter features 12dB programmable boost in the pass-band to counteract high frequency components attenuation. Taking into account its wideband transfer characteristic, the filter has been implemented using G m-C techniques. The basic building block of its structure, the transconductor, uses a source degeneration topology with local feedback for linearity improving and shows a worst-case intermodulation distortion of -70 dB for two tones close to the passband edge, separated by 1MHz, with 70mV of amplitude. The filter combines very low noise (peak root spectral noise density below 56nV/√Hz) and high linearity (more than 64dB of MTPR for a DMT signal of 0.5Vpp amplitude) properties. The filter has been designed in a 0.18μm CMOS technology and it is compliant with industrial operation conditions (-40 to 85°C temperature variation and ±5% power supply deviation). The filter occupies 13mm2 and exhibits a typical power consumption of 450 mW from a 1.8V voltage supply.Ministerio de Ciencia y Tecnología TIC2003-0235

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Méthode itérative linéaire pour le contrôle en boucle fermée des écoulements quasi-périodiques

    Get PDF
    International audienceThis work proposes a feedback-loop strategy to suppress intrinsic oscillations of resonating flows in the fully nonlinear regime. The frequency response of the flow is obtained from the resolvent operator about the mean flow, extending the framework initially introduced by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to study receptivity mechanisms in turbulent flows. Using this linear time-invariant model of the nonlinear flow, modern control methods such as structured H∞-synthesis can be used to design a controller. The approach is successful in damping self-sustained oscillations associated with specific eigenmodes of the mean-flow spectrum. Despite excellent performance, the linear controller is however unable to completely suppress flow oscillations, and the controlled flow is effectively attracted towards a new dynamical equilibrium. This new attractor is characterized by a different mean flow, which can in turn be used to design a second controller. The method can then be iterated on subsequent mean flows, until the coupled system eventually converges to the base flow. An intuitive parallel can be drawn with Newton’s iteration: at each step, a linearized model of the flow response to a perturbation of the input is sought, and a new linear controller is designed, aiming at further reducing the fluctuations. The method is illustrated on the well-known case of two-dimensional incompressible open-cavity flow at Reynolds number Re=7500, where the fully developed flow is initially quasiperiodic (2-torus state). The base flow is reached after five iterations. The present work demonstrates that nonlinear control problems may be solved without resorting to nonlinear reduced-order models. It also shows that physically relevant linear models can be systematically derived for nonlinear flows, without resorting to black-box identification from input–output data; the key ingredient being frequency-domain models based on the linearized Navier–Stokes equations about the mean flow. Applicability to amplifier flows and turbulent dynamics has, however, yet to be investigated

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature
    corecore