13,458 research outputs found

    Fast parallel algorithms for the unit cost editing distance between trees

    Full text link
    1. Problem Ordered labeled trees are trees whose nodes are labeled and in which the ° left-to-right order among siblings is significant. We consider the distance between two trees to be the minimum number of edit operations (insert, delete, and modify) necessary to transform one tree to another. We present three algorithms to find the distance. The first algorithm is a simple dynamic program-ming algorithm based on a postorder traversal whose complexity improves upon the best previ-ously published algorithm due to Tai (T79 in JACM). The second and third algorithms are parallel algorithms based on the application of suf-fix trees to the comparison problem. The cost of executing these algorithms is a monotonic increas-ing function of the distance between the two trees. Results Let trees T I and T2 have numbers of levels L i and L 2 respectively. Let k be the actual distance between T 1 and T2. Let N be rain (IT11, IT2]). The asymptotic running times (assuming a concurrent-read concurrent-write parallel random access machine) are: A lgor i thm T ime Processors Tai IT l lX [T2[xL~XL] Alg l [Tx [ × Ir=l xLI×L

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Parallel Mesh Processing

    Get PDF
    Die aktuelle Forschung im Bereich der Computergrafik versucht den zunehmenden Ansprüchen der Anwender gerecht zu werden und erzeugt immer realistischer wirkende Bilder. Dementsprechend werden die Szenen und Verfahren, die zur Darstellung der Bilder genutzt werden, immer komplexer. So eine Entwicklung ist unweigerlich mit der Steigerung der erforderlichen Rechenleistung verbunden, da die Modelle, aus denen eine Szene besteht, aus Milliarden von Polygonen bestehen können und in Echtzeit dargestellt werden müssen. Die realistische Bilddarstellung ruht auf drei Säulen: Modelle, Materialien und Beleuchtung. Heutzutage gibt es einige Verfahren für effiziente und realistische Approximation der globalen Beleuchtung. Genauso existieren Algorithmen zur Erstellung von realistischen Materialien. Es gibt zwar auch Verfahren für das Rendering von Modellen in Echtzeit, diese funktionieren aber meist nur für Szenen mittlerer Komplexität und scheitern bei sehr komplexen Szenen. Die Modelle bilden die Grundlage einer Szene; deren Optimierung hat unmittelbare Auswirkungen auf die Effizienz der Verfahren zur Materialdarstellung und Beleuchtung, so dass erst eine optimierte Modellrepräsentation eine Echtzeitdarstellung ermöglicht. Viele der in der Computergrafik verwendeten Modelle werden mit Hilfe der Dreiecksnetze repräsentiert. Das darin enthaltende Datenvolumen ist enorm, um letztlich den Detailreichtum der jeweiligen Objekte darstellen bzw. den wachsenden Realitätsanspruch bewältigen zu können. Das Rendern von komplexen, aus Millionen von Dreiecken bestehenden Modellen stellt selbst für moderne Grafikkarten eine große Herausforderung dar. Daher ist es insbesondere für die Echtzeitsimulationen notwendig, effiziente Algorithmen zu entwickeln. Solche Algorithmen sollten einerseits Visibility Culling1, Level-of-Detail, (LOD), Out-of-Core Speicherverwaltung und Kompression unterstützen. Anderseits sollte diese Optimierung sehr effizient arbeiten, um das Rendering nicht noch zusätzlich zu behindern. Dies erfordert die Entwicklung paralleler Verfahren, die in der Lage sind, die enorme Datenflut effizient zu verarbeiten. Der Kernbeitrag dieser Arbeit sind neuartige Algorithmen und Datenstrukturen, die speziell für eine effiziente parallele Datenverarbeitung entwickelt wurden und in der Lage sind sehr komplexe Modelle und Szenen in Echtzeit darzustellen, sowie zu modellieren. Diese Algorithmen arbeiten in zwei Phasen: Zunächst wird in einer Offline-Phase die Datenstruktur erzeugt und für parallele Verarbeitung optimiert. Die optimierte Datenstruktur wird dann in der zweiten Phase für das Echtzeitrendering verwendet. Ein weiterer Beitrag dieser Arbeit ist ein Algorithmus, welcher in der Lage ist, einen sehr realistisch wirkenden Planeten prozedural zu generieren und in Echtzeit zu rendern

    Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel Computing Architectures

    Get PDF
    This work has created a completely new geometry representation for the CAD/CAM area that was initially designed for highly parallel scalable environment. A methodology was also created for designing highly parallel and scalable algorithms that can use the developed geometry representation. The approach used in this work is to move parallel algorithm design complexity from an algorithm level to a data representation level. As a result the developed methodology allows an easy algorithm design without worrying too much about the underlying hardware. However, the developed algorithms are still highly parallel because the underlying geometry model is highly parallel. For validation purposes, the developed methodology and geometry representation were used for designing CNC machine simulation and tool path planning algorithms. Then these algorithms were implemented and tested on a multi-GPU system. Performance evaluation of developed algorithms has shown great parallelizability and scalability; and that main algorithm properties are required for modern highly parallel environment. It was also proved that GPUs are capable of performing work an order of magnitude faster than traditional central processors. The last part of the work demonstrates how high performance that comes with highly parallel hardware can be used for development of a next level of automated CNC tool path planning systems. As a proof of concept, a fully automated tool path planning system capable of generating valid G-code programs for 5-axis CNC milling machines was developed. For validation purposes, the developed system was used for generating tool paths for some parts and results were used for machining simulation and experimental machining. Experimental results have proved from one side that the developed system works. And from another side, that highly parallel hardware brings computational resources for algorithms that were not even considered before due to computational requirements, but can provide the next level of automation for modern manufacturing systems
    corecore