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H.264 delivers the streaming video in high quality for various applications. The coding tools involved in H.264, however, make
its video codec implementation very complicated, raising the need for algorithm optimization, and hardware acceleration. In
this paper, a novel adaptive crossed quarter polar pattern search (ACQPPS) algorithm is proposed to realize an enhanced inter
prediction for H.264. Moreover, an efficient prototyping system-on-platform architecture is also presented, which can be utilized
for a realization of H.264 baseline profile encoder with the support of integrated ACQPPS motion estimator and related video
IP accelerators. The implementation results show that ACQPPS motion estimator can achieve very high estimated image quality
comparable to that from the full search method, in terms of peak signal-to-noise ratio (PSNR), while keeping the complexity at an
extremely low level. With the integrated IP accelerators and optimized techniques, the proposed system-on-platform architecture
sufficiently supports the H.264 real-time encoding with the low cost.
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1. Introduction

Digital video processing technology is to improve the coding
validity and efficiency for digital video images [1]. It involves
the video standards and relevant realizations. With the joint
efforts of ITU-T VCEG and ISO/IEC MPEG, H.264/AVC
(MPEG-4 Part 10) has been built up as the most advanced
standard so far in the world, targeting to achieve very high
data compression. H.264 is able to provide a good video
quality at bit rates which are substantially lower than what
previous standards need [2–4]. It can be applied to a wide
variety of applications with various bit rates and video
streaming resolutions, intending to cover practically almost
all the aspects of audio and video coding processing within
its framework [5–7].

H.264 includes many profiles, levels and feature defi-
nitions. There are seven sets of capabilities, referred to as
profiles, targeting specific classes of applications: Baseline
Profile (BP) for low-cost applications with limited comput-
ing resources, which is widely used in videoconferencing and
mobile communications; Main Profile (MP) for broadcasting

and storage applications; Extended Profile (XP) for stream-
ing video with relatively high compression capability; High
Profile (HiP) for high-definition television applications;
High 10 Profile (Hi10P) going beyond present mainstream
consumer product capabilities; High 4 : 4 : 2 Profile (Hi422P)
targeting professional applications using interlaced video;
High 4 : 4 : 4 Profile (Hi444P) supporting up to 12 bits per
sample and efficient lossless region coding and an integer
residual color transform for RGB video. The levels in H.264
are defined as Level 1 to 5, each of which is for specific bit,
frame and macroblock (MB) rates to be realized in different
profiles.

One of the primary issues with H.264 video applications
lies on how to realize the profiles, levels, tools, and algorithms
featured by H.264/AVC draft. Thanks to the rapid develop-
ment of FPGA [8] techniques and embedded software system
design and verification tools, the designers can utilize the
hardware-software (HW/SW) codesign environment which
is based on the reconfigurable and programmable FPGA
infrastructure as a dedicated solution for H.264 video
applications [9, 10].
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The motion estimation (ME) scheme has a vital impact
on H.264 video streaming applications, and is the main
function of a video encoder to achieve image compression.
The block-matching algorithm (BMA) is an important and
widely used technique to estimate the motions of regular
block, and generate the motion vector (MV), which is
the critical information for temporal redundancy reduction
in video encoding. Because of its simplicity and coding
efficiency, BMA has been adopted as the standard motion
estimation method in a variety of video standards, such as the
MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and H.264. Fast
and accurate block-based search techniques and hardware
acceleration are highly demanded to reduce the coding delay
and maintain satisfied estimated video image quality. A novel
adaptive crossed quarter polar pattern search (ACQPPS)
algorithm and its hardware architecture are proposed in
this paper to provide an advanced motion estimation search
method with the high performance and low computational
complexity.

Moreover, an integrated IP accelerated codesign system,
which is constructed with an efficient hardware architecture,
is also proposed. With integrations of H.264 IP accelerators
into the system framework, a complete system-on-platform
solution can be set up to realize the H.264 video encoding
system. Through the codevelopment and co-verification for
system-on-platform, the architecture and IP cores developed
by designers can be easily reused and therefore transplanted
from one platform to others without significant modification
[11]. These factors make a system-on-platform solution
outperform a pure software solution and more flexible than
a fully dedicated hardware implementation for H.264 video
codec realizations.

The rest of paper is organized as follows: in the next
Section 2, H.264 baseline profile and its applications are
briefly analyzed. In Section 3, the ACQPPS algorithm is
proposed in details, while Section 4 describes the hardware
architecture for the proposed ACQPPS motion estimator.
Furthermore, a hardware architecture and host interface
features of the proposed system-on-platform solution is
elaborated in Section 5, and the related techniques for system
optimizations are illustrated in Section 6. The complete
experimental results are generated and analyzed in Section 7.
The Section 8 concludes the paper.

2. H.264 Baseline Profile

2.1. General Overview. The profiles and levels specify the
conformance points, which are designed to facilitate the
interoperability between a variety of video applications of
the H.264 standard that has similar functional requirements.
A profile defines a set of coding tools or algorithms that
can be utilized in generating a compliant bitstream, whereas
a level places constraints on certain key parameters of the
bitstream.

H.264 baseline profile was designed to minimize the
computational complexity and provide high robustness and
flexibility for utilization over a broad range of network
environment and conditions. It is typically regarded as

the simplest one in the standard, which includes all the
H.264 tools with the exception of the following tools: B-
slices, weighted prediction, field (interlaced) coding, pic-
ture/macroblock adaptive switching between the frame and
field coding (MB-AFF), context adaptive binary arithmetic
coding (CABAC), SP/SI slices and slice data partition-
ing. This profile normally targets the video applications
with low computational complexity and low delay require-
ments.

For example, in the field of mobile communications,
H.264 baseline profile will play an important role because
the compression efficiency is doubled in comparison with
the coding schemes currently specified by the H.263 Baseline,
H.263+ and MPEG-4 Simple Profile.

2.2. Baseline Profile Bitstream. For mobile and videocon-
ferencing applications, H.264 BP, MPEG-4 Visual Simple
Profile (VSP), H.263 BP, and H.263 Conversational High
Compression (CHC) are usually considered. Practically,
H.264 outperforms all other considered encoders for video
streaming encoding. H.264 BP allows an average bit rate
saving of about 40% compared to H.263 BP, 29% to MPEG-4
VSP and 27% to H.263 CHC, respectively [12].

2.3. Hardware Codec Complexity. The implementation com-
plexity of any video coding standard heavily depends on
the characteristics of the platform, for example, FPGA, DSP,
ASIC, SoC, on which it is mapped. The basic analysis with
respect to the H.264 BP hardware codec implementation
complexity can be found in [13, 14].

In general, the main bottleneck of H.264 video encoding
is a combination of multiple reference frames and large
search ranges.

Moreover, the H.264 video codec complexity ratio is in
the order of 10 for basic configurations and can grow up to
the 2 orders of magnitude for complex ones [15].

3. The Proposed ACQPPS Algorithm

3.1. Overview of the ME Methods. For motion estimation,
the full search algorithm (FS) of BMA exhaustively checks all
possible block pixels within the search window to find out the
best matching block with minimal matching error (MME).
It can usually produce a globally optimal solution to the
motion estimation, but demand a very high computational
complexity.

To reduce the required operations, many fast algorithms
have been developed, including the 2D logarithmic search
(LOGS) [16], the three-step search (TSS) [17], the new three-
step search (NTSS) [18], the novel four-step search (NFSS)
[19], the block-based gradient descent search (BBGDS)
[20], the diamond search (DS) [21], the hexagonal search
(HEX) [22], the unrestricted center-biased diamond search
(UCBDS) [23], and so forth. The basic idea behind these
multistep fast search algorithms is to check a few of block
points at current step, and restrict the search in next step to
the neighboring of points that minimizes the block distortion
measure.
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These algorithms, however, assume that the error surface
of the minimum absolute difference increases monotonically
as the search position moves away from the global minimum
on the error surface [16]. This assumption would be
reasonable in a small region near the global minimum,
but not absolutely true for real video signals. To avoid
trapped in undesirable local minimum, some adaptive search
algorithms have been devised intending to achieve the global
optimum or sub-optimum with adaptive search patterns.
One of those algorithms is the adaptive rood pattern search
(ARPS) [24].

Recently, a few of valuable algorithms have been devel-
oped to further improve the search performance, such
as the Enhanced Predictive Zonal Search (EPZS) [25,
26] and Unsymmetrical-Cross Multi-Hexagon-grid Search
(UMHexagonS) [27], which were even adopted by H.264 as
the standard motion estimation algorithms. These schemes,
however, are not especially suitable for the hardware imple-
mentation, as the search principle of these methods is
complicated. If the hardware architecture is required for the
realization of H.264 encoder, these algorithms are usually not
regarded as the efficient solution.

To improve the search performance and reduce the com-
putational complexity as well, an efficient and fast method,
adaptive crossed quarter polar pattern search algorithm
(ACQPPS), is therefore proposed in this paper.

3.2. AlgorithmDesign Considerations. It is known that a small
search pattern with compactly spaced search points (SP)
is more appropriate than a large search pattern containing
sparsely spaced search points in detecting small motions
[24]. On the contrary, the large search pattern has the
advantage of quickly detecting large motions to avoid being
trapped into local minimum along the search path and leads
to unfavorable estimation, an issue that the small search
pattern encounters. It is desirable to use different search
patterns, that is, adaptive search patterns, in view of a variety
of the estimated motion behaviors.

Three main aspects are considered to improve or speed
up the matching procedure for adaptive search methods: (1)
type of the motion prediction; (2) selection of the search
pattern shape and direction; (3) adaptive length of search
pattern. The first two aspects can reduce the number of
search points, and the last one is to give more accurate
searching result with a large motion.

For the proposed ACQPPS algorithm under H.264
encoding framework, a median type of the predicted
motion vector, that is, median vector predictor (MVP)
[28], is produced for determining the initial search range.
The shape and direction of the search pattern is adap-
tively selected. The length (radius) of the search arm is
adjusted to improve the search. Two main search steps
are involved in the motion search: (1) initial search stage;
(2) refined search stage. In the initial search stage, some
initial search points are selected to obtain an initial MME
point. For the refined search, a unit-sized square pattern
is applied iteratively to obtain the final best motion vec-
tor.

3.3. Shape of the Search Pattern. To determine the following
search step according to whether the current best matching
point is positioned at the center of search range, a new search
pattern is devised to detect the potentially optimal search
points in the initial search stage. The basic concept is to pick
up some initial points along with the polar (circular) search
pattern. The center of the search circles is the current block
position.

Under the assumption that the matching error surface
has a property of monotonic increasing or decreasing,
however, some redundant checking points may exist in the
initial search stage. It is obvious that some redundant points
are not necessary to be examined under the assumption of
unimodal distortion surface. To reduce the number of initial
checking points and keep the probability of getting optimal
matching points as high as possible, a fractional or quarter
polar search pattern is used accordingly.

Moreover, it is known that the accuracy of motion
predictor is very important to the adaptive pattern search.
To improve the performance of adaptive search, extra related
motion predictors can be used other than the initial MVP.
The extra motion predictors utilized by ACQPPS algorithm
only require an extension and a contraction of the initial
MVP that can be easily obtained. Therefore, at the crossing
of quarter circle and motion predictors, the search method
is equipped with the adaptive crossed quarter polar patterns
for efficient motion search.

3.4. Adaptive Directions of the Search Pattern. The search
direction, which is defined by the direction of a quarter circle
contained in the pattern, comes from the MVP. Figure 1
shows the possible patterns designed, and Figure 2 depicts
how to determine the direction of a search pattern. The
patterns employ the directional information of a motion
predictor to increase the possibility to get the best MME
point for the refined search. To determine an adaptive
direction of the search pattern, certain rules are obeyed.

(3.4.1) If the predicted MV (motion predictor) = 0, set up an
initial square search pattern with a pattern size = 1,
around the search center, as shown in Figure 2(a).

(3.4.2) If the predicted MV falls onto a coordinate axis,
that is, PredMVy = 0 or PredMVx = 0, the pattern
direction is chosen to be E, N, W, or S, as shown in
Figures 1(a), 1(c), 1(e), 1(g). In this case, the point
at the initial motion predictor is overlapped with an
initial search point which is on the N, W, E, or S
coordinate axis.

(3.4.3) If the predicted MV does not fall onto any coor-
dinate axis, and Max{|PredMVy|, |PredMVx|} >
2∗Min{|PredMVy|, |PredMVx|}, the pattern direc-
tion is chosen to be E, N, W, or S, as shown in
Figure 2(b).

(3.4.4) If the predicted MV does not fall onto any coor-
dinate axis, and Max{|PredMVy|, |PredMVx|} ≤
2∗Min{|PredMVy|, |PredMVx|}, the pattern direc-
tion is chosen to be NE, NW, SW, or SE, as shown in
Figure 2(c).
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Figure 1: Possible adaptive search patterns designed.

3.5. Size of the Search Pattern. To simplify the selection of
search pattern size, the horizontal and vertical components
of motion predictor is still utilized. The size of search pattern,
that is, the radius of a designed quarter polar search pattern,
is simply defined as

R = Max
{∣∣PredMVy

∣
∣, |PredMVx|}, (1)

where R is the radius of quarter circle, PredMVy and
PredMVx the vertical and horizontal components of the
motion predictor, respectively.

3.6. Initial Search Points. After the direction and size of
a search pattern are decided, some search points will
be selected in the initial search stage. Each search point
represents a block to be checked with intensity matching. The
initial search points include (when MVP is not zero):

(1) the predicted motion vector point;

(2) the center point of search pattern, which represents the
candidate block in the current frame;

(3) some points on the directional axis;
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Figure 2: (a) Square pattern size = 1, (b) N/W/E/S search pattern
selected, (c) NW/NE/SW/SE search pattern selected.

Table 1: A look-up table for the definition of vertical and horizontal
components of initial search points on NW/NE/SW/SE axis.

R |SPx| |SPy| R |SPx| |SPy|
0 0 0 6 4 4

1 1 1 7 5 5

2 2 2 8 6 6

3 2 2 9 6 6

4 3 3 10 7 7

5 4 4 — — —

(4) the extension predicted motion vector point (the point
with prolonged length of motion predictor), and the
contraction predicted motion vector point (the point
with contracted length of motion predictor)

Normally, if no overlapping exists, there will be totally
seven search points selected in the initial search stage, in
order to get a point with the MME, which can be used as
a basis for the refined search stage thereafter.

If a search point is on the axis of NW, NE, SW, or SE,
the corresponding decomposed coordinates of that point will
satisfy,

R =
√

(SPx)2 +
(

SPy

)2
, (2)

where SPx and SPy are the vertical and horizontal compo-
nents of a search point on the axis of NW, NE, SW, or SE.
Because |SPx| is equal to |SPy| in this case, then

R =
√

2 · |SPx| =
√

2 ·
∣
∣
∣SPy

∣
∣
∣. (3)

Obviously, neither |SPx| nor |SPy| is an integer, as R
is always an integer-based radius for block processing. To
simplify and reduce the computational complexity of a
search point definition on the axis of NW, NE, SW or SE,
a look-up table (LUT) is employed, as listed in Table 1.
The values of SPx and SPy are predefined according to the
radius R, and now they are integers. Figure 3 illustrates some
examples of defined initial search points with the look-up
table.

When the radius R > 20, the value of |SPx| and |SPy| can
be determined by

|SPx| =
∣∣
∣SPy

∣∣
∣ = Round

(
R√
2

)
. (4)

There are two initial search points related to the extended
motion predictors. One is with a prolonged length of motion
predictor (extension version), whereas the other is with a
reduced length of motion predictor (contraction version).
Two scaled factors are adaptively defined according to the
radius R, for the lengths of those two initial search points
can be easily derived from the original motion predictor, as
shown in Table 2. The scaled factors are chosen so that the
initial search points related to the extension and contraction
of the motion predictor can be distributed reasonably around
the motion predictor point to obtain the better motion
predictor points.
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Figure 3: (a) An example of initial search points defined for E pattern using look-up table; (b) an example of initial search points defined
for NE pattern using look-up table.

Table 2: Definition of scaled factors for initial search points related
to motion predictor.

R
Scaled factor for
extension (SFE)

R
Scaled factor for

contraction (SFC)

0 ∼ 2 3 0 ∼ 10 0.5

3 ∼ 5 2 >10 0.75

6 ∼ 10 1.5

>10 1.25

Therefore, the initial search points related to the motion
predictor can be identified as

EMVP = SFE ·MVP, (5)

CMVP = SFC ·MVP, (6)

where MVP is a point representing the median vector predic-
tor. SFE and SFC are the scaled factors for the extension and
contraction, respectively. EMVP and CMVP are the initial
search points with the prolonged and contracted lengths of
predicted motion vector, respectively. If the horizontal or
vertical component of EMVP and CMVP is not an integer
after the scaling, the component value will be truncated to
the integer for video block processing.

3.7. Algorithm Procedure

Step 1. Get a predicted motion vector (MVP) for the
candidate block in current frame for the initial search stage.

Step 2. Find the adaptive direction of a search pattern by
rules (3.4.1)–(3.4.4), determine the pattern size “R” with
the (1), choose initial SPs in the reference frame along the
quarter circle and predicted MV using look-up table, (5) and
(6).

Step 3. Check the initial search points with block pixel
intensity measurement, and get an MME point which has a
minimum SAD as the search center for the next search stage.

Step 4. Refine local search by applying unit-sized square
pattern to the MME point (search center), and check its
neighboring points with block pixel intensity measurement.
If after search, the MME point is still the search center, then
stop searching and obtain the final motion vector for the
candidate block corresponding to the final best matching
point identified in this step. Otherwise, set up the new MME
point as the search center, and apply square pattern search to
that MME point again, until the stop condition is satisfied.

3.8. Algorithm Complexity. As the ACQPPS is a predicted
and adaptive multistep algorithm for motion search, the
algorithm computational complexity exclusively depends on
the object motions contained in the video sequences and
scenarios for estimation processing. The main overhead of
ACQPPS algorithm lies in the block SAD computations.
Some other algorithm overhead, such as the selection of
adaptive search pattern direction, the determination of
search arm and initial search points, are merely consumed
by a combination of if-condition judgments, and thus can be
even ignored when compared with block SAD calculations.

If the large, quick, and complex object motions are
included in video sequences, the number of search points
(NSP) will be reasonably increased. On the contrary, if the
small, slow and simple object motions are shown in the
sequences, it only requires the ACQPPS algorithm a few
of processing steps to finish the motion search, that is, the
number of search points is correspondingly reduced.

Unlike the ME algorithms with fixed search ranges,
for example, the full search algorithm, it is impractical
to precisely identify the number of computational steps
for ACQPPS. On an average, however, an approximation
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equation can be utilized to represent the computational
complexity for ACQPPS method. The worst case of motion
search for a video sequence is to use the 4 × 4 block size,
if the fixed block size is employed. In this case, the number
of search points for ACQPPS motion estimation is usually
around 12 ∼ 16, according to the practical motion search
results. Therefore, the algorithm complexity can be simply
identified as, in terms of image size and frame rate,

C ≈ 16× Block SAD computations

×Number of blocks in a video frame× Frame rate,
(7)

where the block size is 4 × 4 for the worst case of
computations. For a standard software implementation, it
actually requires 16 subtractions and 15 additions, that is, 31
arithmetic operations, for each 4×4 block SAD calculations.
Accordingly, the complexity of ACQPPS is approximately
14 and 60 times less than the one required by full search
algorithm with the [−7, +7] and [−15, +15] search range,
respectively. In practice, the ACQPPS complexity is roughly
at the same level as the simple DS algorithm.

4. Hardware Architecture of
ACQPPSMotion Estimator

The ACQPPS is designed with low complexity, which
is appropriate to be implemented based on a hardware
architecture. The hardware architecture takes advantage
of the pipelining and parallel operations of the adaptive
search patterns, and utilizes a fully pipelined multilevel
SAD calculator to improve the computational efficiency and,
therefore, reduce the clock frequency reasonably.

As mentioned above, the computation of motion vector
for a smallest block shape, that is, 4× 4 block, is the worst
case for calculation. The worst case refers to the percentage
usage of the memory bandwidth. It is necessary that the
computational efficiency be as high as possible in the worst

case. All of the other block shapes can be constructed from
4× 4 blocks so that the computation of distortion in 4× 4
partial solutions and result additions can solve all of the other
block shapes.

4.1. ACQPPS Hardware Architecture. An architecture for the
ACQPPS motion estimator is shown in Figure 4. There are
two main stages for the motion vector search, including
the initial and refined search, indicated by the hardware
semaphore. In the initial search stage, the architecture utilizes
the previously calculated motion vectors to produce an
MVP for the current block. Some initial search points are
generated utilizing the MVP and LUT to define the search
range of adaptive patterns. After an MME point is found
in this stage, the search refinement will take into effect
applying square pattern around MME points iteratively to
obtain a final best MME point, which indicates the final
best MV for the current block. For motion estimation, the
reference frames are stored in SRAM or DRAM, while the
current frame and produced MVs are stored in dual-port
memory (BRAM). Meanwhile, The LUT also uses the BRAM
to facilitate the generation of initial search points.

Figure 5 illustrates a data search flow of the ACQPPS
hardware IP with regard to each block motion search. The
initial search processing unit (ISPU) is used to generate the
initial search points and then perform the initial motion
search. To generate the initial search points, previously
calculated MVs and an LUT are employed. The LUT contains
the vertical and horizontal components of the initial search
points defined in Table 1. Both produced MVs and LUT
values are stored in BRAM, for they can be accessed through
two independent data ports in parallel to facilitate the
processing. When the initial search stage is finished, the
refined search processing unit (RSPU) is enabled to work. It
employs the square pattern around the MME point derived
in initial search stage to refine the local motion search. The
local refined search steps might be iteratively performed a
few of times, until the MME point is still at the search center
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Figure 5: (a) A data search flow for the individual block motion estimation when MVP is not zero; (b) a data search flow for the individual
block motion estimation when MVP is zero. Note The clock cycles for each task are not on the exact timing scale, only for illustration
purpose.

after certain refined steps. The search data flow of ACQPPS
IP architecture conforms to the algorithm steps defined in
Section 3.7, with further improvement and optimization of
hardware parallel and pipelining features.

4.2. Fully Pipelined SAD Calculator. As main ME operations
are related to SAD calculations that have a critical impact
on the performance of hardware-based motion estimator, a
fully pipelined SAD calculator is designed to speed up the
SAD computations. Figure 6 displays a basic architecture of
the pipelined SAD calculator, with the processing support

of variable block sizes. According to the VBS indicated
by block shape and enable signals, SAD calculator can
employ appropriate parallel and pipelining adder opera-
tions to generate SAD result for a searched block. With
the parallel calculations of basic processing unit (BPU),
it can take 4 clock cycles to finish the 4 × 4 block
SAD computations (BPU for 4 × 4 block SAD), and 8
clock cycles to produce a final SAD result for a 16 × 16
block.

To support the VBS feature, different block shapes might
be processed based on the prototype of the BPU. In such case,
a 16 × 16 macroblock is divided into 16 basic 4 × 4 blocks.
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Figure 6: An architecture for pipelined multilevel SAD calculator.
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- -

4× 4 {0}/{1}/ . . . /{14}/{15} - - -

Figure 7: Organization of Variable Block Size based on Basic 4× 4 Blocks.

Other 6 block sizes in H.264, that is, 16× 16, 16× 8, 8× 16,
8× 8, 8× 4, and 4× 8, can be organized by the combination
of basic 4× 4 blocks, shown in Figure 7, which also describes
computing stages for each variable-sized block constructed
on the basic 4× 4 blocks to obtain VBS SAD results.

For instance, for a largest 16 × 16 block, it will require 4
stages of the parallel data loadings from the register arrays to
the SAD calculator to obtain a final block SAD result. In this
case, the schedule of data loading will be {0, 1, 2, 3} → {4,
5, 6, 7} → {8, 9, 10, 11} → {12, 13, 14, 15}, where “{}”
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indicates each parallel pixel data input with the current and
reference block data.

4.3. Optimized Memory Structure. When a square pattern
is used to refine the MV search results, the mapping of
the memory architecture is important to speed up the
performance. In our design, the memory architecture will be
mapped onto a 2D register space for the refined stage. The
maximum size of this space is 18 × 18 with pixel bit depth,
that is, the mapped register memory can accommodate a
largest 16× 16 macroblock plus the edge redundancy for the
rotated data shift and storage operations.

A simple combination of parallel register shifts and
related data fetches from SRAM can reduce the memory
bandwidth, and facilitate the refinement processing, as
many of the pixel data for searching in this stage remain
unchanged. For example, 87.89% and 93.75% of the pixel
data will stay unchanged, when the (1,−1) and (1,0) offset
searches for the 16× 16 block are executed, respectively.

4.4. SAD Comparator. The SAD comparator is utilized to
compare the previously generated block SAD results to
obtain a final estimated MV which corresponds to the best
MME point that has the minimum SAD with the lowest
block pixel intensity. To select and compare the proper
block SAD results as shown in Figure 6, the signals of
different block shapes and computing stages are employed
to determine the appropriate mode of minimum SAD to be
utilized.

For example, if the 16 × 16 block size is used for motion
estimation, the 16 × 16 block data will be loaded into the
BPU for SAD calculations. Each 16 × 16 block requires 4
computing stages to obtain a final block SAD result. In
this case, the result mode of “16 × 8 or 16 × 16 SAD”
will be first selected. Meanwhile, the signal of computing
stages is also used to indicate the valid input to the SAD
comparator for retrieving proper SAD results from BPU, and
thus obtain the MME point with a minimum SAD for this
block size.

The best MME point position obtained by SAD com-
parator is further employed to produce the best matched
reference block data and residual data which are important
to other video encoding functions, such as mathematical
transforms and motion compensation, and so forth.

5. Virtual Socket System-on-Platform
Architecture

The bitstream and hardware complexity analysis derived
in Section 2 helps guiding both the architecture design
for prototyping IP accelerated system and the optimized
implementation of an H.264 BP encoding system based on
that architecture.

5.1. The Proposed System-On-Platform Architecture. A vari-
ety of options, switches, and modes required in video
bitstream actually results in the increasing interactions
between different video tasks or function-specific IP blocks.

Consequently, the functional oriented and fully dedicated
architectures will become inefficient, if high levels of the
flexibility are not provided in the individual IP modules.
To make the architectures remain efficient, the hardware
blocks need optimization to deal with the increasing com-
plexity for visual objects processing. Besides, the hardware
must keep flexible enough to manage and allocate various
resources, memories, computational video IP accelerators for
different encoding tasks. In view of that the programmable
solutions will be preferable for video codec applications
with programmable and reconfigurable processing cores,
the heterogeneous functionality and the algorithms can be
executed on the same hardware platform, and upgraded
flexibly by software manipulations.

To accelerate the performance on processing cores,
parallelization will be demanded. The parallelization can
take place at different levels, such as task, data, and
instruction. Furthermore, the specific video processing
algorithms performed by IP accelerators or processing
cores can improve the execution efficiency significantly.
Therefore, the requirements for H.264 video applications
are so demanding that multiple acceleration techniques
may be combined to meet the real-time conditions. The
programmable, reconfigurable, heterogeneous processors are
the preferable choice for an implementation of H.264 BP
video encoder. Architectures with the support for concurrent
performance and hardware video IP accelerators are well
applicable for achieving the real-time requirement imposed
by the H.264 standard.

Figure 8 shows the proposed extensible system-on-
platform architecture. The architecture consists of a pro-
grammable and reconfigurable processing core which is built
upon FPGA, and two extensible cores with RISC and DSP.
The RISC can take charge of general sequences control and
IP integration information, give mode selections for video
coding, and configure basic operations, while DSP can be
utilized to process the particular or flexible computational
tasks.

The processing cores are connected through the het-
erogeneous integrated onplatform memory spaces for the
exchange of control information. The PCI/PCMCIA stan-
dard bus provides a data transfer solution for the host
connected to the platform framework, reconfigures and
controls the platform in a flexible way. Desirable video IP
accelerators will be integrated in the system platform archi-
tecture to improve the encoding performance for H.264 BP
video applications.

5.2. Virtual Socket Management. The concept of virtual
socket is thus introduced to the proposed system-on-
platform architecture. Virtual socket is a solution for the
host-platform interface, which can map a virtual memory
space from the host environment to the physical storage
on the architecture. It is an efficient mechanism for the
management of virtual memory interface and heterogeneous
memory spaces on the system framework. It enables a
truly integrated, platform independent environment for the
hardware-software codevelopment.
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Figure 8: The proposed extensible system-on-platform hardware architecture.

Through the virtual socket interface, a few of virtual
socket application programming interface (API) function
calls can be employed to make the generic hardware
functional IP accelerators automatically map the virtual
memory addresses from the host system to different memory
spaces on the hardware platform. Therefore, with the
efficient virtual socket memory organization, the hardware
abstraction layer will provide the system architecture with
simplified memory access, interrupt based control and
shielded interactions between the platform framework and
the host system. Through the integration of IP accelerators
to the hardware architecture, the system performance will be
improved significantly.

The codesign virtual socket host-platform interface
management and system-on-platform hardware architecture
actually provide a useful embedded system approach for
the realization of advanced and complicated H.264 video
encoding system. Hence, the IP accelerators on FPGA,
together with the extensible DSP and RISC, construct an
efficient programmable embedded solution to perform the
dedicated and real-time video processing tasks. Moreover,
due to the various video configurations for H.264 encoding,
the physically implemented virtual socket interface as well
as APIs can easily enable the encoder configurations, data
manipulations and communications between the host com-
puter system and hardware architecture, in return facilitate
the system development for H.264 video encoders.

5.3. Integration of IP Accelerators. The IP accelerator illus-
trated here can be any H.264 compliant hardware block
which is defined to handle a computationally extensive
task for video applications without a specific design for
interaction controls between IP and the host. For encoding,
the basic modules to be integrated include Motion Estimator,
Discrete Cosine Transform and Quantization (DCT/Q),
Deblocking Filter and Context Adaptive Variable Length
Coding (CAVLC), while Inverse Discrete Cosine Transform
and Inverse Quantization (IDCT/Q−1), and Motion Com-

pensation (MC) for decoding. An IP memory interface is
provided by the architecture to achieve the integration.
All IP modules are connected to the IP memory interface,
which provides accelerators a straight way to exchange data
between the host and memory spaces. Interrupt signals can
be generated by accelerators when demanded. Moreover, to
control the concurrent performance of accelerators, an IP
bus arbitrator is designed and integrated in the IP memory
interface, for the interface controller to allocate appropriate
memory operation time for each IP module, and avoid the
memory access conflicts possibly caused by heterogeneous IP
operations.

IP interface signals are configured to connect the IP
modules to the IP memory interface. It is likely that each
accelerator has its own interface requirement for interaction
between the platform and IP modules. To make the inte-
gration easy, it is required that certain common interface
signals be defined to link IP blocks and memory interface
together. With the IP interface signals, the accelerators
will focus on their own computational tasks, and thus the
architecture efficiency can be improved. Practically, the IP
modules can be flexibly reused, extended, and migrated to
other independent platforms very easily. Table 3 defines the
necessary IP interface signals for the proposed architecture.
IP modules only need to issue the memory requests and
access parameters to the IP memory interface, and rest of
the tasks are taken by platform controllers. This feature
is especially useful when motion estimator is integrated in
the system.

5.4. Host Interface and API Function Calls. The host interface
provides the architecture with necessary data for video
processing. It can also control video accelerators to operate
in sequential or parallel mode, in accordance with the
H.264 video codec specifications. The hardware-software
partitioning is simplified so that the host interface can focus
on the data communication as well as flow control for video
tasks, while hardware accelerators deal with local memory



12 EURASIP Journal on Embedded Systems

Table 3: IP interface signals.

Interface signals Description

Clk, reset, start Platform signals for IP

Input Valid,
Output Valid

Valid strobes for IP memory access

Data In, Data Out Input and output memory data for IP

Memory Read IP request for memory read

Mem HW Accel, offset,
count

IP number, offset, and data count
provided by IP/Host for memory
read

Mem HW Accel1,
offset1, count1

IP Number, offset, and data count
provided by IP/Host for memory
write

Mem Read Req IP bus request for memory
Mem Write Req access

Mem Read Release Req IP bus release request for
Mem Write Release Req memory access

Mem Read Ack IP bus request grant for
Mem Write Ack memory access

Mem Read Release Ack IP bus release grant for
Mem Write Release Ack memory access

Done IP interrupt signal

accesses and video codec functions. Therefore, the software
abstraction layer covers the feature of data exchange and
video task flow control for hardware performance.

A set of related virtual socket API functions is defined
to implement the host interface features. The virtual socket
APIs are software function calls coded in C/C++, which
perform data transfers and signal interactions between the
host and hardware system-on-platform. The virtual socket
API as a software infrastructure can be utilized by a variety
of video applications to control the implementation of
hardware feature defined. With virtual socket APIs, the
manipulation of video data in local memories can be
executed conveniently. Therefore, the efficiency of hardware
and software interactions can be kept high.

6. SystemOptimizations

6.1. Memory Optimization. Due to the significant memory
access requirement for video encoding tasks, a large amount
of clock cycles is consumed by the processing core while
waiting for the data fetch from local memory spaces. To
reduce or avoid the overhead of memory data access, the
memory storage of video frame data can be organized
to utilize multiple independent memory spaces (SRAM
and DRAM) and dual-port memory (BRAM), in order to
enable the parallel and pipelined memory access during the
video encoding. This optimized requirement can practically
provide the system architecture with the multi-port memory
storage to reduce the data access bandwidth for each of the
individual memory space.

Furthermore, with the dual-port data access, DMA can
be scheduled to transfer a large amount of video frame data
through PCI bus and virtual socket interface in parallel with

the operations of encoding tasks, so that the processing core
will not suffer memory and encoding latency. In such case,
the data control flow of video encoding will be managed to
make the DMA transfer and IP accelerator operations in fully
parallel and pipelined stages.

6.2. Architecture Optimization. As the main video encoding
functions (such as ME, DCT/Q, IDCT/Q−1, MC, Deblocking
Filter, and CAVLC) can be accelerated by IP modules, the
interconnection between those video processing accelerators
has an important impact on the overall system performance.
To make the IP accelerators execute main computational
encoding routines in full parallel and pipelining mode,
the IP integration architecture has to be optimized. A
few of caches are inserted between the video IP acceler-
ators to facilitate the encoding concurrent performance.
The caches can be organized as parallel dual-port mem-
ory (BRAM) or pipelined memory (FIFO). The intercon-
nection control of data streaming between IP modules
will be defined using those caches targeting to eliminate
the extra overhead of processing routines, for encoding
functions can be operated in full parallel and pipelining
stages.

6.3. Algorithm Optimization. The complexity of encoding
algorithms can be modified when the IP accelerators are
shaping. This optimization can be taken after choosing the
most appropriate modes, options, and configurations for the
H.264 BP applications. It is known that the motion estimator
requires the major overhead for encoding computations.
To reduce the complexity of motion estimation, a very
efficient and fast ACQPPS algorithm and corresponding
hardware architecture have been realized based on the
reduction of spatio-temporal correlation redundancy. Some
other algorithm optimizations can also be executed. For
example, a simple algorithm optimization may be applied
to mathematic transform and quantization. As many blocks
tend to have minimal residual data after the motion com-
pensation, the mathematic transform and quantization for
motion-compensated blocks can be ignored, if SAD of such
blocks is lower than a prescribed threshold, in order to
facilitate the processing speed.

The application of memory, algorithm, and architecture
optimizations combined in the system can meet the major
challenges for the realization of video encoding system. The
optimization techniques can be employed to reduce the
encoding complexity and memory bandwidth, with the well-
defined parallel and pipelining data streaming control flow,
in order to implement a simplified H.264 BP encoder.

6.4. An IP Accelerated Model for Video Encoding. An opti-
mized IP accelerated model is presented in Figure 9 for a
realization of simplified H.264 BP video encoder. In this
architecture, BRAM, SRAM, and DRAM are used as multi-
port memories to facilitate video processing. The current
video frame is transferred by DMA and stored in BRAM.
Meanwhile, IP accelerators fetch the data from BRAM and
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start video encoding routines. As BRAM is a dual-port
memory, the overhead of DMA transfer is eliminated by this
dual-port cache.

This IP accelerated system model includes the mem-
ory, algorithm, and architecture optimization techniques
to enable the reduction and elimination of the overhead
resulted from the heterogeneous video encoding tasks. The

video encoding model provided in this architecture is
compliant with H.264 standard specifications.

A data control flow based on the video task partitioning
is shown in Figure 10. According to the data streaming, it is
obvious that the parallel and pipelining operations dominate
in the whole part of encoding tasks, which are able to yield
an efficient processing performance.
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7. Implementations

The proposed ACQPPS algorithm is integrated and verified
under H.264 JM Reference Software [28], while the hard-
ware architectures, including the ACQPPS motion estimator
and system-on-platform framework, are synthesized with
Synplify Pro 8.6.2, implemented using Xilinx ISE 8.1i
SP3 targeting Virtex-4 XC4VSX35FF668-10, based on the
WILDCARD-4 [29].

The system hardware architecture can sufficiently process
the QCIF/SIF/CIF video frames with the support of on-
platform design resources. The Virtex-4 XC4VSX35 contains
3,456 Kb BRAM [30], 192 XtremeDSP (DSP48) slices [31],
and 15,360 logic slices, which are equivalent to almost
1 million logic gates. Moreover, WILDCARD-4 integrates
the large-sized 8 MB SRAM and 128 MB DRAM. With the
sufficient design resources and memory support, the whole
video frames of QCIF/SIF/CIF can be directly stored in the
on-platform memories for the efficient hardware processing.

For example, if a CIF YUV (YCbCr) 4 : 2 : 0 video
sequence is encoded with the optimized hardware architec-
ture proposed in Figure 9, the total size of each current frame
is 148.5 Kb. Therefore, each of the current CIF frame can be
transferred from host system and directly stored in BRAM
for motion estimation and video encoding, whereas the
generated reference frames are stored in SRAM or DRAM.
The SRAM and DRAM can accommodate a maximum of up
to 55 and 882 CIF reference frames, respectively, which are
more than enough for the practical video encoding process.

7.1. Performance of ACQPPS Algorithm. A variety of video
sequences which contain different amount of motions, listed
in Table 4, is examined to verify the algorithm performance
for real-time encoding (30 fps). All sequences are in the for-
mat of YUV (YCbCr) 4 : 2 : 0 with luminance component to
be processed for ME. The frame size of sequences varies from
QCIF to SIF and CIF, which is the typical testing condition.
The targeted bit rate is from 64 Kbps to 2 Mbps. SAD is used
as the intensity matching criterion. The search window is
[−15, +15] for FS. EPZS uses extended diamond pattern and
PMVFAST pattern [32] for its primary and secondary refined
search stages. It also enables the window based, temporal,
and spatial memory predictors to perform advanced motion
search. UMHexagonS utilizes search range prediction and
default scale factor optimized for different image sizes.
Encoded frames are produced in a sequence of IPP, . . .PPP,
as H.264 BP encoding is employed. For reconstructed video
quality evaluation, the frame-based average peak signal-to-
noise ratio (PSNR) and number of search points (NSP)
per MB (16 × 16 pixels) are measured. Video encoding is
configured with the support of full-pel motion accuracy,
single reference frame and VBS. As VBS is a complicated
feature defined in H.264, to make easy and practical the
calculation of NSP regarding different block sizes, all search
points for variable block estimation are normalized to the
search points regarding the MB measurement, so that the
NSP results can be evaluated reasonably.

The implementation results in Tables 6 and 7 show
that the estimated image quality produced by ACQPPS, in

Table 4: Video sequences for experiment with real-time frame rate.

Sequence (bit rate Kbps) Size/frame rate No. of frames

Foreman (512) QCIF/30 fps 300

Carphone (256) QCIF/30 fps 382

News (128) QCIF/30 fps 300

Miss Am (64) QCIF/30 fps 150

Suzie (256) QCIF/30 fps 150

Highway (192) QCIF/30 fps 2000

Football (2048) SIF/30 fps 125

Table Tennis (1024) SIF/30 fps 112

Foreman (1024) CIF/30 fps 300

Mother Daughter (128) CIF/30 fps 300

Stefan (2048) CIF/30 fps 90

Highway (512) CIF/30 fps 2000

Table 5: Video sequences for experiment with low bit and frames
rates.

Sequence (bit rate Kbps) Size/frame rate No. of frames

Foreman (90) QCIF/7.5 fps 75

Carphone (56) QCIF/7.5 fps 95

News (64) QCIF/15 fps 150

Miss Am (32) QCIF/15 fps 75

Suzie (90) QCIF/15 fps 75

Highway (64) QCIF/15 fps 1000

Football (256) SIF/10 fps 40

Table Tennis (150) SIF/10 fps 35

Foreman (150) CIF/10 fps 100

Mother Daughter (64) CIF/10 fps 100

Stefan (256) CIF/10 fps 30

Highway (150) CIF/10 fps 665

terms of PSNR, is very close to that from FS, while the
number of average search points is dramatically reduced.
The PSNR difference between ACQPPS and FS is in the
range of −0.13 dB ∼ 0 dB. In most cases, PSNR degradation
of ACQPPS is less than 0.06 dB, as compared to FS. In
some cases, PSNR results of ACQPPS can be approximately
equivalent or equal to those generated from FS. When
compared with other fast search methods, that is, DS
(small pattern), UCBDS, TSS, FSS and HEX, ACQPPS
result is able to outperform their performance. ACQPPS
can always yield higher PSNR than those fast algorithms.
In this case, ACQPPS can obtain an average PSNR of
+0.56 dB higher than those algorithms with evaluated video
sequences.

Besides, ACQPPS performance is comparable to that
of the complicated and advanced EPZS and UMHexagonS
algorithms, as it can achieve an average PSNR in the range of
−0.07 dB ∼ +0.05 dB and−0.04 dB ∼ +0.08 dB, as compared
to EPZS and UMHexagonS, respectively.

In addition to the real-time video sequence encoding
with 30 fps, many other application cases, such as the mobile
scenario and videoconferencing, require video encoding
under the low bit and frame rate environment with less
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Table 6: Average PSNR performance for experiment with real-time and frame rate.

Sequence FS DS UCBDS TSS FSS HEX EPZS UMHexagonS ACQPPS

Foreman (QCIF) 38.48 38.09 37.93 38.27 38.19 37.87 38.45 38.44 38.42

Carphone (QCIF) 36.43 36.23 36.16 36.30 36.24 36.04 36.42 36.37 36.37

News (QCIF) 37.44 37.26 37.35 37.28 37.29 37.25 37.43 37.35 37.43

Miss Am (QCIF) 39.07 39.01 39.01 39.00 38.94 39.01 38.98 39.01 39.03

Suzie (QCIF) 38.65 38.46 38.47 38.59 38.54 38.45 38.61 38.58 38.60

Highway (QCIF) 38.23 37.99 38.13 38.11 38.09 38.06 38.18 38.17 38.13

Football (SIF) 31.37 31.23 31.23 31.22 31.24 31.20 31.40 31.37 31.36

Table Tennis (SIF) 33.87 33.71 33.79 33.62 33.72 33.71 33.87 33.84 33.84

Foreman (CIF) 36.30 35.91 35.83 35.72 35.70 35.69 36.27 36.24 36.25

Mother Daughter (CIF) 36.26 36.16 36.24 36.21 36.21 36.22 36.26 36.23 36.26

Stefan (CIF) 33.87 33.46 33.36 33.45 33.39 33.30 33.89 33.82 33.82

Highway (CIF) 37.96 37.70 37.83 37.79 37.77 37.76 37.89 37.87 37.83

Table 7: Average number of search points per MB for experiment with real-time and frame rate.

Sequence FS DS UCBDS TSS FSS HEX EPZS UMHexagonS ACQPPS

Foreman (QCIF) 2066.73 60.64 109.70 124.85 122.37 109.26 119.02 125.95 55.63

Carphone (QCIF) 1872.04 46.82 91.54 108.44 106.52 94.82 114.83 121.91 54.02

News (QCIF) 1719.92 33.72 74.48 88.28 90.30 81.12 81.36 79.73 41.32

Miss Am (QCIF) 1471.96 30.70 64.35 74.95 76.52 68.43 62.94 56.27 32.32

Suzie (QCIF) 1914.32 44.19 88.19 108.19 104.97 93.21 96.98 88.74 47.59

Highway (QCIF) 1791.86 40.27 85.14 101.49 100.94 90.27 85.04 84.24 46.12

Football (SIF) 2150.45 68.42 118.21 131.82 129.91 117.62 184.81 202.19 72.63

Table Tennis (SIF) 2031.72 55.66 105.56 120.09 121.27 108.79 128.36 124.95 54.25

Foreman (CIF) 1960.07 76.83 124.56 128.85 125.76 117.21 122.22 124.26 67.20

Mother Daughter (CIF) 1473.73 35.08 70.39 82.18 82.80 73.67 80.38 63.51 40.89

Stefan (CIF) 1954.21 69.32 116.72 118.23 122.37 113.50 137.59 149.80 58.91

Highway (CIF) 1730.90 45.63 90.81 104.90 103.98 93.22 78.82 75.98 47.57

than 30 fps. Accordingly, the satisfied settings for video
encoding are usually 7.5 fps ∼ 15 fps for QCIF and 10 fps ∼
15 fps for SIF/CIF with various low bit rates, for example,
90 Kbps for QCIF and 150 Kbps for SIF/CIF, to maximize
the perceived video quality [40, 41]. In order to further
evaluate the ME algorithms under low bit and frame rate
cases, video sequences are provided in Table 5, and Tables 8
and 9 generate the corresponding performance results.

The experiments show that the PSNR difference between
ACQPPS and FS is still small, which is in an acceptable
range of −0.49 dB ∼ −0.02 dB. In most cases, there is only
less than 0.2 dB PSNR discrepancy between them. Moreover,
ACQPPS still sufficiently outperforms DS, UCBDS, TSS,
FSS and HEX. For mobile scenarios, there are usually quick
and considerable motion displacements existing, under the
environment of low frame rate video encoding. In such
case, ACQPPS is particularly much better than those fast
algorithms, and a result of up to +2.42 dB for PSNR can be
achieved with the tested sequences. When compared with
EPZS and UMHexagonS, ACQPPS can yield an average
PSNR in the range of −0.36 dB ∼ +0.06 dB and −0.15 dB ∼
+0.07 dB, respectively.

Normally, ACQPPS is useful to produce a favorable
PSNR for the sequences not only with small object motions,

but also large amount of motions. In particular, if a sequence
includes large object motions or considerable amount of
motions, the advantage of ACQPPS algorithm is obvious, as
the ACQPPS can adaptively choose different shapes and sizes
for the search pattern which is applicable to the efficient large
motion search.

Such search advantage can be observed when ACQPPS is
compared with DS. It is know that DS has a simple diamond
pattern for a very low complexity based motion search. For
video sequences with slow and small motions contained,
for example, Miss Am (QCIF) and Mother Daguhter (CIF)
at 30 fps, the PSNR performance of DS and ACQPPS is
relatively close, which indicates that DS performs well in
the case of simple motion search. When the complicated
and large amount of motions included in video images,
however, DS is unable to yield good PSNR, as its motion
search will be easily trapped in undesirable local minimum.
For example, the PSNR differences between DS and ACQPPS
are 0.34 dB and 0.44 dB, when Foreman (CIF) is tested
with 1 Mbps at 30 fps and 150 Kbps at 10 fps, respectively.
Furthermore, ACQPPS can produce an average PSNR of
+0.02 dB ∼ +0.36 dB higher than DS in the case of real-time
video encoding, and +0.07 dB ∼ +1.94 dB in the case of low
bit and frame rate environment.
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Table 8: Average PSNR performance for experiment with low bit and frame rates.

Sequence FS DS UCBDS TSS FSS HEX EPZS UMHexagonS ACQPPS

Foreman (QCIF) 34.88 34.44 34.19 34.40 34.42 33.99 34.85 34.80 34.80

Carphone (QCIF) 34.12 33.99 33.96 34.02 33.99 33.84 34.08 34.04 34.06

News (QCIF) 35.28 35.21 35.20 35.11 35.20 35.19 35.25 35.21 35.24

Miss Am (QCIF) 38.36 38.23 38.33 38.25 38.23 38.31 38.28 38.27 38.34

Suzie (QCIF) 36.54 36.40 36.34 36.44 36.39 36.26 36.52 36.50 36.50

Highway (QCIF) 36.19 35.80 36.01 35.96 35.94 35.90 36.13 36.09 35.98

Football (SIF) 25.11 24.82 24.92 24.79 24.84 24.89 25.08 25.10 25.01

Table Tennis (SIF) 27.57 26.65 26.95 26.85 26.84 26.86 27.57 27.60 27.45

Foreman (CIF) 31.95 31.29 31.32 31.16 31.25 31.06 31.90 31.79 31.73

Mother Daughter (CIF) 36.07 35.84 35.95 35.90 35.92 35.91 36.07 36.02 36.05

Stefan (CIF) 27.02 24.59 24.92 24.11 24.12 24.96 26.89 26.67 26.53

Highway (CIF) 37.21 36.88 36.98 36.94 36.92 36.94 37.12 37.09 37.01

Table 9: Average number of search points per MB for experiment with low bit and frame rates.

Sequence FS DS UCBDS TSS FSS HEX EPZS UMHexagonS ACQPPS

Foreman (QCIF) 2020.51 90.20 140.01 134.64 133.92 125.12 163.63 190.38 98.94

Carphone (QCIF) 1836.04 58.40 102.76 112.65 111.28 100.74 141.56 160.32 71.81

News (QCIF) 1680.68 34.74 74.11 87.22 88.92 79.64 96.40 102.30 52.61

Miss Am (QCIF) 1406.26 32.60 64.56 75.39 75.08 67.74 68.05 63.20 44.22

Suzie (QCIF) 1823.23 52.96 94.39 110.43 106.30 95.11 115.96 112.17 64.30

Highway (QCIF) 1710.86 42.06 84.42 97.99 97.34 87.36 98.22 97.77 58.13

Football (SIF) 1914.43 80.13 132.67 123.20 125.01 119.62 192.88 246.76 92.51

Table Tennis (SIF) 1731.44 50.10 98.45 97.71 100.73 93.82 159.45 182.19 64.39

Foreman (CIF) 1789.76 91.32 140.31 124.01 124.24 120.48 154.55 170.89 88.62

Mother Daughter (CIF) 1467.56 42.21 78.32 87.45 87.75 78.42 90.40 78.14 52.36

Stefan (CIF) 1663.89 65.44 110.17 100.53 102.36 103.71 153.97 194.64 78.69

Highway (CIF) 1715.63 52.26 97.20 109.24 107.49 96.94 91.74 92.27 64.45

The number of search points for each method, which
mainly represents the algorithm complexity, is also obtained
to measure the search efficiency of different approaches.
The NSP results show that the search efficiency of ACQPPS
is higher than other algorithms, as ACQPPS can produce
very good performance, in terms of PSNR, with reasonably
possessed NSP. The NSP of ACQPPS is one of the least
among all methods.

If ACQPPS is compared with DS, it is shown that
ACQPPS has the similar NSP as DS. It is true that NSP
of ACQPPS is usually a little bit increased in comparison
with that of DS. However, the increasing of the NSP is
limited and very reasonable, and is able to in turn bring
ACQPPS much better PSNR for the encoded video quality.
Furthermore, for the video sequences containing complex
and quick object motions, for example, Foreman (CIF) and
Stefan (CIF) at 30 fps, the NSP of ACQPPS can be even less
than that of DS, which verifies that ACQPPS has a much
satisfied search efficiency than DS, due to its highly adaptive
search patterns.

In general, the complexity of ACQPPS is very low, and
with high search performance, which makes it especially
useful for the hardware architecture implementation.

7.2. Design Resources for ACQPPS Motion Estimator. As the
complexity and search points of ACQPPS have been greatly
reduced, design resources used by ACQPPS architecture
can be kept at a very low level. The main part of design
resources is for SAD calculator. Each BPU requires one 32-
bit processing element (PE) to implement SAD calculations.
Every PE has two 8-bit pixel data inputs, one from the
current block and the other from reference block. Besides,
every PE contains 16 subtractors, 8 three-input adders, 1
latch register, and does not require extra interim registers or
accumulators. As a whole, a 32 × 4 PE array will be needed
to implement the pipelined multilevel SAD calculator, which
requires totally 64 subtractors, 32 three-input adders, and 4
latch registers. Other related design resources mainly include
an 18 × 18 register array, a 16 × 16 register array, a few
of accumulators, subtractors and comparators, which are
used to generate the block SAD results, residual data and
final estimated MVs. Moreover, some other multiplexers,
registers, memory access, and data flow control logic gates
are also needed in the architecture. A comparison of design
resources between ACQPPS and other ME architectures [33–
36] is presented in Table 10. The results show that proposed
ACQPPS architecture can utilize greatly reduced design
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Table 10: Performance comparison between proposed ACQPPS and other motion estimation hardware architectures.

[33] [34] [35] [36] Proposed architecture

Type ASIC ASIC ASIC ASIC FPGA + DSP

Algorithm FS FS FS FS ACQPPS

Search range [−16, +15] [−32, +31] [−16, +15] [−16, +15] Flexible

Gate count 103 K 154 K 67 K 108 K 35 K

8× 8

Support block sizes All All 16× 16 All All

32× 32

Freq. [MHz] 66.67 100 60 100 75

Max fps of CIF 102 60 30 56 120

Min Freq. [MHz]for CIF 30 fps 19.56 50 60 54 18.75

Table 11: Design resources for system-on-platform architecture.

Target FPGA Critical Path Gates DFFs/Latches

XC4VSX35FG668-10 5 ns 279,774 3,388

Target FPGA LUTs CLB Slices Resource

XC4VSX35FG668-10 3,161 3,885 25%

Table 12: DMA performance for video sequence transfer.

QCIF 4 : 2 : 0 YCrCb DMA Write
(ms)

DMA Read
(ms)

DMA R/W
(ms)

WildCard-4 0.556 0.491 0.515

CIF 4 :2 : 0 YCrCb DMA Write
(ms)

DMA Read
(ms)

DMA R/W
(ms)

WildCard-4 2.224 1.963 2.059

resources to realize a high-performance motion estimator for
H.264 encoding.

7.3. Throughput of ACQPPS Motion Estimator. Unlike the
FS which has a fixed search range, search points and search
range of ACQPPS depend on video sequences. ACQPPS
search points will be increased, if a video sequence contains
considerable or quick motions. On the contrary, search
points can be reduced, if a video sequence includes slow or
small amount of motions.

The ME scheme with a fixed block size can be typically
applied to the throughput analysis. In such case, the worst
case will be the motion estimation using 4× 4 blocks, which
is the most time consuming in the case of fixed block size.
Hence, the overall throughput result produced by ACQPPS
architecture can be reasonably generalized and evaluated.

In general, if the clock frequency is 50 MHz and the
memory (SRAM, BRAM and DRAM) structure is organized
as DWORD (32-bit) for each data access, the ACQPPS
hardware architecture will approximately need an average
of 12.39 milliseconds for motion estimation in the worst
case of using 4 × 4 blocks. For a real-hardware architecture
implementation, the typical throughput in the worst case
of 4×4 blocks can represent the overall motion search ability
for this motion estimator architecture.

Therefore, the ACQPPS architecture can complete the
motion estimation for more than 4 CIF (352 × 288) video
sequences or equivalent 1 4 CIF (704 × 576) video sequence
at 75 MHz clock frequency within each 33.33 milliseconds
time slot (30 fps) to meet the real-time encoding requirement
for a low design cost and low bit rate implementation.
The throughput ability of ACQPPS architecture can be
compared with those of a variety of other recently developed
motion estimator hardware architectures, as illustrated in
Table 10. The comparison results show that the proposed
ACQPPS architecture can achieve higher throughput than
other hardware architectures, with the reduced operational
clock frequency. Generally, it will only require a very low
clock frequency, that is, 18.75 MHz, to generate the motion
estimation results for the CIF video sequences at 30 fps.

7.4. Realization of System Architecture. Table 11 lists the
design resources utilized by system-on-platform framework.
The implementation results indicate that the system architec-
ture uses approximately 25% of the FPGA design resources
when there is no hardware IP accelerator integrated in the
platform system. If video functions are needed, there will
be more design resources demanded, in order to integrate
and accommodate necessary IP modules. Table 12 gives
a performance result of the platform DMA video frame
transfer feature.

Different DMA burst sizes will result in different DMA
data transfer rates. In our case, the maximum DMA burst size
is defined to accommodate a whole CIF 4 : 2 : 0 video frame,
that is, 38,016 Dwords for each DMA data transfer buffer.
Accordingly, the DMA transfer results verify that it only
takes an average of approximately 2 milliseconds to transfer
a whole CIF 4 : 2 : 0 video frame based on WildCard-4. This
transfer performance can sufficiently support up to level 4
bitstream rate for the H.264 BP video encoding system.

7.5. Overall Encoding Performance. In view of the complexity
analysis of H.264 video tasks described in Section 2, the most
time consuming task is motion estimation. Other encoding
tasks have much less overhead. Therefore, the video tasks can
be scheduled to operate in parallel and pipelining stages as
displayed in Figures 9 and 10 for the proposed architecture
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Table 13: An overall performance comparison for H.264 BP video encoding systems.

Implementation [37] [38] [39] Proposed architecture

Architecture ASIC Codesign Codesign Codesign(Extensible multiple processing cores)

ME Algorithm Full Search (FS) Full Search (FS) Hexagon (HEX) ACQPPS

Freq. [MHz] 144 100 81 75

Max fps of CIF 272.73 5.125 18.6 120

Min Freq. [MHz] for CIF 30 fps 15.84 585 130.65 18.75

Core Voltage Supply 1.2 V 1.2 V 1.2 V 1.2 V

I/O Voltage Supply 1.8/2.5/3.3 V 1.8/2.5/3.3 V 2.5/3.3 V 2.5/3.3 V

model. In this case, the overall encoding time for a video
sequence is approximately equal to the following

Encoding time

= Total motion estimation time

+ Processing time of DCT/Q for the last block

+ Max
{

Processing time of IDCT/Q−1 + MC

+ Deblocking for the last block,

Processing time of CAVLC for the last block
}
.

(8)

The processing time of DCT/Q, IDCT/Q−1, MC,
Deblocking Filter, and CAVLC for a divided block directly
depends on the architecture design for each of the module.
On an average, it is normal that the overhead of those video
tasks for encoding an individual block is much less than that
of motion estimation. As a whole, the encoding time derived
from those video tasks for the last one block can be even
ignored, when it is compared to the total processing time of
the motion estimator for a whole video sequence. Therefore,
to simplify the overall encoding performance analysis for the
proposed architecture model, the total encoding overhead
derived from the system architecture for a video sequence can
be approximately regarded as

Encoding time ≈ Total motion estimation time. (9)

This simplified system encoding performance analysis is
valid as long as the video tasks are operated in concurrent and
pipelined stages with the efficient optimization techniques.
Accordingly, when the proposed ACQPPS motion estimator
is integrated into the system architecture to perform the
motion search, the overall encoding performance for the
proposed architecture model is generalized.

A performance comparison can be presented in Table 13,
where the proposed architecture is compared with some
other recently developed H.264 BP video encoding systems
[37–39] including both fully dedicated hardware and code-
sign architectures. The results indicate that this proposed
system-on-platform architecture, when integrated with the
IP accelerators, can yield a very good performance which
is comparable or even better than other H.264 video
encoding systems. Especially, if compared with other code-
sign architectures, the proposed system has much higher
encoding throughput, which is about 30 and 6 times higher

than the processing ability of the architectures presented
in [38, 39], respectively. The generated high performance
of proposed architecture is directly contributed from the
efficient ACQPPS motion estimation architecture and the
techniques employed for the system optimizations.

8. Conclusions

An integrated reconfigurable hardware-software codesign
IP accelerated system-on-platform architecture is proposed
in this paper. The efficient virtual socket interface and
optimization approaches for hardware realization have been
presented. The system architecture is flexible for the host
interface control and extensible with multiple cores, which
can actually construct a useful integrated and embedded
system approach for the dedicated functions.

An advanced application for this proposed architecture
is to facilitate the development of H.264 video encoding
system. As the motion estimation is the most complicated
and important task in video encoder, a block-based novel
adaptive motion estimation search algorithm, ACQPPS,
and its hardware architecture are developed for reducing
the complexity to extremely low level, while keeping the
encoding performance, in terms of PSNR and bit rate,
as high as possible. It is beneficial to integrate video IP
accelerators, especially ACQPPS motion estimator, into the
architecture framework for improving the overall encoding
performance. The proposed system architecture is mapped
on an integrated FPGA device, WildCard-4, toward an
implementation for a simplified H.264 BP video encoder.

In practice, with the proposed system architecture, the
realization of multistandard video codec can be greatly
facilitated and efficiently verified, other than the H.264
video applications. It can be expected that the advantages
of the proposed architecture will become more desirable for
prototyping the future video encoding systems, as new video
standards are emerging continually, for example, the coming
H.265 draft.
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