186 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Video Compression from the Hardware Perspective

    Get PDF

    CAL Dataflow Components for an MPEG RVC AVC Baseline Encoder

    Get PDF
    In this paper, an efficient H.264/AVC baseline encoder, described in RVC-CAL actor language, is introduced. The main aim of the paper is twofold: a) to demonstrate the flexibility and ease that is provided by RVC-CAL, which allows for efficient implementation of the presented encoder, and b) to shed light on the advantages that can be brought into the RVC framework by including such encoding tools. The main modules of the designed encoder include: Inter Frame Prediction (Motion Estimation/Compensation), Intra Frame Prediction, and Entropy Coding. Descriptions of the designed modules, accompanied with RVC-CAL design issues are provided. A comparison between different development approaches is also provided. The obtained results show that specifying complex video codecs (e.g. H.264/AVC encoder) using RVC-CAL followed by automatic translation into HDL, which is achievable by the tools that support the standard, results in more efficient HW implementation compared to the traditional HW design flow. A discussion that explains the reasons behind such results concludes the pape

    Complexity adaptation in video encoders for power limited platforms

    Get PDF
    With the emergence of video services on power limited platforms, it is necessary to consider both performance-centric and constraint-centric signal processing techniques. Traditionally, video applications have a bandwidth or computational resources constraint or both. The recent H.264/AVC video compression standard offers significantly improved efficiency and flexibility compared to previous standards, which leads to less emphasis on bandwidth. However, its high computational complexity is a problem for codecs running on power limited plat- forms. Therefore, a technique that integrates both complexity and bandwidth issues in a single framework should be considered. In this thesis we investigate complexity adaptation of a video coder which focuses on managing computational complexity and provides significant complexity savings when applied to recent standards. It consists of three sub functions specially designed for reducing complexity and a framework for using these sub functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip macroblock detection, and complexity adaptation framework. Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Transform (WHT) is presented. The key idea is to segment regions of an image as edges or flat regions based on the fact that prediction errors are mainly affected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh Boundary Search (FWBS) is presented on the VBS partitioned images. Its results outperform other commonly used fast algorithms. Thirdly, a skip macroblock detection algorithm is proposed for use prior to motion estimation by estimating the Discrete Cosine Transform (DCT) coefficients after quantisation. A new orthogonal transform called the S-transform is presented for predicting Integer DCT coefficients from Walsh Hadamard Transform coefficients. Complexity saving is achieved by deciding which macroblocks need to be processed and which can be skipped without processing. Simulation results show that the proposed algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. Finally, a complexity adaptation framework which combines all three techniques mentioned above is proposed for maximizing the perceptual quality of coded video on a complexity constrained platform

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ

    VHDL Modeling of an H.264/AVC Video Decoder

    Get PDF
    Transmission and storage of video data has necessitated the development of video com pression techniques. One of today\u27s most widely used video compression techniques is the MPEG-2 standard, which is over ten years old. A task force sponsored by the same groups that developed MPEG-2 has recently finished defining a new standard that is meant to replace MPEG-2 for future video compression applications. This standard, H.264/AVC, uses significantly improved compression techniques. It is capable of providing similar pic ture quality at bit rates of 30-70% less than MPEG-2, depending on the particular video sequence and application [20]. This thesis developed a complete VHDL behavioral model of a video decoder imple menting the Baseline Profile of the H.264/AVC standard. The decoder was verified using a testing environment for comparison with reference software results. Development of a synthesizable hardware description was also shown for two components of the video de coder: the transform unit and the deblocking filter. This demonstrated how a complete video decoder could be developed one module at a time with individual module verifica tion. Analysis was also done to estimate the performance and hardware requirements for a complete implementation on an FPGA device

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci
    corecore