
Clemson University
TigerPrints

All Dissertations Dissertations

5-2013

Automated CNC Tool Path Planning and
Machining Simulation on Highly Parallel
Computing Architectures
Dmytro Konobrytskyi
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Konobrytskyi, Dmytro, "Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel Computing Architectures"
(2013). All Dissertations. 1779.
https://tigerprints.clemson.edu/all_dissertations/1779

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1779?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

AUTOMATED CNC TOOL PATH PLANNING

AND MACHINING SIMULATION ON HIGHLY

PARALLEL COMPUTING ARCHITECTURES

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Automotive Engineering

by

Dmytro Konobrytskyi

May 2013

Accepted by:

Dr. Laine Mears, Committee Chair

Dr. Thomas R. Kurfess

Dr. Tommy Tucker

Dr. Stan Birchfield

ii

ABSTRACT

This work has created a completely new geometry representation for the

CAD/CAM area that was initially designed for highly parallel scalable environment. A

methodology was also created for designing highly parallel and scalable algorithms that

can use the developed geometry representation. The approach used in this work is to

move parallel algorithm design complexity from an algorithm level to a data

representation level. As a result the developed methodology allows an easy algorithm

design without worrying too much about the underlying hardware. However, the

developed algorithms are still highly parallel because the underlying geometry model is

highly parallel.

For validation purposes, the developed methodology and geometry representation

were used for designing CNC machine simulation and tool path planning algorithms.

Then these algorithms were implemented and tested on a multi-GPU system.

Performance evaluation of developed algorithms has shown great parallelizability and

scalability; and that main algorithm properties are required for modern highly parallel

environment. It was also proved that GPUs are capable of performing work an order of

magnitude faster than traditional central processors.

The last part of the work demonstrates how high performance that comes with

highly parallel hardware can be used for development of a next level of automated CNC

tool path planning systems. As a proof of concept, a fully automated tool path planning

system capable of generating valid G-code programs for 5-axis CNC milling machines

iii

was developed. For validation purposes, the developed system was used for generating

tool paths for some parts and results were used for machining simulation and

experimental machining. Experimental results have proved from one side that the

developed system works. And from another side, that highly parallel hardware brings

computational resources for algorithms that were not even considered before due to

computational requirements, but can provide the next level of automation for modern

manufacturing systems.

iv

TABLE OF CONTENTS

Page

TITLE PAGE ... i

ABSTRACT .. ii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ALGORITHMS .. xvi

CHAPTER

I. INTRODUCTION ... 1

Importance of automated tool path planning .. 2

Importance of parallel processing ... 4

The proposed approach for solving automated milling problem .. 6

The role of this work in the proposed automated milling framework 9

Work structure .. 15

II. BACKGROUND AND RELATED WORK .. 17

CNC milling .. 17

Geometry representation ... 19

Milling simulation ... 23

Parallel processing and GPGPU ... 25

v

Table of Contents (Continued)

 Page

GPU architecture and OpenCL ... 28

III. 3-AXIS MACHINING SIMULATION .. 35

Height map representation of a machined workpiece ... 36

Workpiece rendering ... 39

Generalized cutter representation for 3-axis milling simulation 43

3-axis milling simulation algorithm .. 44

Experimental 3-axis simulation results ... 49

Milling simulation and rendering performance .. 53

Accuracy analysis ... 62

Discussion ... 66

IV. TOOL PATH PLANNING FOR 3-AXIS MACHINING .. 69

GPU accelerated 2d contour offset roughing path planning algorithm 70

Tree based algorithm for path components connection optimization 75

GPU accelerated shifted zigzag finishing path planning algorithm.................................. 80

Experimental 3-axis path planning and milling results ... 84

vi

Discussion ... 87

V. 5-AXIS MACHINING SIMULATION ... 89

Table of Contents (Continued)

 Page

Geometry representations and data structures evaluation ... 90

Developed irregularly sampled volume representation .. 95

Tool motion representation for 5-axis milling simulation .. 102

5-axis milling simulation based on irregularly sampled volume 107

Irregularly sampled volume rendering algorithm ... 115

Accuracy analysis ... 124

Experimental 5-axis simulation results ... 128

Simulation performance analysis .. 135

Discussion ... 148

VI. TOOL PATH PLANNING FOR 5-AXIS MACHINING .. 150

Parallel algorithms design methodology ... 153

Volume based parallel algorithms design methodology and limitations 155

Offset volume calculation ... 157

vii

Surface filling algorithm based on 3D contour offset approach 167

Robust tool trajectory generation for 5-axis machines ... 172

Orientation selection ... 176

Accessibility map generation .. 196

Table of Contents (Continued)

 Page

High level tool path planning control algorithm ... 205

Experimental 5-axis milling results .. 205

Discussion ... 210

VII. CONCLUSIONS AND RECOMMENDATIONS .. 212

REFERENCES ... 215

viii

LIST OF TABLES

Table Page

I-1: Fastest CPU and GPU performance ... 13

V-1: Geometry representations comparison ... 95

V-2: Cell value changes .. 110

V-3: GPUs parameters .. 136

V-4: Base performance results .. 136

VI-1: Test models properties for offset volume calculation ... 161

VI-2: Offset volume calculation performance results ... 161

ix

LIST OF FIGURES

Figure Page

I-1: History of milling machines ... 1

I-2: Processor clock frequency over time [2] .. 5

I-3: Tool path planning iteration ... 7

I-4: Tree of possible path planning decisions ... 8

II-1: BREP example [34] .. 20

II-2: Triangular mesh example [34] .. 20

II-3: CSG example [35] .. 21

II-4: Octree example [36] .. 22

II-5: Quad-tree height map example ... 23

II-6: OpenCL platform model ... 30

II-7: OpenCL memory model. .. 31

II-8: OpenCL threads grid ... 32

III-1: 1D height map ... 39

III-2: Height map rendering example ... 41

III-3: Cutting tool intersection .. 43

III-4: Cutting tool height map representation ... 44

III-5: Height map updating process - before editing ... 45

III-6: Height map updating process - editing .. 45

III-7: Height map updating process - after editing .. 46

x

List of Figures (Continued)

Figure Page

III-8: Collision example .. 48

III-9: Test model “Tiger paw” .. 49

III-10: Test model “Yoda” .. 50

III-11: Test model “Zoo” .. 51

III-12: Test model “Sculptures” .. 52

III-13: CPU vs. GPU simulation performance .. 54

III-14: Performance vs. Group size (global size = 8k).. 56

III-15: Performance vs. Global size .. 56

III-16: Effect of collision avoidance on performance ... 57

III-17: Simulation performance vs. Global size with CPU ... 58

III-18: Rendering vs. Resolution... 59

III-19: Simulation components vs. Resolution ... 60

III-20: OpenCL-OpenGL interoperability improvement .. 61

III-21: Cutter parts description.. 62

III-22: Difference between actual and interpolated radiuses .. 63

III-23: Cutter interpolation error based on points number .. 64

III-24: Cutter error based on position ... 64

IV-1: Part slices... 71

IV-2: Contour offset .. 71

IV-3: Iterative roughing tool path ... 72

xi

List of Figures (Continued)

Figure Page

IV-4: Slicing test part .. 76

IV-5: Not optimized tool path ... 77

IV-6: Generated tree ... 77

IV-7: Optimized tool path ... 78

IV-8: Tree optimization testing result ... 79

IV-9: Tool offset ... 81

IV-10: Distance between tool and target surfaces .. 82

IV-11: Required testing points. ... 82

IV-12: Height map generation with zigzag 2d path .. 83

IV-13: Experimental milling results for the “Tiger paw” model 85

IV-14: Experimental milling results for the “Sculptures” model 86

IV-15: Experimental milling results for the “Yoda” model .. 86

IV-16: Experimental milling results for the “Zoo” model .. 87

V-1: Developed geometry representation model .. 99

V-2: 2D example of the developed model surface representation 99

V-3: HDT hierarchy .. 100

V-4: Developed geometry model from a memory point of view 101

V-5: Generalized tool model [62] ... 103

V-6: Ball-end tool swept volume model ... 106

V-7: Multi GPU load balancing .. 108

xii

List of Figures (Continued)

Figure Page

V-8: Machining simulation process shown on 2D geometry model............................... 111

V-9: Threads distribution during subcells editing .. 113

V-10: Nodes memory management model ... 115

V-11: Two height map generation iterations used for rendering 117

V-12: Curve represented by spherical cells .. 118

V-13: Curve represented by spherical subcells ... 119

V-14: Rays casted from each pixel on a screen plane .. 120

V-15: Estimated surface and normals ... 121

V-16: Rendering results .. 123

V-17: Demonstration of dark borders around foreground objects 123

V-18: Tolerances for multiple tolerance grades [64]. ... 126

V-19: 3-axis model “Sculptures” (new 5-axis simulator on the right) 129

V-20: 3-axis model “Zoo” (new 5-axis simulator on the right) 130

V-21: 5-axis machining simulation process for model “Puppy” 131

V-22: 5-axis machining simulation process for model “Fan” .. 132

V-23: 5-axis machining simulation process for model “Fan” .. 133

V-24: Simulation result for model “Dragon”.. 133

V-25: Roughing process of the “Teapot” model... 134

V-26: Various simulation results .. 134

V-27: Machining test setup ... 135

xiii

List of Figures (Continued)

Figure Page

V-28: Editing time vs. Resolution .. 139

V-29: Performance vs. Available computing power ... 140

V-30: Utilization of available computation power ... 141

V-31: Performance vs. Step size ... 142

V-32: Rendering speed vs. Resolution.. 143

V-33: Frame rendering time vs. Resolution .. 144

V-34: Rendering time vs. Zoom level... 145

V-35: Rendering speed vs. Available computing power .. 146

V-36: Rendering speed vs. GFLOPS (w/o constant time) .. 147

V-37: Available computing power utilization .. 148

VI-1: Offset surface [65] ... 158

VI-2: Offset surface self-intersections [66] .. 158

VI-3: 2D offset surface decomposition ... 159

VI-4: Offset volume generation performance ... 162

VI-5: “Teapot” volume offset ... 163

VI-6: “Turbine” volume offset.. 164

VI-7: “Candle holder” offset volume .. 165

VI-8: “Head” offset volume. ... 166

VI-9: Curve offsetting ... 169

VI-10: Iterative surface area filling... 170

xiv

List of Figures (Continued)

Figure Page

VI-11: Restriction volume for the “Head” model ... 171

VI-12: Surface filling for finishing tool path generation .. 173

VI-13: Initial curve selection for roughing process .. 174

VI-14: Layer by layer material removing during a roughing process. 175

VI-15: Accessibility map example.. 177

VI-16: 3D curve going through a stack of bitmaps... 179

VI-17: Example of a tool trajectory that requires a tool retraction 180

VI-18: Dependency of a jump point on tool movement direction 180

VI-19: A scenario with a complicated tool space topology .. 181

VI-20: Two possible ways of orientation selection .. 181

VI-21: Accessibility space .. 182

VI-22: Explanation of an accessibility map construction process 183

VI-23: “Jump” concept explanation .. 184

VI-24: Accessibility space slicing and connection ... 185

VI-25: Graph representation of an accessibility space ... 186

VI-26: Real life example of an accessibility map graph ... 188

VI-27: Curve representation ... 191

VI-28: 3D curve optimization example .. 193

VI-29: Accessibility space (views from multiple camera positions) 194

VI-30: Accessibility curve going through accessibility space, view 1 195

xv

List of Figures (Continued)

Figure Page

VI-31: Accessibility curve going through accessibility space, view 2 195

VI-32: Accessibility curve going through accessibility space, view 3 196

VI-31: Touching a cell surface by a tool surface .. 197

VI-32: Touching a sphere from multiple sides ... 198

VI-33: All tool orientation when a tool touches a sphere ... 199

VI-34: 2D tool model .. 200

VI-35: Inaccessibility cone angle components ... 201

VI-36: Test model “Head” .. 208

VI-38: Test model “Puppy” .. 209

xvi

 LIST OF ALGORITHMS

Algorithm Page

III-1: Height map rendering .. 40

III-2: Material removing simulation ... 47

III-3: Material removing simulation second approach .. 47

IV-1: Edge detection ... 73

IV-2: Edge expansion ... 74

IV-3: Continuous path construction .. 75

IV-4: Tree optimization .. 79

IV-5: Finishing path planning ... 84

V-1: First part of the machining simulation process ... 109

V-2: Second part of the machining simulation process .. 109

V-3: Rendering.. 122

VI-1: Belonging test .. 153

VI-2: Belonging test for machining simulation .. 153

VI-3: Volume surface intersection .. 154

VI-4: Volume offset calculation ... 160

VI-5: Surface filling .. 171

VI-6: Finishing tool path generation ... 172

VI-7: Roughing path planning .. 174

VI-8: Accessibility graph construction ... 187

xvii

List of Algorithms (Continued)

Algorithm Page

VI-9: Initial accessibility curve construction .. 190

VI-10: Accessibility curve optimization ... 192

VI-11: Accessibility map calculation.. 203

VI-12: High level control algorithm ... 205

1

I. INTRODUCTION

During the last century the manufacturing industry has moved from pure manual

or simple mechanically automated production of goods to a new level where almost

everything is controlled by electronic control systems and computers. Although areas like

assembling or repairing are still done mostly by people, it is almost impossible to see

large scale manual mechanical processing today mainly due to the requirements of

precision, repeatability and speed. In order to meet the increasing requirements of

produced components, the way of controlling machine tools evolved from manual

operation to mechanical control systems during 19
th

 century, then to Numerical Control

(NC) systems in the middle of 20
th

 century and finally to Computer Numerical Control

(CNC) systems (Figure I-1).

Figure I-1: History of milling machines

Modern CNC machines are extremely versatile in their ability to make parts with

complex geometry and good surface quality. However, efficient usage of all machine

capabilities requires highly experienced personnel and a relatively long time to program.

2

The main reason it requires tremendous time investments is a lack of efficient and

flexible automatic path planning algorithms and, as a result, a lack of reliable, fast and

fully automatic software for CNC programming. Existing algorithms are usually limited

to specific problem solutions due to the geometric and computational complexity of path

planning. In addition, existing algorithms cannot be run efficiently on modern, highly

parallel hardware for utilization of modern computing capacity and as a result are limited

to performance of traditional serial processors.

Importance of automated tool path planning

It is hard to underestimate the importance of the further automation of the milling

process and especially of automated tool path planning. Although modern Computer

Aided Manufacturing (CAM) systems have significantly simplified the process of

machine programming, creating a program for an average part still takes several hours.

As a result, the cost of low volume production when only few parts are required may

consist mainly of a programming cost. For example, in an extreme case of one part

milling, which is a popular mold and die manufacturing scenario, programming cost may

be 90% of the entire manufacturing cost. This extremely high cost of low-volume

production with CNC milling is also one of the main reasons that subtractive

manufacturing is not used in Rapid Prototyping (RP) industry. The RP industry is almost

monopolized by a variety of additive manufacturing techniques today which usually do

not require such complicated programming process. As a result, development of highly

automated path planning systems could create a completely new market for RP by CNC

3

milling, which would provide a unique combination of cost, speed, precision and ability

to use production materials. It is obvious that decreasing prototyping cost is extremely

important for an entire manufacturing industry, due to shorter product development life

cycle and much cheaper testing.

It may look like the high programming cost is important only for low volume

production and not for high volumes where a programming cost is shared between

millions of parts. This is partially true and actual milling time is much more important in

this case, but usually designing of an optimal trajectory, which does take as little time as

possible, is not a trivial problem and requires multiple iterations. In this case automated

tool path planning may significantly improve a tool path planning iteration time and

allow a significantly higher number of iterations with a much shorter resulting tool path.

In an extreme case of fully automated tool path planning and simulation, these tool path

planning iterations can be performed without human assistance in a cloud by thousands

of servers with a much more efficient result than a human can ever achieve.

The importance of automated path planning is also proved by a survey [1] that

was conducted online in March and April of 2010 among 188 machine tool professionals

by Centrifuge Brand Marketing Inc. and sponsored by Siemens Industry, Inc. The survey

showed that 81% of job shops and 72% of manufacturers are looking for faster

programming and setup; and 74% of job shops and 70% of manufacturers are looking for

easiness of use for reduced training time, which is one of the benefits of automated tool

path planning.

4

Importance of parallel processing

Automatic tool path planning is obviously an important research area for modern

manufacturing industry and there many research projects have been conducted on this

subject in the past few decades. The “Background” chapter will provide more detailed

information about past research projects, but it is important to notice that all tool paths

planning today is done by computers and that path planning algorithms are becoming

more and more complicated and require more computational resources. It is also

important to notice that until a very recent time, tool path planning and simulation

algorithms could be designed quite independently from knowledge about the hardware

that actually performs them, and all algorithms were serial. This approach was good

enough for the early stage of the computer industry when new processors were always

faster than old processors and algorithm developers could expect seeing better

performances of their algorithms every year. This state of continuous performance

improvement was possible mainly because of the increasing of Central Processing Unit

(CPU) and memory clock frequencies. But increasing clock frequency also means higher

heat production and further increasing of a clock frequency creates physical limitations

that become more and more complicated for processor manufacturing.

At the beginning of 2000’s further increasing of a clock frequency had become

too expensive from the heat production point of view and the decision made by processor

manufacturers was to use multiple CPU cores and single-instruction, multiple-data

(SIMD) processors with a lower frequency in order to increase the available

computational performance for the next generations of their processors. The power

5

efficiency requirements for making “greener” products actually forced manufacturers to

reduce clock frequency even more. The “Trend tracking for ISSCC 2012” [2] paper for

IEEE International Solid-State Circuits Conference says: “As power reduction becomes

mandatory in every application, the trend toward lower clock frequencies also continues,

as shown in the frequency trends chart in Figure I-2. This is driven by decreased supply

voltages, with processors operating in the nearthreshold or even the subthreshold voltage

domain. The performance loss resulting from reduced voltages and clock frequencies is

compensated for by further increased parallelism.”

Figure I-2: Processor clock frequency over time [2]

It can be seen that the significant increasing of CPU clock frequency is not

possible without a fundamental breakthrough in physics and processor manufacturing and

that the processor manufacturing industry has selected the way of multiple cores and

higher parallelism. Although the selected way means further increasing of available

performance, it also means that the performance of traditional serial algorithms will not

6

increase significantly anymore. As a result, algorithm developers cannot expect seeing

continuous computational time improvement for traditional algorithms anymore and will

be required to develop new parallel algorithms using modern hardware.

The proposed approach for solving automated milling problem

Previous parts have shown the importance of automatic tool path planning for the

manufacturing industry and also the importance of parallel processing as a critical

component for any high performance algorithms. This work proposes a high level

approach for solving both problems in terms of automated CNC tool path planning and

provides a foundation for further research and development of this solution.

The global problem of the manufacturing industry (and many other industries as

well) today is an absence of a centralized knowledge base with information about milling

processes, materials, path planning strategies and good practices. Although the industry

has already found solutions for many problems, there is still no way for automated

selection, applying and evaluation of these solutions. Traditionally the knowledge about

milling processes and path planning strategies is shared between independent CNC

programmers and cannot be reused without actual interaction with people, implemented

though CAM systems User Interface (UI). At the same time CAM packages already have

multiple tool path planning strategies implemented and there are existing tool and

material properties databases, which can be used for covering most of everyday milling

needs.

7

It is also obvious that there is no way to put all of the available knowledge of all

CNC engineers, CAM developers and tool and material properties databases into one

place immediately. The proposed solution is to develop a centralized system, which can

be continuously improved in an iterative way by adding new knowledge about path

planning strategies, tools, materials and machines on each iteration. Although it may look

like the proposed approach is just to create a knowledge data base, the key component of

the proposed solution is to develop a software system that can actually use this

knowledge for solving tool path planning problems automatically. The proposed system

would perform 5 main steps as shown on Figure I-3:

1) Feature detection

2) Tool path planning strategy selection

3) Tool path planning with selected strategy strategies

4) Simulation

5) Performance evaluation

Figure I-3: Tool path planning iteration

There are multiple ways to use the proposed approach. One way is to apply these

steps iteratively with optimization of path planning parameters on each step as is usually

done in tradition optimization problems. Another way is to actually make a tree of all (or

all of the most probable) decisions made at the second step for each detected feature and

Feature
detection

Strategy
selection

Trajectory
generation

Simulation
Performance

evaluation

8

process a tree by generating a tool path and simulation of each decisions sequence as

shown on

Figure I-4.

Figure I-4: Tree of possible path planning decisions

Evaluation of every generated tool path for a tree can be done by simulation of

milling process and collecting some measurements like path length, milling time, tool

load, material removing rate and even tool and workpiece temperatures. The results of

this evaluation can be processed for selection of the best tool path, based on user defined

criteria like the fastest milling time or the most efficient tool wear or the maximum

scallop height. As with path planning strategies, tool path evaluation would have a

modular structure and could be extended by adding new evaluation algorithms.

The proposed solution is significantly different from any modern CAM system in

the way that it is initially fully automated and becomes better over time by continuously

accumulating knowledge about path planning strategies, simulation and tool path

evaluation techniques.

9

The role of this work in the proposed automated milling framework

Although an implementation of the proposed solution is obviously not simple, and

it is more of a computer engineering and organizational problem than a research problem,

there are some fundamental scientific problems that have to be solved in order to actually

develop the proposed system.

One of the main problems is the need of a very robust algorithm which can be

applied to any possible geometry and produce a valid tool path. One of the reasons for

this need is an ability to generate a tool path at the beginning of system development

when there are no tool path planning algorithms. Another more general reason is a

requirement for robustness of the proposed system. It can be seen that on one side the

number of implemented feature detection and path planning algorithms will grow up and

cover more and more path planning scenarios and possible geometries. But on another

side there are no guaranties that the available algorithms can always produce a valid

output tool path for any provided input geometry. It means that the proposed system will

be able to generate useful output only for a subset of all the problems and that the number

of problems that can be solved will be relatively small at the beginning of development.

One of possible solutions for this problem is described in this work. The idea is to

develop a robust multi-axis tool path planning algorithm, which can be applied for any

possible geometry and produce a reasonably optimal valid tool path. This algorithm does

not have to be extremely efficient or fast but the most important quality for it is to be able

to produce a valid tool path for any input geometry if it is feasible from a geometry point

of view. The proposed automated tool path planning system would use this algorithm as a

10

last resort in cases where there are no known efficient algorithms for selected features or

where there are no detected features. Based on the idea of continuous improvement it is

obvious that this algorithm will be used more often at the beginning of development and

less often after adding more efficient algorithms. The algorithm developed in this work

fits the desired requirements and will be described in further chapters.

Another important fundamental problem is related to parallel processing. As

described above, parallel processing has become a main processor industry trend and

there are no known solutions that can allow further growing of CPU clock frequency and

the increasing of serial algorithms’ performances without a significant breakthrough in

physics, material science and processor manufacturing. As a result, even in 10-20 years

current serial algorithms will not become much faster. But this is only one side of a

problem. On the other side, performance of modern CAM systems is barely good for

everyday usage i.e. it is possible to perform multiple tool path planning generation

iterations for relatively simple geometry or few iterations for complex geometry in a

reasonable time (some hours), but there is no way to use the same algorithms for the

hundreds and thousands of tool path planning iterations required for the proposed

automated tool path planning system. And although multi-core processors have been

available on the market already for 8 years, modern CAM systems still have very limited

support of parallel processing, which usually requires a user to run multiple independent

tasks manually. In the case of 2-cores it still can be a reasonable solution but with modern

6- and 8-core processors it becomes extremely inefficient.

11

The reason for the absence of parallel processing support in modern CAM

systems is related to the way geometry is represented. Traditionally Computer Aided

Design (CAD) and CAM systems use boundary geometry representation (BREP)

developed back in 1970s. The BREP has a lot of advantages that were extremely

important during the second part of 20
th

 century; especially the support of extremely high

accuracy with relatively low computational and memory requirements. It provides the

best set of tradeoffs between accuracy, memory usage and required amount of

calculations on a serial processor for most geometry operations required by CAD and

CAM systems. Although BREP is a good geometry representation, it has some significant

drawbacks that are becoming more important today with spreading of multi-core

processors. One important drawback of BREP is the complexity of geometry operations

from a human point of view. Even reasonably simple operations like Boolean subtraction

or an intersection between a plane and a compound surface represented by BREP require

a lot of complex mathematical calculations which usually cannot be represented as a set

of simple independent operations. This drawback has two important results: the

development of CAM systems becomes quite complicated with BREP and it is not

possible to use data parallelism for parallel processing support. The data parallelism and

its comparison to task parallelism will be given in the “Background” chapter but the main

difference is related to how work is divided between multiple cores. In case of data

parallelism it is quite easy to split work between many cores without significant effort

from a developer. In opposition to data parallelism, task parallelism requires developers

to split work manually, which is a much more complicated problem, especially for a high

12

number of cores. For example one of the most popular geometric modeling kernels used

in modern CAD/CAM systems called “Parasolid” has recently started support “thread-

safety” which means that developers can run multiple editing tasks on multiple cores.

And although it is definitely a good trend, development of software systems, which can

really use many cores, with manual load balancing requires a tremendous effort and

usually cannot be done in a research environment.

The idea behind a solution for the parallel processing problem is actually quite

simple: use another geometry representation, which provides a different set of tradeoffs

between memory consumption, computational requirements and accuracy but supports

parallel processing on data level and can be scaled efficiently. This work presents results

of the research project about automated tool path planning and also results of a search for

a new geometry representation, which can efficiently replace a traditional boundary

representation and solve existing parallel processing problems. Since the BREP is a good

tradeoff between accuracy, memory, computational requirements, complexity and

scalability, it is easy to assume that in order to reduce complexity and improve scalability

another geometry representation may take more memory and/or computational resources

for the same level of accuracy. At the same time the facts are that modern processors are

barely fast for CAM systems using traditional BREP and performance of CPUs is

growing quite slow. Five years ago, it appeared that there was no way to solve the

problem. Now, it seems to be the same way - but the solution has actually come from the

gaming industry.

13

One of the most important aspects of games is the quality of the graphics. In order

to render images faster, the computer graphics industry starting in the 1980s has been

using specialized hardware called Graphics Processing Units (GPU). In the early stages

of computer graphics and gaming industries, GPU was just a chip with some predefined

rendering algorithms implemented in the hardware. But the gaming industry required

more realistic graphics and more flexibility of hardware implemented algorithms. As a

result, at the beginning of the 2000s GPU had gotten the support of special programs

called shaders written by software developers in addition to predefined hardware

algorithms. Increased flexibility requirements forced GPU manufacturers to make their

processors more and more general and as a result it has become possible to do General

Purpose calculation on GPU (this approach is called GPGPU). More information about

GPU architecture, GPGPU approach and GPU performance will be given in the

“Background” chapter but it is important to notice 2 things: GPU is a naturally highly

parallel and theoretical GPU performance is a several hundred times higher than serial

CPU performance. For example theoretical performance of the fastest modern CPU and

GPU is shown in Table I-1. It can be seen that the theoretical performance difference

between serial programs and parallel programs that use SIMD approach on CPU is 81x

and parallel programs on GPU is almost 1500x faster than serial programs on CPU.

Processor name Performance (SP GFLOPS)

Intel i7-3960X (Serial performance @ 3.9GHz) 3.9

Intel i7-3960X (Parallel SIMD performance @ 3.3GHz) 316

NVidia GTX690 (Parallel performance) 5621

Table I-1: Fastest CPU and GPU performance

14

The shown theoretical possibility of performance improvement in the case of

parallel algorithms proves that parallel processing is a crucial part of any modern

software system. It can also be seen that a transition from serial CPU algorithms to

parallel algorithms, which can run on GPU, may provide a performance improvement

comparable to the past 30 years of continuous CPU performance growing. The GPU

actually may provide the additional computational resources needed in the case of new

geometry representations which will replace BREP and add support of parallel

processing. Although it may look like GPU is a perfect solution and that all modern

software should run on it, the difference in CPU and GPU architectures does not allow a

simple porting of algorithms from one platform to another. More details about

architectural differences and GPU algorithm design challenges will be given in the

“Background” chapter but it is important to notice that in order to achieve theoretical

performance limits, algorithms and data structures have to be designed especially for

GPU and, in most cases, this is not a trivial problem. The current research actually

provides the geometry representation including data structure and algorithms especially

designed for highly parallel GPU architectures, which supports data parallelism and

allows performing of all operations in parallel without a significant effort from a

developer. Data parallelism means that the development of parallel tool path planning

algorithms is significantly easier and developed algorithms can scale even to multi-GPU

systems as will be shown later.

15

Work structure

This work describes the research of algorithms, data structures and geometry

representations that can be used for efficient milling process simulation and tool path

planning accelerated by GPGPU approach. The information is provided in approximately

chronological order, so that the research path and key decisions made during the research

project can clearly be seen. All required background information about CNC milling,

parallel processing and GPGPU approach is provided in the “Background” chapter,

which also describes past research in the milling area and gives information about

modern GPU architectures required for understanding GPU algorithms development

challenges. The entire work is divided in two main areas: 3-axis milling and 5-axis

milling. Although 3-axis milling can be described as a subset of 5-axis milling, the

approach used for 3-axis tool path planning and simulation is similar and allows easier

showing of some important concepts of GPU accelerated milling before going to 5-axis.

The entire research can also be divided into two other areas: milling simulation and path

planning, which may look like independent areas, but it will be shown that generalized

tool path planning approach cannot be implemented without integration of tool path

planning and milling simulation algorithms into one system. As result of this double

subdivision, 4 main structures of this work are “3-axis milling simulation”, “Tool path

planning for 3-axis milling”, “5-axis milling simulation”, “Tool path planning for 5-axis

milling” that correspond to described research areas. The chapter “Conclusion and

recommendation” at the end provides a summary of the entire research and describes

16

future research possibility of the developed technology. The last part of this work

provides references to books, papers and other resources used in this work.

17

II. BACKGROUND AND RELATED WORK

CNC milling

CNC milling has progressed in the last 40 years from fully mechanical machine

controls, punch cards and paper tapes to modern fully computerized controllers,

programmed via variants of G-code programming languages. Programming these

machines has advanced from inefficient handwritten programs to powerful CAM systems

capable of generation complex multi-axis trajectories, based on strategies selected by

operator and precise virtual milling simulation.

Significant research has been focused on key areas such as tool path planning,

tool orientation selection, and selection of tool geometry. Many researchers have

addressed tool path planning using traditional methods such as iso-planar [3-5] or iso-

parametric approaches [6]. Results of these approaches generate paths that achieve

certain accuracies, or surface characteristics, but that may not be optimal with respect to

other process parameters, such as production time. In order to improve performance of

traditional methods, the iso-scallop approach was introduced by Suresh and Yang [7] and

Lin and Koren [8]. It produces a constant scallop height of a machined surface.

Popularization of 5-axis milling and milling of non-parametric surfaces has resulted in

the development of new approaches resolving specific 5-axis problems and further

reducing milling time. These approaches can be classified [9] as curvature matched

milling [10-12], isophote based method [13-15], configuration space methods [16, 17],

18

region based tool path generation [13], compound surface milling [18, 19] and methods

for polyhedral models and cloud of point [20, 21]. With respect to tool orientation

selection, traditional methods such as fixed orientation, principal axis methods [22] or

multi point milling [23] have been developed. Furthermore, in the past 10 years, more

advanced path planning methods such as the rolling ball [24, 25] and arc intersect

methods [26] as well as earlier C-space based approaches [16, 27] were successfully

deployed. Furthermore, research addressing tool geometry selection [28, 29], and

implementation of automatic tool selection in commercial products does not exist or is

very limited when addressing optimized tooling parameter selections. While significant

progress has been achieved over the last several decades, a plethora of issues to be

addressed that will reduce production time and improve / guarantee component quality

still exist.

Throughout the literature, it is clear that computation time is a major limitation of

most, if not all, of the proposed algorithms. One solution for this problem is the

employment of high performance computing, in particular the GPU (Graphical

Processing Unit) platform to accelerate the processing. Development and popularization

of a general purpose GPU (GPGPU) approach and platforms like Compute Unified

Architecture (CUDA) have resulted in promising results for deploying GPGPU

functionality in a manufacturing environment. Tukora and Szalay presented an approach

for GPGPU accelerated cutting force prediction [30]. Hsieh and Hsin proposed a GPU

accelerated particle swarm optimization approach for 5-axis flank milling [31].

Furthermore, new approaches for geometry representation used in CNC area were

19

recently proposed. Guang and Ding proposed employing a quadtree-array for

representation of a workpiece in 3-axis milling [32]. Li and Yao used an extended octree

for cutting force prediction. Zhao and Wang presented a GPU accelerated approach for

Boolean operations on polygonal solids. Wang and Leung described the use of layered

depth-normal images for solid modeling of polyhedral objects [33]. All of this research

demonstrated the value of parallelized processing in milling operations.

Geometry representation

One of the most fundamental concepts in the CAD/CAM area is the geometry

representation. There are several fundamentally different approaches for representing

geometry such as Boundary Representation (b-rep or BREP), Constructive Solid

Geometry (CSG), volume sampling, height map, sweeping, implicit representation and

other approaches. Many of them have multiple implementations based on different data

structures such as arrays, lists or trees and unit elements such as voxels, surfaces, planes

or triangles. Traditionally modern CAD/CAM systems use solid modeling engines based

on BREP but also support other techniques such as CSG or sweeping volumes. In

opposition to CAD/CAM world, the game and art industries usually work with triangular

meshes since they provide a different set of tradeoffs which is more appropriate for these

applications.

The BREP approach uses limits for representing a shape. It represents a boundary

between material and empty space by a set of connected surface elements. Surface

elements are usually represented by NURBS (Non-uniform rational B-spline) surfaces or

20

by other analytical surface descriptions. In additional to geometric data the BREP stores

topological information including faces (bounded portion of a surface), edges (bounded

portion of a curve) and vertexes as shown on Figure II-1.

Figure II-1: BREP example [34]

A special case of a BREP, where all faces are planes, is called a polygonal mesh.

The triangular mesh can be described as a special case of BREP as well or as a polygonal

mesh where all faces are represented by a set of triangles as shown on Figure II-2.

Figure II-2: Triangular mesh example [34]

21

The triangular mesh representation is widely used in computer graphics and can

be rendered extremely quickly and efficiently by Graphics Processing Units (GPUs).

In opposition to BREP the CSG approach uses Boolean operations between

simpler objects in order to create a complex solid. The CSG approach does not require

storing additional topological information but the pure CSG approach can represent a

limited set of shapes. As a result it is usually used in combination with BREP approach

which is used for describing CSG primitives.

Figure II-3: CSG example [35]

One approach that is completely different from BREP is representing a volume

itself, and not a boundary surface. Volumetric approaches usually subdivide an entire

space into smaller areas called voxels or cells. Every volumetric element stores volume

sampling data which may contain information such as material density, distance to the

closest surface, color or something also. Based on volume subdivision, it is possible to

notice two ways of sampled approaches: regularly and irregularly. This way of

22

subdivision also affects a selected data structure used for storing sampling data. For

example, a regularly sampled volume data is usually stored in 3-dimensional arrays (this

geometry representation is called “voxel model” and volume elements are called

“volumetric pixels” or “voxels”). In case of irregularly sampled volume data, tree-like

data structures are usually used for as a storage, for example Octree (Figure II-4) or k-d

tree.

Figure II-4: Octree example [36]

Geometry representations described above provide different tradeoffs between

precision, memory usage, parallelization and complexity but they are very general

purpose and can represent any possible shape. In contrast to them, the height map

geometry representation is not capable of representing any possible geometry but

provides an interesting set of tradeoffs and can be useful in tasks like 3-axis milling (with

some limitations which will be mentioned later). The height map (or z-map) represents a

surface by storing sampled distances from a base plane to points of a represented surface.

The distance sampling data can be stored in a 2d array or a tree-like structure such as

quad-tree as shown on Figure II-5.

23

Figure II-5: Quad-tree height map example

Milling simulation

Milling simulation today is a critical component of the milling process that allows

safe usage of machines, prevents collisions, saves material and also allows the selection

of better milling parameters. Many researchers have being working in this area since the

1980s and have developed several different simulation techniques. It is important to

notice some of the most popular approaches described in published works.

In the earliest days of milling simulation area and limited computational resources

Boolean operations on solids was a main simulation tool. For example in 1983 Bertok

and Takata [37] used it for the prediction of a cutting torque and in 1986 Tim Van Hook

[38] described a system for rendering a solid milled by a cutting tool following an NC

path. Usage of Boolean operations on a solid has the benefit of producing a very accurate

result and a perfect image with low computational requirements for a small number of

tool motions. The drawback of this approach, however, is a dependency on the number of

24

operations required for image rendering on a number of tool motions which can be very

high in real NC programs.

In opposition to Hook in 1993, Hsu and Yang [39] used an isometric projection

and a height map data structure for 3-axis real-time milling simulation. This approach

guarantees an independency of rendering performance from a number of tool motions

although it provides only an approximate result with a predefined resolution and does not

provide a natural way for multi-axis simulation. Although as Roth and Ismail [40]

showed in 2003 it is possible to use a height map for multi-axis milling by the continuous

generation of height maps for each tool orientation. A different solution based on the

single voxel model for representing a workpiece was presented in 2000 by Jang and Kim

[41]. The concepts of primitives voxelization process similarly used by Jang and Kim

was published earlier in 1997 by Cohen-Or and Kaufman [42].

One of the crucial components for all described methods is the calculation of the

swept volume of a tool. One of the first papers on swept volume calculation was

published by Wang and Wang [43] in 1986. A newer approach for the APT tool was

described by Bohez and Minh [44] in 2003. Although all mentioned that simulation

approaches are quite different and use different data structures, almost all of them are

pure geometric simulation techniques.

Another class of milling simulation is an actual physical simulation with the finite

element method described in the work of Ozel and Tugrul [45] in 2000 and in the newer

work of Rai and Xirouchakis [46] published in 2008. Although the finite element

approach provides a much more accurate simulation and allows the measurement of

25

many physical parameters like tool temperature or tool load, it has two important

problems. The first problem is a need of physical parameters of material, tool and

machine which are not always available and may be hard to measure. Another problem is

related to a computational time. Modern processors cannot achieve even a real-time

simulation with a relatively coarse grid, which makes finite element simulation a useless

tool for manufacturing and limits its use to scientific research projects.

It is important to notice that most of the latest researches related to milling

simulation lies in areas like error prediction and compensation, like the work of Uddin

and Ibaraki [47] published in 2009 or Cortsen and Petersen [48] published in 2012, web-

based simulation described in the work of Hanwu and Yueming [49] published in 2009,

unification of manufacturing resources description proposed by Vichare and Nassehi [50]

published in 2009, and quad-tree-array based workpiece representation used in the work

of Li and Ding [32] published in 2010.

Parallel processing and GPGPU

It is well known that most popular computer processors as we see them today

were developed in 1980s, and since that time there were two main sources of increasing

their performance: growth of clock frequency which directly increases performance

because it allows performing more operations per second; and growth of transistor

number and circuit complexity which allows performing more complicated commands

and many commands per clock cycle. It is also well known that the physical limitations

of existing manufacturing processes and processor technologies do not allow further

26

significant increasing of a clock frequency and increasing number of transistors in a

processor becomes more and more complicated as well. Since increasing the clock

frequency is not an option anymore and it may be impossible to continue increasing

transistors number soon, at least without a significant breakthrough, it is important to

look at other possible ways of increasing available computational performance which

mainly lies in the area of more efficient usage of existing resources.

In order to understand how to use existing resources efficiently, it is important to

understand that tradeoffs have to be solved by processor developers, which is basically

how to use available transistors. In general, for a given number of transistors there are

two extreme ways to resolve a main tradeoff: make a processor that can perform one very

complicated command per clock cycle; or make a processor that can perform many very

simple commands per clock cycle. In the real world all existing processors are

somewhere in between. For example the Central Processing Unit (CPU), used for

performing most operations in modern computers, can perform few complicated

commands per clock cycle (and actually can perform a few times more simple

commands) and Graphics Processing Unit (GPU), used for 3d graphics calculations, can

perform many relatively simple commands per clock cycle. It is interesting that new

generation of CPUs can perform more and more commands per clock cycle and new

generations of GPUs can perform more complicated commands with fewer limitations, so

both CPUs and GPUs are becoming closer from an architecture point of view.

Although the tradeoff described in the previous paragraph is not just one and there

are many other tradeoffs related to memory subsystem, branch prediction, command

27

scheduling and others, the described one is one the most fundamental and important.

Based on this explanation it is easy to see that CPU is more generally purposed and more

algorithms may achieve good performance since CPUs can perform more complicated

commands specific for each algorithm and algorithms actually do not need to provide

many commands for each clock cycle. In opposition to this situation, GPU can perform

only simple commands and only algorithms which use simple commands and can

perform many commands at the same time will achieve high performance. What is even

more important is that these algorithms will run on GPU much faster than on CPU. This

situation makes sense since CPU is designed for any possible applications like browsers,

games, video players, scientific applications, engineering applications and all have to

achieve good performance. GPU, however, is designed specifically for 3d graphics that

require many simple independent math calculations. Although a GPU may perform only

specialized tasks, these tasks running on GPU may achieve hundreds times faster

performance than they would running on CPU (for example modern desktop CPU may

perform up to 4 billion floating point operations per second (or 4 GFLOPS) for serial

algorithm or up to 192 GFLOPS for highly optimized parallel algorithms and GPU may

perform up to 5621 GFLOPS for GPU-optimized algorithm) and an attempt to get similar

performance boost for all applications is a goal of General Purpose calculations on GPU

(GPGPU) technology which allows running general purpose applications on GPU.

Although GPGPU may look like a great solution for all performance problems, it

only allows running non-graphics code on GPU, but does not change its architecture.

Now developers have to find a way to use GPU hardware more efficiently. The main

28

problem here is how to provide enough commands to GPU on every clock cycle. In the

case of serial processing on CPU only one command of algorithm is given on every clock

cycle, which is exactly how all algorithms are usually designed. In the case of GPU,

hundreds or even thousands of commands have to be given and these commands have to

be independent from each other because they will be performed concurrently or in

parallel. This becomes a problem since usually the commands in algorithms use results of

previous commands and process data continuously. In order to solve this problem new

algorithms and data structures for representing processing data have to be selected or

developed that allow issuing many independent commands every clock cycle and

somehow combining results of their work and designing especially for GPGPU purpose.

GPU architecture and OpenCL

The previous part describes the importance of parallel processing and the tradeoff

that processor manufacturers have to resolve. Although the need of highly parallel

algorithms is the main result of using highly parallel architectures for GPUs it is not the

only one. The GPU memory and work scheduling subsystems are also significantly

different from their CPU analogs and this difference has to be considered in an algorithm

design phase since inefficient memory usage and significant control path branching result

in extremely high performance penalties in opposite to traditional CPUs. In order to

understand how to design efficient GPGPU algorithms it is important to understand the

architecture of modern GPUs that perform these algorithms and available development

tools and concepts.

29

Before going into discussion of GPU architectures it is also important to notice

that there are three major GPGPU platforms on the market today: CUDA from NVidia

[51], DirectCompute from Microsoft [52] and OpenCL from Khronos Group [53]. The

CUDA is a proprietary NVidia technology that works only on NVidia GPUs. It was the

first commonly used GPGPU technology mainly because it was a result of a significant

and successful effort to make a GPGPU development easier. In opposition to CUDA,

OpenCL was developed by Khronos group as an open standard for heterogeneous

computing that may work on many possible devices with different architectures. At the

current moment all major processor manufacturers have added OpenCL support and

released OpenCL SDKs for their processor which means that it is possible to run the

same code on several different platforms. Although an ability to write the same code for

different devices may significantly simplify a development process the significant

difference between architectures requires optimization of code for each architecture or

even device separately. The Direct Compute is the latest technology developed by

Microsoft as a part of DirectX that supposed to compete with OpenCL. In order to

popularize DirectCompute and make it easier to use there was developed the C++ AMP

extension that allows running C++ code with minor changes on GPU. For this work the

OpenCL was selected since it is an open standard supported by all major chip makers

which may become a main standard used for GPGPU computing in future. The OpenCL

programming language is based on C99 standard. It adds the additional concept of a

kernel – functions running on GPU, memory spaces corresponding to different physical

memory locations and some other features which allow access hardware resources.

30

In this work almost all algorithms were implemented in OpenCL and run on

GPUs with NVidia Fermi architecture, and this platform will be discussed (all values will

be given for NVidia GeForce GTX580). Although there are some major differences

between NVidia, AMD and Intel GPU architectures most of the concepts and ideas

behind GPU architectures design are the same and this discussion can be generalized to

all available GPUs.

From the OpenCL [54] point of view every computing system contains a set of

Compute Devices (CD) which are GPUs in case of GPGPU technology used in this

research; every Compute Device contains a set of Compute Units (CU) which are

Streaming Multiprocessors in used CUDA architecture and every Compute Unit contains

a set of Processing Elements (PE) which are CUDA cores as shown on Figure II-6.

Figure II-6: OpenCL platform model

For example one of the computing systems used in this research had 3 Compute

Devices (2x GeForce GTX580 and 1x Quadro 6000) with total number of 46 Compute

Units and total of 1472 Processing Elements.

31

At the same time from the memory model point of view there are Global,

Constant, Local and Private Memory spaces as shown on Figure II-7. Global and

Constant memories are physically allocated in GPU memory which has a relatively high

throughput (~200Gb/s) but very high latency (~800cycles), although Constant memory

has an additional cache which allows efficient reading of the same value by multiple

threads. The Local memory is physically stored inside of GPU chip and every CU has

access to an individual Local Memory storage. This memory type has much lower latency

(~10cycles) and relatively high bandwidth (~1Tb/s) but the size of it is very limited

(~48Kb/CU). The Private memory is the fastest available data storage which represents

CU registers which are divided by all PE and only accessible by one PE. In modern

GPUs there is also available L2 cache (768Kb/CD) used for caching Global memory

access and part of Local memory storage is used for L1 cache (16Kb/CU).

Figure II-7: OpenCL memory model.

32

From the programming point of view GPU processes a grid or N-Dimensional

Range (with up to 3 dimensions) of Work Items as shown on Figure II-8 where all Work

Items are combined into N-Dimensional work groups.

Figure II-8: OpenCL threads grid

For each work item, GPU launches a light-weight thread that performs a selected

function called “kernel”. Since the number of command schedulers on each Compute

Unit is much less than a number of Processing Elements, multiple PEs are combined in a

group (32 elements) called “warp” (“warp” is the term used by NVidia, AMD uses the

term “wavefront” for their architecture, that actually has value 64) and all PEs in this

group perform the same command on different work item data elements. This approach is

called SIMD (Single Instruction, Multiple Data) and it allows development highly

parallel processors which can process many data elements per clock cycles. The

important drawback of this approach is a significant penalty in the case of code

33

branching, it is easy to see that if some threads in a warp follow one branch of code and

other follow another branch they have to wait for each other since they can perform only

one command at a time. This drawback means that efficient algorithms need to have a

low control flow divergence inside warps.

Another important limitation of GPUs is related to the high global memory

latency which can be up to a thousand clock cycles. In order to hide this latency GPU

runs much many threads that it can process at a time and switches between them in order

to process available data while other threads are waiting for loading data. It means that a

number of running threads has to be much higher than a number of processing elements

in order to hide GPU memory latency and this number may need to be as high as tens of

thousands in opposite to few threads on CPU.

The last limitation to be mentioned is also related to a memory subsystem. As it

was mentioned before, physical limitations do not allow significantly increasing clock

frequency for modern processors but the same limitations affect also memory chips and

memory manufacturers need to use a workaround. One of the most popular ways is

similar to processor technologies – use parallel processing or parallel reading/writing in

case of memory. In order to achieve high throughput required for GPU many data

elements or words are loaded from or stored to memory in one memory access operation.

Usually it is implemented in the way that a linear block of words is accessed in one

memory operation (this is a limitation of a memory controller complexity) and the

number of words is equal to number of threads in a warp so each warp thread can read or

write a word in one memory command. This approach works quite well and allows

34

achieving extremely high memory bandwidth, but only if all threads access a continuous

block of memory. If threads access words at completely random memory addresses this

process is serialized and multiple memory access commands are issued which results in a

significant performance penalty.

The described list of three GPU architecture limitations is not a full list, but even

they can reduce performance by many orders of magnitude. In order to understand the

importance of optimization and GPU specific algorithm and data structure design it may

be useful to look on the difference between most efficient and most inefficient programs

from the described limitations point of view. The code branching limitation can reduce

the program up to 32X if all threads follow different branches, the linear memory access

limitation may also result in up to a 32X slower performance if all memory commands

have to be issued 32 times. Memory latency limitation may result in up to 800X slower

performance if processors have to wait ~800cycles for the next data element all the time

if there are not enough running threads. It is easy to see that the difference between the

most efficient and the most inefficient algorithms may almost reach a 1000000X times

just due to three described GPU architecture limitations. It is obvious that real algorithms

are usually not so inefficient but even an order or two orders of magnitude of

performance degradation which are quite common results of optimization are extremely

important.

35

III. 3-AXIS MACHINING SIMULATION

3-axis milling is the most popular CNC milling technology. Successful and

efficient 3-axis milling is not trivial, often requires multiple iterations and has to be

simulated to ensure that the machine tool does not crash due to tool path errors.

There are currently many simulation software systems available for 3-axis milling

on the market. Some of them use GPU acceleration for rendering processes but to the

author’s knowledge, there are no systems that employ the GPGPU programming

approach for both simulation and rendering operations even though modern GPUs have

extremely high theoretical computational performance and general purpose programming

ability. Traditional central processor units (CPUs) are reaching performance boundaries

due to physical limitations and a parallel GPU based approach is attractive for developing

new high performance simulation systems. Although the GPU has significant promise, it

requires a new design approach using highly-parallel algorithms and data structures that

vary significantly from those that are presently employed in the traditional milling

simulation field.

This chapter describes the developed 3-axis milling simulation system based on

the developed parallel algorithms for simulation and rendering. The presented set of

algorithms is based the height map data structure and implemented with GPGPU

approach. There will be also presented experimental milling simulation results and

simulation accuracy analysis. In addition to algorithm presentation there will be a

36

discussion about methodology for algorithm parallelization and selecting parallel friendly

and especially GPU friendly data structure.

Height map representation of a machined workpiece

The selection of the right geometry representation for simulation is the most

fundamental and critical part of any geometry processing software. A geometry

representation has to satisfy accuracy, memory usage and computational requirements but

a critical additional requirement in this research is the ability to use parallel processing

for geometry editing and rendering.

The geometry processing operations used in milling simulation are: geometry

rendering and geometry editing. Triangular geometric representations are the most widely

used for rendering. GPUs are specifically designed for rendering triangular meshes since

this process can be efficiently parallelized and even implemented in hardware as it was

done in the early history of the gaming industry. Although triangular meshes allow high

performance rendering, they are relatively complex from the editing perspective. The

geometry editing during milling simulation can be represented as a set of Boolean

operations between workpiece and tool swept volume. If the workpiece is represented by

a triangular mesh, each Boolean operation requires location of existing triangles

(workpiece surface), calculation of a new surface geometry, triangulation of the new

surface and updating the existing list of triangles. Although some smart tree-based

localization algorithms can be used for solving the triangle location problem, other parts

of this algorithm require a significant amount of calculations and cannot be easily

37

parallelized which is a significant limitation. While multiple Boolean operations may be

parallelized, this is only possible when editing different areas and, more importantly, it

requires a significant amount of synchronization and complex memory management. In

addition, processing different triangles in parallel, as it is done during the rendering

process, is not efficient in the case of continuous editing when many edits are applied

simultaneously and cannot be used to simulate a long program in parallel fashion. The

use of triangles also requires complex memory management due to the unknown number

of triangles generated by each surface change.

It is important to identify two main use cases for a milling simulator. First, a

“continuous simulation” scenario is used when a user is interesting to see machine

motions and find collision. This scenario requires simulation of a short tool motion

between rendered frames since a user wants to see all tool positions and smooth

continuous tool motion. Second, “fast simulation” scenario is used when a user wants to

see a final result of a milling process. In this case a long list of tool motions (or even an

entire trajectory) is simulated between two rendered frames.

These opposite objectives represent a fundamental tradeoff significantly affecting

the editing algorithm and require development of two independent algorithm approaches

since a general algorithm that scales well in a very large range of number of editing

operations may not satisfy both objectives sufficiently. In the many edits scenario, it is

acceptable to perform some data pre- or post-processing, which takes a constant amount

of time. However, this time is separated between multiple edit operations and does not

significantly affect the rate at which edits are applied. In contrast to the many edits

38

situation, a single simulation edit scenario requires as short as possible single edit

processing time because pre- or post-processing time is not hidden by multiple edit

operations (the pre- or post-processing time usually does not rely on the number of data

elements and it becomes very small from a per element point of view in case of many

data elements). Another important limitation of single edit situation is a way of

parallelization because if an algorithm is designed only to process multiple edits in

parallel, it is difficult to provide enough work for multiple computational devices when

the number of applied edits is low. For these reasons, a triangular geometry

representation is a good choice for rendering but is not a good choice for parallel editing

operations.

A natural fit for 3-axis CNC milling simulation is a height map. The height map is

a data structure that represents a surface as a 2D array of distances from a base plane to

the target surface in direction of a surface normal (a simplified 1D height map is

represented by values of H1...H5 on Figure III-1). The reason it is “natural” is because in

most cases, a 3-axis machine is removing material only from one side (top for vertical

machines). Although there are some cutting tools used in the industry that can remove

material under top surface areas, they are beyond the scope of the current research where

the main goal is exploring parallel algorithms for milling simulation. For all other 3-axis

situations, it is possible to represent a machined workpiece as a height map.

39

Figure III-1: 1D height map

A 2D height map array is stored in GPU memory in OpenCL memory space and is

accessible to OpenCL kernels. For this work, the top plane of a workpiece is considered

as a base plane for a height map and the normal is directed up, so all values in machined

areas are negative. However the height map represents only a set of points on a real

machined surface and parts of surface between known points are approximated by linear

interpolation of neighboring points.

Workpiece rendering

In opposition to the triangular mesh, the height map allows implementing efficient

parallel editing algorithm, which will be described later, but does not have good

algorithms for rendering. Since an efficient direct rendering of a height map usually is not

feasibly, a rendering is done indirectly by converted a height map into a triangular mesh

for which there are known efficient hardware accelerated rendering algorithms. This

approach solves two problems at the same time: first it allows using GPU hardware for

efficient rendering and also provides a “free” linear interpolation of surface areas

between points. From a parallel programming point of view the converting process is also

H1

H2 H3
H4

H5

40

quite good since there is always known a number of triangles and all triangles for a mesh

can be generated completely independent.

The described indirect rendering process is shown by Algorithm III-1.

1 For each height map point in parallel:

2 | Generate two triangles

3 | Estimate triangle normal based on neighbor points

4 | Add triangle vertices and normal to a buffer

5 Render a list of generated triangles

Algorithm III-1: Height map rendering

Generally, there are three main steps:

1. Triangles generation

2. Normals estimation

3. Triangles rendering

Each pair of triangles generated for each point represents an approximated surface

around a height map point. Their vertices have the same coordinates as a main point and

3 neighbors:

 () () () (III-1)

 () () () (III-2)

Where represents physical coordinates of a height map point with

 logical coordinates.

Although real normal vectors for each surface point cannot be extracted from a

height map representation, they can be estimated based on height values. For simplicity

41

in this work, lighting calculations use normal vectors of generated triangles which are

estimations of a surface between height map points. These normal vectors can be

calculated as a cross product of triangle edge vectors:

 () () (III-3)

 () () (III-4)

 (III-5)

After generation of a list of triangle vertices and their normal vectors, this list can

be rendered by OpenGL on available GPU in a traditional way. Figure III-2 shows an

example of a rendered simulation result.

Figure III-2: Height map rendering example

From the algorithmic point of view, all three described steps required for

rendering the height map are straightforward. However, it is important to mention that the

42

implementation and performance of these algorithms on current hardware have some

limitations. In this research, the simulated results are rendered using the open source

rending API OpenGL and a main limitation is related to the method of sharing data

between OpenCL and OpenGL. Current hardware does not allow the same buffer to be

used by both languages and requires copying vertex data buffer from one context to

another on GPU. Although using OpenCL-OpenGL interoperability extensions allows

eliminating copying data through host (and very slow PCIex), data is still copied inside

GPU memory. As result there is a constant time overhead due to memory copy operation.

Another limitation is related to multi-GPU configurations. In contrast to OpenCL, which

allows control device data storage and kernel execution, OpenGL does not provide any

control (except extensions for professional cards) of where the geometry is stored and

rendered. OpenGL even performs some synchronization between devices automatically.

As a result, rendering performance of multi-GPU systems may be significantly slower

than a performance of single GPU systems due to additional and often useless data

transfers between multiple devices. These issues are not critical for traditional single-

GPU systems but there is no general way to scale performance efficiently for multi-GPU

systems without considering other geometry representation approaches and rendering

algorithms. This clearly defines opportunities for improved architecture elements for

OpenGL.

43

Generalized cutter representation for 3-axis milling simulation

The previous discussion explained the need for indirect height map rendering and

its method of implementation. But the real strength of the height map geometry

representation is parallel milling simulation. Before explaining the details of the

simulation algorithm it is important to describe how machine tool geometry is stored.

This research is currently limited to 3-axis milling simulation with rotary cutting tools

(without tapered tool support). Although there are many ways to represent a cutter, (e.g.,

a triangular mesh or CSG object) it is obvious that any rotary cutting tool can also be

represented as a half of a curve that is a result of intersection of a cutter and a plane

which contains a cutter axis (Figure III-3).

Figure III-3: Cutting tool intersection

This curve can be represented analytically and described in Automatically

Programmed Tool (APT) language format as it is often done in traditional CAM systems

or also can be represented as a 1D height map shown on Figure III-4 where N is the

number of points representing a cutter.

44

Figure III-4: Cutting tool height map representation

For the purpose of this research, the height map representation was selected not

for geometry processing or algorithm purposes, but because it lends itself well to the

GPU architecture. An analytical description of a cutting tool as a curve usually requires

trigonometric functions that are quite slow on the GPU, especially if accurate but non-

hardware versions are used. As result a height map with resolution of 1024 points for

cutter and linear interpolation of intermediate points was selected to represent the cutting

tool.

3-axis milling simulation algorithm

The height map and generalized cutting geometry are used to simulate the milling

process. Simulation allows the machined surface geometry to be represented without

actual milling. The milling process is simulated by calculating and removing material by

the generalized cutting tool at every point of a tool path. For 3-axis milling, the

simulation process is the sequential update of height map values by the minimum value

between existing values and distances to a cutting tool.

45

Figure III-5: Height map updating process - before editing

Figure III-6: Height map updating process - editing

46

Figure III-7: Height map updating process - after editing

Figures above demonstrate a process of updating height map values for a

simplified 1D height map. The Figure III-5 shows an original surface and height map

values H1…H11 which represent this surface. The Figure III-6 shows a tool and

appropriate distances to a tool surface T5…T9. The Figure III-7 demonstrates a result of

an editing operation with new surface and new height values H1…H11. A single iteration

of an editing process for a single cutter position can be described by the equation:

 (III-6)

It is important to notice that the calculation of each height map value uses only a

previous value and a distance to a tool surface and it is completely independent from

other values. For simulation of an entire tool path with multiple tool locations it becomes

a bit more complicated:

47

 (III-7)

Where are distances to a tool surface for the same logical height

map location and multiple tool positions. The algorithm for implementing the described

approach is shown by Algorithm III-2.

1 For each height map point in parallel:

2 | Retrieve current height value and store as a Current Value

3 | For each tool position:

4 | | Calculate tool surface height value at current height map point

5 | | If new height value is smaller than the Current Value:

6 | | | Replace the Current Value by new height value

7 | | Update height map value by the Current Value

Algorithm III-2: Material removing simulation

The expression (III-7) can also be written in another ways:

 [() () ()] (III-8)

It is mathematically identical to the original expression but represents a

completely different approach for parallel implementation of the same concept as shown

by Algorithm III-3.

1 For each height map point in parallel:

2 | For each tool position in parallel:

3 | | Calculate tool surface height value at current height map point

4 | | Perform atomic operation:

5 | | | Update the height map value with a minimum of existing and new value

Algorithm III-3: Material removing simulation second approach

48

In case of form (III-7) each thread processes all tool positions for one logical

height map point and selects the minimum value. In case of (III-8) each thread processes

only one pair of logical height map point and tool position and then compares its own

result to results of other threads. The tradeoff between these approaches is amount of

calculations and synchronization versus parallelism. The second approach obviously has

to perform much many min operations than the first one but can run much more threads

with easier tasks and offers higher granularity parallelism. Another important issue is a

requirement of additional synchronization between threads, like atomic memory

operations, in case of the second scenario because multiple threads may work together on

the same logical height map point as shown on Figure III-8. The effect of the

implemented collision avoidance techniques on simulation performance due to additional

synchronization will be described later in the performance analysis section.

Figure III-8: Collision example

49

In the current work the second approach, described by equation (III-8), was

selected since it provided slightly better performance on existing NVidia Fermi

architecture. Although in case of this work the selected approach showed better

performance, this tradeoff significantly depends on hardware and has to be considered

independently for different architectures since performance of synchronization

primitives, thread group granularity and command throughput may be very different.

Experimental 3-axis simulation results

The described 3-axis milling simulation and rendering algorithms were

implemented in C++ and OpenCL during the research project and tested on multiple tool

paths. The experimental simulation results are presented in the ensuing text and figures.

a) Original model b) Simulation result

Figure III-9: Test model “Tiger paw”

50

a) Original model b) Finishing result (1/16” ball-end)

c) Roughing result (1/4” flat-end) d) Finishing result (1/16” ball-end)

Figure III-10: Test model “Yoda”

51

a) Original model b) Finishing result (1/16” ball-end)

c) Half way finishing d) Finishing result (1/16” ball-end)

Figure III-11: Test model “Zoo”

52

a) Original model b) Finishing result (1/16” ball-end)

a) Rotated model b) Finishing result (1/8” ball-end)

Figure III-12: Test model “Sculptures”

53

Demonstrated results show that the height map geometry representation model

can successfully be implemented on modern graphics processors for milling simulation

with high accuracy. Although there are no efficient techniques for direct rendering of a

height map, converting to the triangular mesh allows efficient rendering and also can be

accelerated by the GPU. It is important to note that the height map does not represent

vertical surfaces as well or as accurately as horizontal surfaces. This is the reason there

are some color artifacts on vertical walls. These artifacts appear at places with a high

difference between neighboring height map point’s values. These differences result in a

poor normal estimation and incorrect surface color rendering. Increasing the height map

resolution will help with this problem but it will result in increased processing time. The

complexity of height map processing is proportional to the square of the resolution and

results in significant performance and memory penalties as discussed in the performance

analysis section.

Milling simulation and rendering performance

The main goal behind using parallel processing and GPUs for calculation is

obviously getting better performance and scalability. The performances of all the

described simulation algorithms were implemented on both CPU (Single threaded

version) and GPU (Parallel OpenCL version) for comparison. The testing results are

shown on Figure III-13.

54

Figure III-13: CPU vs. GPU simulation performance

Performance testing was performed on a Dell Precision M6500 mobile

workstation with the Intel i7-820QM CPU (4 cores, 1.73 GHz) and an NVidia Quadro

FX2800M GPU (96 CUDA cores, 1.5 GHz) with a 2048x2048 height map resolution.

When comparing hardware, it is important to consider cost. In order to estimate prices

(because the hardware used is only available for OEMs and its prices are not publically

available) the prices of similar retail GPU and CPU hardware costs with very similar

performance were recorded:

 NVidia QuadroFX 2800M ~ NVidia GTS 250 ~ $125

 Intel i7-820QM ~ Intel i5-650 ~ $180

This comparison shows that the parallel algorithm running on the low-end GPU

with the lower than the CPU price provides 8X better performance than the non-parallel

QuadroFX 2800M ~ 125$

i7-975 ~ 1000$

i7-829QM ~ 180$

55

algorithm on the CPU. In order to make comparison more interesting, the fastest

available hardware on the market (at the time of the comparison) is the “Intel i7-975”

CPU with a price of ~$1000. The performance of the algorithm was estimated by

assuming utilization of all available cores and linear performance growth. Since the

performance of the CPU was linearly extrapolated, and the linear performance scaling is

the maximum theoretically achievable result, it is accurate to say that the best CPU

available on the market can only achieve the performance of the low-end GPU which is

~8X cheaper. The demonstrated result shows that GPUs may provide a significantly

better performance for the same task than the best available multi-core CPUs if the right

parallel algorithm is employed.

In contrast to the CPU, the work is always divided into groups or blocks on the

GPU. Each GPU contains multiple multiprocessors with many cores. Selection of the best

block size is an important performance optimization step. Figure III-14 shows that the

implemented simulation algorithm works faster with larger group sizes. It also shows that

there is the relatively constant performance penalty due to the collision avoidance

algorithm which performs the additional synchronization between threads for preventing

collisions.

Another important factor is the dependency of the entire simulation time on a

number of path points processed per iteration (Global size) as shown on Figure III-15.

56

Figure III-14: Performance vs. Group size (global size = 8k)

Figure III-15: Performance vs. Global size

0

5

10

15

20

25

30

35

1 4 16 64 256

Ti
m

e
 t

o
 p

ro
ce

ss
 e

n
ti

re
 p

at
h

, s
e

c

Group size

NC_ON

NC_OFF

0

20

40

60

80

100

120

140

256 512 1024 2048 4096 8192 16384 32768

Ti
m

e
 t

o
 p

ro
ce

ss
 e

n
ti

re
 p

at
h

, s
e

c

Global size

LG 1 LG 4 LG 16 LG 64 LG 256

57

Larger global sizes result in much faster simulation due to better utilization of the

GPU workload. It also shows that the GPU provides good performance only in situations

when the number of processed path points (or working threads) is high enough to load the

entire GPU and to hide the memory access latency. Figure III-16 shows that the high

number of working threads may completely hide the cost of the additional

synchronization required for the collision avoidance algorithm.

Figure III-16: Effect of collision avoidance on performance

The most important conclusion about the GPU performance is that it has to have

enough work and enough threads running in parallel to show good results. Although the

GPU may yield excellent performance results if it has enough work to do, the opposite

statement is also correct and the performance can be very poor if there is not enough

work as shown on Figure III-17.

0

20

40

60

80

100

120

256 512 1024 2048 4096 8192 16384 32768

Ti
m

e
 t

o
 p

ro
ce

ss
 e

n
ti

re
 p

at
h

, s
e

c

Global size

With NO_COLLISION

Without NO_COLLISION

58

Figure III-17: Simulation performance vs. Global size with CPU

It is easy to see that in the case of only 256 path points per iteration the GPU

simulation performance is lower than the single threaded CPU performance. However, its

performance constantly grows with growing global size (number of processed path

points) until it saturates at 32k-64k points per iteration.

There is a quadratic dependency between the resolution per side (symmetric

height map is used for simplicity in this research) and the performance. The simulation

performance was measured for different height map resolutions and the same tool path.

During the measurements, the global size of 1024 points per iteration and the local size

64 were used.

0

20

40

60

80

100

120

140

P
ro

ce
ss

in
g

sp
e

e
d

, p
at

h
 p

o
in

t
p

e
r

se
co

n
d

X

1
0

0
0

Global size

GPU_NC

GPU

CPU

59

Figure III-18: Rendering vs. Resolution

Figure III-18 shows results of these measurements for roughing and finishing tool

paths. The noticeable difference in the performance is the result of different memory

access patterns. In case of the finishing tool path, with a zigzag topology, only a small

area of the height map is accessed during iterations. The reason for this is that the

position of all path points is along a short line segment when the tool moves from one

side to another. In contrast to finishing, the roughing path requires tool movement in a

relatively random way from a memory controller point of view because the path topology

depends on the target geometry and cannot be described as a list of long linear motions

and linear memory access operations. As result the memory access pattern becomes non-

linear. This results in a much lower memory subsystem performance and the slower

simulation.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

, s

Resolution (piexls/side)

Roughing

Finishing

60

Although the simulation performance results demonstrated on the Figure III-18

show a strong quadratic dependency, the total simulation time contains multiple

components. As mentioned previously, the implemented simulation process includes:

 simulation (actual editing of the height map),

 map generation (converting the height map into the triangular mesh),

 rendering (actual rendering of the triangular mesh by OpenGL)

The independent performance results of each step for different resolutions are

shown on the Figure III-19.

Figure III-19: Simulation components vs. Resolution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
 p

e
r

it
e

ra
ti

o
n

, s

Resolution (pixels/side)

Rendering

Map

Simulation

61

It is apparent that for low resolutions (<2048) the main part of the simulation time

is the rendering time. However, at higher resolutions the rendering process does not show

a quadratic performance dependency and becomes a minor part of the final result.

The second longest part of the current simulation implementation is the

generation of the triangular mesh. The process of a mesh generation is very simple from a

computational perspective. The primary time consumption is due to memory transfer

operations. The problem with memory transfers is because OpenCL and the OpenGL do

not share memory and memory must be transferred from the GPU to the host and back.

Although the pure OpenCL specification does not allow sharing buffers there is the

OpenCL-OpenGL interoperability extension available. It significantly improves data

sharing performance. This extension replaces two memory transfers operations over the

PCIEx bus by a single memory copy operation inside the GPU memory that works much

faster. The performance benefit from the usage of the OpenCL-OpenGL interoperability

extension is shown in Figure III-20.

Figure III-20: OpenCL-OpenGL interoperability improvement

With OCL-OGL
interoperability

Withouth OCL-OGL
interoperability

Time(sec) 0.05 0.21

0

0.05

0.1

0.15

0.2

0.25

H
e

ig
h

t
m

ap
 g

e
n

e
ra

ti
o

n
 t

im
e

, s
e

c

62

Accuracy analysis

There are two main sources of geometric errors in the proposed simulation: the

simplified cutter representation and the height map used for workpiece and cutter

geometry representations.

The cutter in this work is represented as a solid with no geometric information

related to the flutes (Figure III-21). As this work is a pure geometric simulation, there is

no need to calculate physical properties of a cutting process that requires flute

information. There is also no practical way to know actual flute orientation at each time

point due to unknown initial condition and variation in a spindle speed. As result,

simulation of individual flutes does not make the simulation more accurate (but it will

require significantly more computational resources) and it is safe to assume that a cutter

is a body of rotation due to high spindle speeds.

Figure III-21: Cutter parts description

63

In order to estimate the geometric error of the height map, it is important to select

the appropriate metric. Since the height map is used in this work, the difference between

an approximated height and an analytically calculated height is used. This approach may

yield inaccuracies as the measurement direction is in a single direction as opposed to the

standard measurement which is normal to the surface.

Since the cutter in this work is represented as a body of rotation a 1D height map

representation is employed. For a ball end cutter, the minimum distance between

analytical and approximate surface can be represented as a difference between actual and

interpolated cutter radius (Figure III-22). Figure III-23 shows dependency of maximum

and mean error values on a number of interpolation points for both methods (“Y” –

height, “R” – radius). It is easy to see that used in this work 1024 interpolation points

result in less than 0.001% average error for both methods.

Figure III-22: Difference between actual and interpolated radiuses

Interpolated

radius

Actual

radius

64

Figure III-23: Cutter interpolation error based on points number

At the same time, the relatively high maximum error value measured by the

height method can be explained by limitation of a method itself. Figure III-24

demonstrates that the error value grows up at the end of a cutter. It is exactly the point

when error measurement happens in a direction that is almost parallel to a surface and the

measurement itself has a high error.

Figure III-24: Cutter error based on position

0.00001

0.0001

0.001

0.01

0.1

1

10

100

2

4
2

8
2

1
2

2

1
6

2

2
0

2

2
4

2

2
8

2

3
2

2

3
6

2

4
0

2

4
4

2

4
8

2

5
2

2

5
6

2

6
0

2

6
4

2

6
8

2

7
2

2

7
6

2

8
0

2

8
4

2

8
8

2

9
2

2

9
6

2

1
0

0
2

Er
ro

r,
 %

 o
f

cu
tt

e
r

ra
d

iu
s

Points number

Max Y error
Max R error
Mean Y error
Mean R error

0

1

2

3

4

5

6

7

8

9

Er
ro

r,
 %

 o
f

cu
tt

e
r

ra
d

iu
s

Position from cutter center to outside wall

Y

R

65

In addition to the cutter representation, a workpiece is also represented as a height

map. But, in opposite to a ball end cutter, calculation of an error distance between

analytical surface and approximated surface for a general shape is not a trivial problem

and it is out of scope of this work. At the same time using just a height difference is not

really useful since it will produce wrong results for vertical walls with large error values.

However it is possible to estimate boundaries of geometry error values. The height map

data structure stores exact surface point positions for each grid point. As result error can

appear only between grid values and cannot be larger than a distance between grid points.

Assuming that a workpiece size is 500x500x500mm and a height map resolution is

4000x4000, it is easy to calculate that the maximum possible error cannot exceed 180

microns. Based on the relations between maximum and average errors given for a ball-

end cutter approximation, it is safe to assume that in most cases an average error will not

exceed 2 microns which is better than the resolution of existing machines.

The last possible source of geometric errors is actually the rendering process or,

more precisely, conversion of a height map into a triangular mesh. In order to prove that

this conversion does not increase geometric error it is important to notice that it is

lossless since all existing surface points are preserved during a conversion process. At the

same time, since flat planes are used for representing surface between height map grid

points, this conversion is nothing more than a linear interpolation process that cannot

introduce an error higher than described earlier.

66

Discussion

In this chapter the developed 3-axis milling simulation system and underlying

parallel algorithm were described and evaluated based from the performance and

accuracy points of view. Additionally there were described rules and recommendations

for GPGPU algorithms design and selecting data structures.

The described work has demonstrated the possibility of using graphics processors

for the CNC milling simulation and possible performance benefits. The experimental

results show up to 8X performance improvement over a traditional processor even

without careful tuning of the GPU code. This is an excellent starting point especially

considering the fact that the GPU performance is not limited by clock frequency as much

as the CPU and that GPU performance continues to improve at a much faster rate than

that of the CPU. It is also important to note that the algorithms and data structures

traditionally used in the CAM area may be not the best choice for GPGPU oriented

applications.

The GPU programming brings many additional limitations and tradeoffs some of

which do not exist in CPU programming or do not affect performance significantly. The

most important tradeoff for parallel programming and especially for GPU programming

is the selection of the parallelization methodology. In the case of the CNC milling

simulation, the most obvious and easiest way is to process multiple path points (or

segments) in parallel. This approach is sufficient from a mathematical perspective if the

required synchronization is implemented properly. It also usually works well on both the

CPU and the GPU when the simulation of an entire tool path is executed. However, the

67

approach does have a significant limitation as the maximum number of threads cannot be

higher than the number of processing path points during iterations. Thus, in the case of a

continuous simulation, when only few path points are processed between neighbor

frames, the GPU performance will be quite poor (even worse than CPU performance in

extreme cases). This is the case as there are not enough threads to hide the memory

access latency and to load all GPU cores. At the same time, CPU performance will be

almost constant in this situation since it needs only one thread per core. This limitation

may require development of different GPU algorithms for different use cases such as the

continuous simulation or the fast simulation to a final result. In contrast to the GPU, there

is only one algorithm required for the CPU in order to get good performance in both

scenarios.

Another important difference between CPU and GPU programming is the

importance of the optimization process. For example, selection of the optimal algorithm

parameters or the memory access pattern usually cannot significantly increase the CPU

performance. At the same time, a non-linear memory access, multiple divergent control

branches or a wrong group size can decrease the GPU performance by three orders of

magnitude and make the GPU performance inferior to that of the CPU.

It is also important to note that the CNC milling simulator requires implementing

two conceptually opposite operations: visualization and data editing. The difference

between them is the fact that the visualization does not change data and requires reading

as fast as possible but the editing process requires changing data as fast as possible and

does not consider efficient reading. Every data structure is a tradeoff between efficient

68

visualization and efficient editing. For example, the triangular mesh is perfect for

visualization because rendering algorithms are implemented in graphics hardware.

However, it is not easy to change the triangular mesh, especially in parallel. The height

map is an example of the opposite tradeoff, it is extremely easy to edit it in parallel but

there are no known ways to render it efficiently. In the described work, the best

properties of both data representation approaches and computational resources were used

to create a hybrid approach. The results of this approach were relatively good but the

penalty for using different data structures is the time required for converting from one to

another. There is also another limitation related to the multi-GPU support and the data

synchronization performed by OpenGL driver but this issue will be solved by future

drivers. Synchronization will become extremely important in the case of development of

a more complicated multi-GPU system.

69

IV. TOOL PATH PLANNING FOR 3-AXIS MACHINING

The previous chapter showed that a GPU can be efficiently used for acceleration

of a 3-axis CNC milling simulation based on the height map geometry representation.

This chapter continues exploring the area of 3-axis CNC milling by showing possible

GPGPU accelerated solutions for tool path planning. This chapter also describes GPU

accelerated 2d contour offset path planning algorithm based on a simple but easy

parallelizable 2d bitmap data structure for roughing tool path generation. In addition to a

tool path planning algorithm the optimization approach for connecting tool path

components based on a topology tree processing will be presented. Finally a GPU

accelerated finishing tool path generation algorithm based on cutter shifting approach and

earlier discussed height map data structure will be discussed as another example of

utilization of the height map data structure for geometry processing on GPU.

The performance evaluation section will provide information about path planning

performance for different models, although there will be no comparison between CPU

and GPU because the algorithms developed are designed for GPU and cannot run on

CPU directly. At the same time, a direct comparison between different tool paths

planning algorithms on different hardware does not make sense due to the different

amount of calculations. Although there will be no direct CPU vs. GPU comparison of the

same algorithm, it will be easy to see that developed path planning algorithms provide

great performance relatively to commercial CAM systems.

70

GPU accelerated 2d contour offset roughing path planning algorithm

The common first step of the milling process is the removal of a vast amount of

material which does not make the surface by a large flat-end tool. This process is called

“roughing” and a tool follows a roughing tool path. Since a part surface is usually not

milled during this step it does not require a very high tolerance but requires a maximum

possible material removing rate and constant tool load. It is easy to see that both material

removal rate and tool load depend on depth of cut, angle of engagement and feed rate.

There are a lot of research works [55-58] done in the area of optimization of these three

parameters offline and online based on material properties, geometry, force response and

other parameters. But for this work a simple assumption that all of them have to be

constant is done since the topic of interest for this work is parallel processing and

GPGPU technology application for tool path planning.

With the assumption about constant depth of cut, it is easy to see that material will

be removed by layers with the distance between the layers equal to the depth of cut value.

It also means that all layers are completely independent and an entire target 3d model can

be represented as a set of 2d bitmaps with only two possible values per element as shown

on Figure IV-1. (More complicated scenarios with 3 possible values per element will be

actually discussed in further chapters.)

71

Figure IV-1: Part slices

The white color on the bitmap represents areas with part material that cannot be

removed and the black color accordingly represents areas with material that has to be

removed. Considering usage of a flat-end rotary cutter that is controlled by a center

position it is possible to construct an area where tool center can go. This area can be

constructed by offsetting each white (target material) region by a tool radius distance as

shown on Figure IV-2.

Figure IV-2: Contour offset

72

The same contour offset approach can be used for the generation of a roughing

tool path. In this case it is applied iteratively and shape contours are used as a tool center

trajectory as shown on Figure IV-3 where red lines represent tool path components and

green lines represent rapid tool movements between different areas connected by a

special algorithm. The approach for optimization of tool path components connection

which uses a topology tree and process path components from multiple layers will be

described in the next part.

Figure IV-3: Iterative roughing tool path

Although the tool path generation process is iterative there are still two major

options for parallelization. The first possible approach is processing different layers in

parallel, since they are independent. This approach is suitable for multi-core CPU or

multi-GPU systems but the number of layers is usually not high enough for loading all

hundreds or even thousands of GPU cores. The second possible approach is processing

73

each bitmap pixel independently by many threads on GPU. For this work, the second

approach was selected mainly because it offers much better scalability and

parallelizability although in the case of multi-GPU systems both approaches can be

combined together and provide even better performance.

The entire contour offset path planning algorithm has 3 main parts:

1) Edge detection

2) Expansion

3) Continuous path generation

The edge detection was implemented similarly to a Sobel filter [59] with a

threshold: each pixel value is compared with 4 neighbors and in case of at least one

neighbor with different value it is marked as an edge. In case of GPU implementation

every pixel is processed by an independent thread and threads in a warp process

continuous range of pixels. The edge detection algorithm is shown by Algorithm IV-1.

1 For all bitmap pixels in parallel:

2 | For all 4 neighbors:

3 | | If neighbor value is not equal current pixel value:

4 | | | Mark current pixel as boundary

Algorithm IV-1: Edge detection

The expansion algorithm is a bit more complicated and can be implemented by

two different strategies: thread per input pixel or thread per output pixel. In case of the

first strategy each thread processes one edge pixel and mark all output bitmap pixels if a

distance between a selected edge pixel and current output pixel is less than expansion

radius. The second approach is the opposite of the first. Each thread selects an output

74

pixel and tries to find an edge pixel around selected output pixel. If there is at least one

edge pixel closer than an expansion value, the selected output pixel is marked. It is also

possible to combined both approaches and run one thread per combination edge-output

pixel. In the case of this combination it is possible to guarantee that amount of work done

by each thread is bounded to a relatively small number of operations which is important

for GPU implementation since it does prevent it from extensive branching. Although

these ways of implementation are quite different they basically provide different

solutions for the tradeoff between amount of calculations, number of divergent branches

and memory access patters. For this work the pure second approach with one thread per

edge pixel was selected (as described by Algorithm IV-2) since it provided the best

performance on NVidia card with Compute Capability 1.1 but other GPU architectures or

even GPUs of the same architecture may perform very differently and require another

implementation for the best performance.

1 For each edge pixel in parallel:

2 | For pixels in range [x-r:x+r, y-r:y+r] (x, y - edge pixel position, r – offset distance):

3 | | If distance to pixel is less than the offset distance:

4 | | | Mark this pixel

Algorithm IV-2: Edge expansion

The continuous path generation, which is the last step of the roughing algorithm,

was implemented on CPU since it is a pure iterative algorithm that cannot be divided into

many independent parts and it does not take a lot of time relatively to other roughing path

planning steps. This algorithm starts with a random edge pixel and tries to find an edge

neighbor of this pixel. If there an edge neighbor exists it is saved to a list of pixels and

75

become a new selected pixel. This process continues iteratively while it is possible to

select a neighbor edge pixel. At the end it starts with another random edge pixel and

performs the same process until all edge pixels are processed. Since it is not known if a

randomly selected pixel is on the end of a continuous path, when the algorithm cannot

find a neighbor near the current pixel it tries to find one near the beginning of a current

segment and connect both segments correctly. Steps performed during the continuous

path construction are shown by Algorithm IV-3

1 While there are non-processed edge pixels:

2 | Create a new path list

3 | Select a random edge pixel

4 | While there are non-processed neighbors:

5 | | Select a random neighbor

6 | | Mark selected pixel as processed

7 | | Save selected pixel to a list

8 | If initially selected pixel was in the middle of a path:

9 | | Repeat steps 4-7 for another part of a path and place results in the same list

Algorithm IV-3: Continuous path construction

The next part will explain a possible optimization technique for connecting

multiple path components into one continuous tool path with relatively short movements

between different path segments.

Tree based algorithm for path components connection optimization

One of the most important parameters of the roughing tool path planning

algorithm is the milling time. It contains time of material removing and moving of cutter

76

from one position to another. Since the material removal rate is usually a constant value it

is easy to see why the best path requires continuous material removing all the time

without cutter movement between different areas.

A machine removes material layer by layering in different areas with the

described roughing path planning algorithm, as result roughing path contains a lot of path

components for each layer and machine needs to move cutter from one area to another if

they are not connected together. This movement between different areas of each layer

costs extra milling time and may become a significant part of entire roughing time for

some specific part geometries. One of solutions for this problem is optimization of order

of sub paths while generating a roughing path automatically. There are many ways to

connect paths generated after the processing of each layer. The simplest way is to connect

all path components for each layer and process all layers sequentially. This way is easy to

implement and it works quite well in modern software but if a part contains some deep

holes machine has to move cutter from one whole to another. Figure IV-4 and Figure

IV-5 illustrate this situation. Movement from area A to area B requires to move the tool

up and down 5 times. The same situation exists with area C. As a result processing of

such part layer by layer requires too many useless motions.

Figure IV-4: Slicing test part

77

Figure IV-5: Not optimized tool path

The developed approach allows solving this problem. It is based on the fact that it

is not possible to remove more material on each layer before removing material on

previous layer, or it is not possible to remove material from any point of any layer

without removing of materials on top of this point from a previous layers (this algorithm

does not work with some special cutter which allow to do it with some limitation). It is

possible to say that each layer is a sub-layer of previous layer and it is possible to

construct a tree of layers (Figure IV-6).

Figure IV-6: Generated tree

78

A standard tree processing algorithm may be used for generating a sequence of

sub-paths. The algorithm starts with an area at the top level and checks all sub-areas on

the next layer, than it does the same operation recursively for each sub-area. When an

area does not have any sub-areas algorithm generates a roughing path for it and connect it

to a path of previous sub area. It generates the best path by processing layers and

minimizing useless movements because this path takes only one movement for moving

tool from one area to another (Figure IV-7).

Figure IV-7: Optimized tool path

This algorithm (Algorithm IV-4) can be used for optimization of paths for 3-axis

machine as well as for lathe machine and even for some specific 5-axis machine paths if

it is possible to represent them as a tree. It is also possible to optimize result path with

selecting the best order of area processing. In this case a set of classic Traveling salesman

[60, 61] problems for the distances between areas for each section has to be solved. The

solution of them will give the shortest path between different areas and minimum

roughing time as result.

79

1 For each layer:

2 | Find all independent regions

3 | For each region:

4 | | Create a tree node associated with this region

5 For each layer from bottom to top:

6 | For each region:

7 | | For each region of previous layer:

8 | | | If current layer region has common pixels with previous layer region:

9 | | | | Add an edge between their nodes

10 Use depth-first tree traversal algorithm for generating a sequence of regions

11 For each region in sequence:

12 | Generate roughing tool path

Algorithm IV-4: Tree optimization

The algorithm was tested on a real machine and in the simulator (Figure IV-8),

which was described in the previous chapter. It can be seen that it allows processing each

area separately and saves time for movement from one area to another, since it processes

every region completely before going to a next one.

Figure IV-8: Tree optimization testing result

80

GPU accelerated shifted zigzag finishing path planning algorithm

Previous parts have described the parallel implementation of the contour offset

roughing path planning algorithm and the tree based approach for optimization of path

components connection. Although in real-world scenarios the next milling step is often a

semi-finishing operation, it is not too different from roughing from an algorithmic and

parallel processing point of view. Since this research is not interested in semi-finishing,

this part goes directly to the finishing operation and its implementation.

In this work the tool offset finishing generation algorithm with a zigzag topology

tool path was selected for researching of GPU implementation. The main idea of this

approach is to separate 2d tool path topology and actual tool position calculation into two

independent problems. Generation of a 2d tool path is not computationally complex

problem and it may be done quite fast on traditional CPU. As a result 2d tool path

generation is not particularly interesting for this research and a simple zigzag tool path

generated on CPU is used for finishing tool path generation. On the other side,

calculation of an actual tool position in 3d space, which can be reformulated as

calculation of a tool height or Z coordinate since 2d position is known, is much more

complicated computational problem which requires a lot of resources. The idea of the

tool offset approach is to start with a known 2d tool position and a random tool height at

which tool may intersect a surface or does not touch it at all and find an offset required

for moving a tool at a position when it exactly touches a surface as it is shown on Figure

IV-9.

81

Figure IV-9: Tool offset

It is easy to see that the offset distance is equal to maximum vertical distance

between a target surface and a tool surface. At the same time the distance between

surfaces at every point can be expressed as a difference between height values of these

points as shown on Figure IV-10. Considering usage of the height map geometry

representation described earlier a tool offset value for each 2d tool position can be

expressed as:

 (IV-1)

Where is a number of height map test points is, is a height value of a target

surface and is a height value of a tool surface.

?

82

Figure IV-10: Distance between tool and target surfaces

In order to generate a finishing tool path for an entire surface tool offset, distances

have to be calculated for every point of an initial 2d tool path.

Figure IV-11: Required testing points.

As Figure IV-11 shows, it requires testing every tool surface point for every path

point which results in many billions of test points. Considering the fact that all path point

Ti

Hi

83

offsets are completely independent and the offset calculation algorithm is very simple,

from the mathematical point of view this problem is a perfect fit for parallelization and

GPGPU implementation.

In this work the described algorithm was implemented on GPU with C++,

OpenCL and OpenGL. The OpenGL is used during the first step for a very fast

construction of a height map from an input STL model by rendering a triangular mesh

with orthogonal projection and extracting Z-buffer values which represent a height map

(Figure IV-12).

Figure IV-12: Height map generation with zigzag 2d path

On the second step, C++ code is used for generation of a 2d zigzag tool path and

OpenCL is finally used for generation tool offsets for every 2d tool path point. The

implemented version of the OpenCL code utilized independency of multiple path points

from each other for parallelizing algorithm execution. Each OpenCL thread selects a 2d

path point and processes all cutter surface points by calculating a maximum difference

between a target surface and a tool surface. The result is saved to a global memory

84

without additional synchronization since all dependent calculation happens in one thread.

The complete finishing tool path planning algorithm is shown by Algorithm IV-5.

1 Generate 2D zigzag path with zero tool height (Z coordinate) at each point

2 For each 2D path point in parallel:

3 | Initialize the tool offset value with some a large negative value

4 | For each tool surface point:

5 | | Calculate a difference between tool and target surfaces point heights

6 | | If the difference is greater than the stored tool offset value:

7 | | | Replace the offset value by the calculated difference

8 | Use the maximum difference as a new tool height value

Algorithm IV-5: Finishing path planning

Since CNC machines require control by G-code commands there was also

developed a simple post-processor that converts a sequence of tool center coordinates

into a list of G-code commands accepted by the used Okuma machine and also performs

some optimizations of a sequence like the detection of straight lines represented by

multiple points and replacing it with a single command in order to reduce an output file

size.

Experimental 3-axis path planning and milling results

During the research project, developed path planning algorithms were

implemented by using C++, OpenCL and OpenGL with support of GPU acceleration and

performed on Dell Precision M6500 mobile workstation (GPU: NVidia Quadro

FX2800M with 96 CUDA cores @1.5GHz, CPU: Intel i7-820QM, 4 cores @1.73GHz).

Implemented algorithms were used for generation tool paths and G-code programs that

85

were tested by performing both simulation in developed simulator and milling on the

Okuma MB-46VE CNC milling machine. A set of randomly selected complex 3d models

in STL format available on the Internet was used as the input for path planning

algorithms. In this part of the research, project collisions between tool holder, machine

components and workpiece were not considered and manually avoided by selecting

proper tooling and fixtures (collision avoidance will be described in following chapters

during a discussion about 5-axis orientation selection). All milling experiments used 1/8”

flat-end cutting tool for roughing and 1/16” ball-end cutting tool for finishing and were

performed with two different types of plastic. Figures on pages 85-87 demonstrate both

the simulation and milling results of the performed experiments.

Figure IV-13: Experimental milling results for the “Tiger paw” model

86

Figure IV-14: Experimental milling results for the “Sculptures” model

Figure IV-15: Experimental milling results for the “Yoda” model

87

Figure IV-16: Experimental milling results for the “Zoo” model

Discussion

In this part of the work, a set of popular algorithms were redesigned in order to

implement them on GPU and demonstrate a possibility of using GPU for tool path

planning calculations. The experimental simulation and milling results show that the tool

trajectories generated by GPU are valid and can be used for actual milling. At the same

time GPU implementation of path planning algorithms show that traditional approaches

for representing and processing geometry may be not the best choice for GPU and there

is a need for replacing them by other GPU-friendly geometry representations and

algorithms.

88

It is important to notice that the height map data structure used allows path

planning for 3-axis machines with some limitations only. There are known techniques

that allow using multiple height maps for 3+2-axis milling but there is no way to do more

general 5-axis path planning without significant changes to a geometry representation and

algorithms. Although a height map is not suitable for 5-axis milling, it is one of the best

candidates for geometry representation that can be easily processed in parallel, and it may

make sense combining more complicated data structures for 5-axis milling with some

special cases like pocket milling or initial roughing operations processed with a height

map.

89

V. 5-AXIS MACHINING SIMULATION

 5-axis CNC milling is not as popular today as the 3-axis milling mainly due to its

complexity. Two additional degrees of freedom make the tool path planning process

much more complicated. They also significantly increase a chance of a collision in case

of a path planning error. And from the mechanical point of view it is much harder to

make 5-axis machines as rigid as their 3-axis analogs. Although two additional axes bring

a lot of problems and complexity, they also bring a lot of freedom and possibilities. For

example, the 5-axis milling may significantly decrease a number of setups and related

positioning errors. And what is most important is that 5-axis milling can significantly

decrease the milling time and produce better surface quality by using a more efficient tool

orientation and a shorter tool path. But in order to use benefits of the 5-axis CNC milling

the tool path planning process has to be automated or at least significantly simplified.

This chapter discusses one of the most important parts of the tool path planning

process – the milling simulation. The milling simulation is used for two different areas.

From one side it is an important component of a tool path planning process since

continuous simulation allows selection of a safe tool orientation and save time by

processing only areas that contains material. From the other side, the simulation process

is extremely important for verification of a generated tool path in safe virtual

environment before using it on a real machine.

The problem with 5-axis simulation is its complexity from the mathematical and

the computational points of view. As it was showed in previous chapters the

90

computational problem can be solved by using GPUs for calculations. But in the case of

the 5-axis simulation there are no known highly parallel algorithms and data structure

that can be used in GPGPU approach. The 5-axis workpiece cannot be naturally

represented by a height map as it was done in the 3-axis milling and there are no known

geometry representations that can be efficiently edited in parallel on GPUs, provide good

performance and memory usage. As a result there is a need for a specially designed data

structure and highly parallel simulation algorithms especially designed for 5-axis milling

simulation.

During this research project, a new volume representation was developed as well

as a set of algorithms for the 5-axis CNC milling simulation that can run on multi-GPU

systems. Although the described system is designed for 5-axis CNC milling, it is quite

general and can also be used for simulation of multi-axis machines with more than 5

axes.

This chapter describes the developed volume representation, the used data

structure, rationale behind its design and discusses its properties. It also provides

information about developed highly parallel algorithms used for rendering and editing

and the algorithms performance evaluation. Finally it describes experimental simulation

results and discusses the efficiency of the performance scalability on multiple GPUs.

Geometry representations and data structures evaluation

As was mentioned in one of previous chapters, selection of a right geometry

representation and an underlying data structure is a key component of a geometry

91

processing system. In the case of the 5-axis milling simulation workpiece geometry is not

limited as much as in the 3-axis milling and the height map representation used earlier in

this work does not fit naturally for the new purpose. It means that a new geometry

representation has to be selected or specially designed for this work.

Before going into discussion about possible solutions it is important to define a

set of features and properties that a new geometry representation has to provide.

 First of all it has to be able to represent any possible geometry with high

precision and without topological limitations by using a reasonable

amount of memory.

 From the parallel processing point of view, an underlying data structure

has to provide an ability to render and edit geometry in parallel with a high

level of parallelism without significant synchronization overhead.

 From a scalability point of view it is important to be able to split a model

between multiple devices with very limited communication channels.

It is important to note that scalability and parallel processing are more important

than performance of serial algorithms for processing this data structure since. In contrast

to CPU, GPU performance grows over time and not limited too much by physical

limitations. So it is much easier to increase the available performance linearly just by

using more GPUs or using newer processors if a geometry representation can be scaled

efficiently. Now, existing geometry representations can be evaluated based on the

formulated requirement.

92

The most popular in the CAD/CAM field, BREP geometry representation

obviously meets the accuracy and memory usage criteria but fails both parallelization and

scalability requirements. The problem with parallelization and especially GPGPU

processing of BREP is related to the mathematical complexity of the surface elements

representation and an absence of spatial boundaries of surfaces elements. For example,

there are no boundaries on a number of surfaces that represent a given workpiece surface

region. A region can be represented either by a single surface or by a thousand of

surfaces. It means that there is no way to guarantee a high number of elements that can be

processed independently in parallel and provide enough GPU load. Possible differences

in a mathematical description of surface elements make the situation even worse since

even independent surface elements cannot be processed by the same algorithms. It results

in inefficient GPU utilization since multiple threads in the same warp have to wait for

each other and cannot process elements concurrently.

The triangular mesh represents the tradeoff between the geometry accuracy and

the surface representation complexity. It can be viewed as the BREP with surface

elements simplified to planes connected to exactly three neighbors (triangles). Using

triangles allows using the same algorithm for processing all surface elements. It results in

much more efficient geometry processing on GPU, especially in the mesh rendering

process, but it does not help with the geometry editing issues that the BREP has. In

addition the approximation of a surface by triangles requires extremely large amount of

memory for achieving high precision.

93

In contrast to boundary geometry representations like BREP and triangular mesh,

the volumetric geometry representations have a completely different set of tradeoffs.

Probably one of the simplest volume representations is the voxel model. Voxel model

subdivides an entire volume into a 3-dimensional grid of independent elements called

voxels. Each voxel has a value that may represent some properties of that area of volume

such as distance to the closest surface, amount of material or simply a presence of

material. The most important voxels property from the GPGPU point of view is their

independence. It means that each voxel can be processed completely independent from

other voxels and it can be done in parallel on multiple devices. Another important

property of the traditional voxel model is the fact that a volume is sampled regularly. It

means that there is a constant predefined number of voxels for a given volume and a

given resolution. And it results in a very simple memory management. Although the

voxel model looks like a perfect choice for GPGPU computing, since it has both

parallelizability and scalability, it has an extremely important drawback. An amount of

memory required for storing the voxel model is proportional to a third power of the

model resolution. It makes completely unfeasible using it for precision tool path planning

without additional algorithms that can overcome this limitation. For example, a 500mm

cube represented with 2micron resolution as a voxel model will require ~14PetaByte of

space for storage. This is approximately the same as an entire Google or AT&T process

every day and it is definitely not feasibly for CAM applications.

In contrast to the regularly sampled voxel model, that provides perfect

parallelizability and scalability, there is a class of irregular sampling volume

94

representation approaches. Usually irregularly sampled approaches are represented by

trees such as the octree with constant cells ratio or the k-d tree with a variable cells ratio.

Irregularly sample models provide a tradeoff between memory requirements,

parallelizability and complexity of a memory management process. They need much less

memory than the traditional voxel model, but a tree processing is usually implemented by

recursion algorithms which are not well suitable for GPU processing since GPU kernels

cannot launch other kernels (this feature is not available in GPUs currently available on

the market at least). Tree processing on GPU is a tradeoff between the number of kernel

launches (which is equal to a tree height) and the overhead required for launching each

kernel and work planning. On one hand higher (or deeper) trees provide better resources

usage and may provide higher accuracy and on another hand every additional level

requires another kernel launch and jobs planning time. An additional problem of all tree

based algorithms is the memory management. In the case of CPU processing, there is

virtually no significant memory allocation or releasing penalty, and every thread can

manage its memory independently. But there is no such natural mechanism for GPU and

the implementation of a memory management system can significantly increase an

algorithm complexity, and add extra performance penalties. Although irregularly sampled

volume representations have significant drawbacks related to GPU computing, and their

implementation itself is not trivial, it is important to note that they still provide a high

level of parallelizability and scalability. It means that an irregularly sampled volume

represented by a tree can be a good starting point for designing a data structure for

95

GPGPU accelerated simulation and tool path planning but there are additional changes

required since available implementations cannot be efficiently ported to GPU.

Approach Z-map BREP Trian.

mesh

Voxel Octree

General Bad Good Good Good Good

Accuracy Average Good Average Bad Average

Memory Average Good Average Bad Average

Rendering Average Average Good Average Average

Editing Good Bad Bad Good Average

Scalability Good Bad Bad Good Average

Complex Good Bad Good Good Average

Table V-1: Geometry representations comparison

Developed irregularly sampled volume representation

As was mentioned above, existing geometry representation approaches provide a

wide range of tradeoffs between accuracy, memory usage, parallelizability and scalability

but do not offer a perfect choice for GPU-computing. As results it is possible to note that

there is a need for a specially designed geometry representation and a corresponding data

structure that can be used for the 5-axis CNC milling simulation and tool the tool path

planning process.

Based on the geometry representations evaluation it is easy to see that volumetric

approaches are better suited for parallel processing than surface based approaches, mainly

because of independence of volume elements which can be processed independently and

predictability of a workload. It is also more natural for the milling simulation to represent

96

a volume since the actual physical process is the volume removing process. It is also

obvious that the regularly sampled volumetric approach (such as the voxel model) cannot

be used due to memory requirement, and that there is a need for an irregularly sampled

representation. However even irregularly sampled tree-based representations cannot

achieve a BREP level of accuracy with reasonable memory requirements. For example,

considering the representation of a 500mm cube with 2 micron elements (as an example

of a work area and accuracy found in modern 5-axis machines) and 1 byte per element, a

simple part would require ~350Tb (6 sides * (500 mm /side / 0.002 mm)^2) of data just

for surface representation without considering a data structure overhead. It is much more

than modern personal computers can store and process in a reasonable time. It also means

that the available volumetric geometry representations will always have a limited

precision in comparison to the actual machine precision. From one side it may look like it

is a fundamental limitation that cannot be overcome. But from another side there are not

so many use cases with a real need of the extremely high accuracy. It may be more

efficient to use data structures with lower accuracy and some workarounds for these

special cases.

After accepting the fact of accuracy limitation for volumetric data representations,

the next step is to make a decision about the tradeoff between memory usage, accuracy

and parallelizability. There are two main relations between these parameters. First, more

complicated data structures provide higher accuracy for a given amount of memory.

Second, deeper trees provide more efficient memory usage for a given accuracy.

Relatively complicated data structure with non-predictable density such as k-d trees are

97

less suitable for this research due to GPGPU specific load balancing (the problem similar

to the BREP) and editing problems. Although generally they provide higher efficiency,

their processing algorithms are more complicated, often have non-linear memory access

patters and have a higher branch divergence. These properties result in significant

performance penalties on modern GPUs. As a result, it is possible to note that considering

the existing GPU architectures the designed data structure has to be as simple as possible.

One of the simplest possible tree-based volumetric representations is a tree with nodes

where each node represents a regularly sampled volume and a list of references to its

children. The octree is a classic example of this type of geometry representations with 8

children per node.

One of the most important steps is the selection of a number of children and

amount of geometrical data stored in each tree node. It is easy to see that a higher

children number reduces memory usage efficiency (in an extreme case a tree becomes a

voxel model) and a tree depth for a given accuracy. But it is also important that a

geometry processing can be efficiently parallelized by processing each child of a node

concurrently. If this is done by a warp, it makes memory access more efficient by storing

children data in a continuous memory block which can be read linearly in one memory

access operation. Considering the amount of geometrical data stored in a node it is

possible to say that more data approximates geometry better but uses more memory. On

one side of this tradeoff, each node contains a complete mathematical description of all

geometry elements. And on the other side, it is possible to use only one bit to store

information about presence of material in a nodes volume (or store a byte that describes a

98

distance to a surface or material density as it is done in the traditional voxel model). The

first approach is similar to the BREP and has similar problems. Complete geometry

description requires using complex algorithms and complicated memory management

since it is not possible to predict a content of a node after editing. The opposite approach

is actually much more GPU-friendly because the amount of data is constant, geometry

processing algorithm is much simpler and all nodes use exactly the same geometry

processing algorithm.

Based on the described tradeoffs there was designed a volumetric data structure

for the GPGPU accelerated multi-axis CNC milling simulation and the tool path planning

(Figure V-1). The developed geometry representation is a 2-level hybrid of the tree and

the voxel model. It uses a 3d array of cells that represents a regularly sampled volume.

Each cell stores 2 bits of geometrical data (similar to voxel model) and a pointer to an

array of 4096 children (similar to a tree). Cells children (called “subcell”) represent a

regularly sampled (16x16x16) volume and store 2 bits of geometrical data but do not

store pointers to their children. 2 bits geometrical data is used for 3-color scheme for

geometry representation. They represent 3 possible states of a cell or subcell:

 Cell is completely filled by material

 Cell is completely empty

 Cell state is unknown and it probably contains a boundary

99

Figure V-1: Developed geometry representation model

In contrast to traditional cubical voxels, cells or subcells represent spheres

circumscribed around traditional cubes calculated by volume subdivision.

The Figure V-2 demonstrates a surface representation example with the 2D

version of the described geometry representation and square cells.

Figure V-2: 2D example of the developed model surface representation

From a hierarchy point of view, it can be viewed as a 2 level tree as shown on

Figure V-3. It is important the low level nodes that represent subcells are stored in voxel

models. But information about high level nodes is stored in a list. As result, links between

Cells

Subcells

Surface

Full Boundary Empty

Voxel model

100

nodes are not really stored anywhere as it is done in traditional trees but the model still

has a tree like hierarchy. First level links are represented by indexes in a cells list and

second level links are represented by indexes in voxel models. This approach allows

saving a significant amount of memory relative to a traditional linked tree based

approach.

Figure V-3: HDT hierarchy

From a memory point of view, the developed model looks like the diagram shown

on the Figure V-4.

Root

Cell

Subcell

Cell Cell Cell

Subcell Subcell Subcell Subcell

101

Figure V-4: Developed geometry model from a memory point of view

The rationale behind the selected design is an attempt to combine parallelizability

and scalability of the voxel model and memory efficiency of tree based geometry

representations. The 2-level design provides much better memory efficiency than the

voxel model but almost does not affect performance. With a high enough number of

children all their data are stored in continuous 1KB blocks of memory that can be

efficiently read and each cell is processed by a warp. The reason for the selection of the

2bit geometry representation and spherical cells is an attempt to use as simple as possible

geometry processing algorithms with the lowest number of branches. Further parts of this

work will describe geometry editing and rendering algorithms and the importance of

102

spherical cells for making them simpler. 2 bit data structure also allows increasing

resolution almost twice with the same memory usage in opposite to the traditional voxel

model (1 byte per voxel). The used design also achieves great scalability. Since all cells

are completely independent they are stored on multiple GPUs (and possibly on multiple

computers) and processed independently with the almost linear performance

improvement. The multi-GPU scalability will be also discussed later in this chapter.

Although the detailed performance evaluation will be provided later in this work,

it is important to note that the designed data structure showed great parallelizability and

scalability. The 3-GPU configuration successfully simulated and rendered in real-time a

workpiece represented with the resolution of 6000^3 which is not feasible for a

traditional voxel model due to memory usage.

Tool motion representation for 5-axis milling simulation

Before describing actual milling simulation algorithms it is important to discuss a

machine tool representation since it significantly affects material editing algorithms. One

of the most popular tool models used in researches is a generalized tool model shown on

Figure V-5 and described by Chiou and Lee [62]. It contains three main parts: lower and

upper cones and a torus component. The benefit of this model is an ability to represent a

wide range of popular cutters with the same model. For example, a ball-end mill can be

represented by completely eliminating both cones or a flat-end tool can be represented by

eliminating torus component.

103

Figure V-5: Generalized tool model [62]

At the same time this model is not the best solution for a GPU-oriented simulation

system. In order to understand why it is not the best choice it is important to look on

description of 5-axis motions of this tool. Chiou and Lee [62] provide solutions for swept

profiles of a torus (V-1) and cones parts (V-2), (V-3). It is easy to see that the depicted

solutions have many trigonometric functions. It means that actual computing kernels will

have to calculate quite many trigonometric operations which are quite slow on modern

GPUs especially if full precision is used.

104

(V-1)

(V-2)

(V-3)

Although the presented solution can be used, and it does provide the generalized

tool support, this work is oriented on a search for GPU-friendly solutions. As result, there

was selected a tool representation approach similar to the Constructive Solid Geometry.

A tool is represented as a set of simple geometry shapes such as spheres, cylinders,

planes. And a swept volume of each simple shape is also a simple shape. For example a

sphere makes a swept volume that can be described by two spheres and a cylinder. A

105

cylinder at the same time makes a swept volume that can be described by a prism and two

cylinders.

It is important to notice an important assumption made in this work: true 5-axis

motions can be approximated accurately by a set of 3+2 axis motions. Although it is not

generally true, true 5-axis motions are not as popular as 3+2 axis motions even on 5-axis

machines. And even in case of true 5-axis motions only a tip of a tool is used most of the

time and the assumption is valid in this case. At the same time the selected approach can

be used for representing true 5-axis motions but swept volumes of simple shapes in this

case become much more complicated and they are not discussed in this work.

The selected tool representation approach has multiple benefits. First of all, very

simple geometric tests can be used for detection if a cell or subcell is completely inside or

outside of a tool swept volume. Another benefit is the even higher possible

parallelizability since different tool swept volume components can be processed

completely independently. For example, formulas (V-4), (V-5) show how a cell can be

tested.

 | |

 | |

 [| |] [() (| |)]

(V-4)

106

 | |

 | |

 [| |] [() (| |)]

(V-5)

f represents a Boolean value, which means that a cell is fully inside of a swept

volume and e represents that a cell is completely outside and not affected by this tool

movement. It is noticeable that all operations in these formulas are very simple and

actually implemented in GPU hardware. Formulas represent geometric tests for a steady

tool. Although, in case of actual movements, these formulas will get additional

components and become a bit more complicated. . As it is shown on Figure V-6 a 3+2

axis tool movement will create an additional prism and cylinder. All geometric tests for

these shapes will still be efficient since almost all of them are based on hardware

implemented vector operations.

Figure V-6: Ball-end tool swept volume model

P

N

0
R

107

5-axis milling simulation based on irregularly sampled volume

The previous part describes the selected tool representation and the reasons why it

is better to use a CSG based tool model than a traditional generalized cutter

representation. This part goes forward and discusses implementation of the developed

geometry representation and the material removing simulation algorithm. It is based on

the assumption that there are known solutions for determining if a spherical cell is

completely inside, outside or on the boundary of a tool swept volume one of which is

shown in the previous part.

The implementation of the developed geometry representation model (called

Hybrid Dynamic Tree or HDT) contains 3 main parts: array of cells, pool of subcells and

a memory map. In contrast to a traditional voxel model, which stores all cells information

in a 3d array, the HDT uses a constant length list (implemented as 1d array) where every

element contains coordinates of a cell, cell value and a reference to a subcells node. The

rationale behind this way of storing data is improving of the data structure scalability.

During a data structure initialization time an entire space that has to be represented is

regularly subdivided into cells as it is done in a voxel model. Then, based on the number

of computing devices (in the current implementation, GPUs), each cell is randomly

mapped to a specific device and the generated map is stored for using during initialization

of other data structures on the same computer. Random mapping with uniform

distribution guaranties that every device gets a reasonable equal amount of work (cells to

process) for any possible spatial distribution of edited cells. This fact is a key component

for the efficient load balancing of multi-GPU configurations. The developed

108

implementation actually divides cells based on an estimation of a device performance for

improving load balancing of systems that have multiple different GPUs as it is shown on

Figure V-7.

Figure V-7: Multi GPU load balancing

Every cell contains the complete information required for cell editing or rendering

and can be processed completely independent from other cells. It is required for better

scalability since each computing device needs to store only a subset of all cells and does

not need information from other cells. It significantly reduces traffic between host and

GPUs since each GPU has all required information in its own memory.

During a milling simulation the simulator processes a sequence of tool

movements. Each tool movement is represented as a set of geometric primitives and each

GPU calculates if there are cells intersecting one or more of these primitives. Generally

each GPU performs a set of geometric tests, similar to those described in the previous

part, in order to determine if a cell is intersected or hovered by a tool movement swept

volume. If a cell lies completely inside of a tool swept volume, it is marked as an empty

cell and its subcells node is released (if it was a boundary cell). If a cell is intersected by

one or more tool swept volumes it is added to a list of cells that have to be further

processed. The Algorithm V-1 demonstrates the first part of the simulation algorithm.

109

1 For all cells in parallel:

2 | For all tool motions:

3 | | Calculate intersection between cell and swept volume

4 | If cell lies inside of at least one tool swept volume:

5 | | If cell is full:

6 | | | Mark cell as empty

7 | | If cell is boundary:

8 | | | Mark cell as empty and add to a list for subcells cleaning

9 | Else:

10 | | If cell is intersected by swept volume:

11 | | | If cell is full:

12 | | | | Allocate memory for subcells from a memory pool

13 | | | If cell is not empty:

14 | | | | Add cell to a list for subcells processing

15 For all cells in cell cleaning list:

16 | Mark all subcells as full

17 | Return memory allocated for subcells to a memory pool

Algorithm V-1: First part of the machining simulation process

1 For all cells in subcells processing list in parallel (per multi-processor):

2 | For all subcells in cell in parallel (per core):

3 | | For all tool motions:

4 | | | Calculate intersection between subcell and swept volume

5 | If subcell lies inside of at least one tool swept volume:

6 | | Mark it as empty

7 | Else:

8 | | If subcell is intersected by at least one swept volume and subcell is not empty:

9 | | | Mark it as boundary

Algorithm V-2: Second part of the machining simulation process

110

The second part (shown by Algorithm V-2) of the material removing algorithm is

the processing of subcells. During processing cells each GPU generates a list of cells

intersected by a swept volume. This list is used for selecting subcells that have to be

further processed. The algorithms performs the same set of geometric tests to each

subcell and determines if a subcell is completely inside of a swept volume, completely

outside or interested. Subcells that lie completely inside of a swept volume are marked as

empty. Subcells intersected by a swept volume are marked as boundary if they were

completely full by material. The Table I-1 shows the possible cell value changes based on

results of geometric tests.

Cell \ Swept volume Inside Intersected Outside

Full Empty Boundary Full
Boundary Empty Boundary Boundary
Empty Empty Empty Empty

Table V-2: Cell value changes

a) Initial surface representation

111

b) Results of intersections between cells and a tool swept volume

c) Geometry model after machining simulation

Figure V-8: Machining simulation process shown on 2D geometry model

The Figure V-8 demonstrates the machining simulation process and different

states of the underlying geometry representation model. The first part “a” demonstrates

an initial state of a geometry model that represents a surface, green color represents cells

with material and yellow color represents boundary cells. The second part “b” shown a

tool swept volume (just a slice of it in case of this 2D example) and calculated

intersection results between cells and tool swept volume. Here, the orange color

112

represents the cells that lie completely inside of a swept volume. These cells will be

removed. The green color in this case represents the cells that lie completely outside of a

swept volume; they will not be affected at all. The last part “c” represents a geometry

model state after machining simulation. It is easy to see that that some cells have been

subdivided into subcells since they contain surface now and some cells which earlier

contained subcells are completely empty.

Although the subcells value updating algorithm is relatively simple and straight

forward, it is important to notice some GPU-specific implementation details. Each cell

contains an array of 16x16x16 subcells and each subcell is represented by 2 bits. The

selection of these parameters is critical since they determine both performance and

memory efficiency. In this work each block of subcells is processed by an independent

warp for decreasing data exchange between warps and eliminating additional

synchronization. It means that all of the warps in a work group are completely

independent and use internal synchronization without any memory access barriers for

improved performance. From another side each thread in a warp read a 32 bit integer that

stores a consequent block of 16 subcell values as shown on Figure V-9, processes it and

stores updated values back. It results in perfectly linear and efficient memory reading and

writing operations which are extremely important due to GPU memory controller

limitations. This is possible because all of the subcells are independent from each other

and their values can be updated in private memory of a thread that processes a subcell.

The described way of processing subcell blocks is extremely important on GPU since

GPU memory controller always operates with a relatively large block of memory (32*4b

113

for used cards). And the best memory bus usage efficiency can be achieved only if all

values are used in calculations by a warp. The same limitation also becomes a problem

for using the traditional Octree since every iteration require processing only 8 elements or

16bit of data. If the algorithm uses only 16 bit of data it means that it uses only 1.5% of

the memory bus (for used NV GTX580) which is extremely inefficient.

Figure V-9: Threads distribution during subcells editing

Another interesting implementation detail is the memory management. The

OpenCL used in this work does not allow allocating and releasing memory from the GPU

kernel code. (Actually, even traditional Windows memory system does not work

efficiently in case of continuous allocation and releasing of small blocks so the described

algorithms would be useful for CPU implementation). As a result, memory management

114

is implemented by storing a nodes pool, where each node has enough space for storing a

16x16x16 block of subcells, and an address stack (implemented as an array of nodes

indexes and an index of a top element) of available blocks. Initially, the nodes pool is full

of nodes that represent completely full subcells and the address stack stores references to

all nodes. When the algorithm finds that a completely full cell is intersected by a swept

volume and its subcells have to be further processed, it pops a top address from an

address stack and associates an empty node with this cell.

The nodes releasing algorithm is a bit more interesting and complicated. The

problem with nodes releasing is related to node values. After using a node for storing

subcells values in an edited cell, it obviously has random values. But a newly allocated

node has to be “clean” or has to have all “completely full” subcell values. The cleaning

basically means that all subcell values are changed to “completely full” state and it is

nothing more than writing some predefined values to a node memory. Although it may

look like a simple and trivial operation, the decision of when to do the cleaning is not as

trivial and significantly affects performance. There are two obvious ways to do cleaning:

during node allocation (during cell editing operation) or during node releasing. Both of

these ways have a significant problem: it is not known when they happen and they almost

always happen in few threads of a warp. It brings two important problems. First, if only

one thread in a warp needs to get or release a node, 31 other blocks have to wait until it

works with a node. Second, only one thread has to clean an entire node which means that

it has to issue 32 times more memory writing commands and use 1/32th of a memory bus

than it is really needed. As result memory management works very slowly. The

115

developed solution is using a temporary list of nodes (Figure V-10) that have to be

cleaned before returning to the nodes pool and centralizing cleaning of these nodes by all

warp threads. As was mentioned before, nodes go from the nodes pool to the geometry

model when a cell is intersected by a swept volume and there is a need to represent a cell

with higher accuracy by subdividing it into subcells. There are two possible ways for a

node to go back. First, a cell lies completely inside of a swept volume and it becomes

completely empty in result. Second, it is detected that all subcells of a cell are empty and

an entire cell can be marked as an empty cell. In both cases a node goes to a temporary

cleaning storage. When an application is idling it can run the node cleaning algorithm

that rewrites nodes values and return them back to a node pool. It may significantly

improve memory management performance and allows the use of idle time for useful

operations.

Figure V-10: Nodes memory management model

Irregularly sampled volume rendering algorithm

The geometry editing process is only part of all the geometry representation jobs.

Another important part is data visualization, or geometry rendering. The rendering

process is important from two points of view. From one side, showing geometry to a user

Nodes

pool

Node allocation

Node cleaning

Cleaning

storage
Node releasing

Geometry

model

116

may be a goal of an application, for example, showing of a milling simulation result is

one of main goals of a simulator. From the other side, even if an application does not

have to produce any visual output, rendering still may be important for debugging

purpose. This part describes rendering algorithms designed especially for the developed

geometry representation and efficient highly parallel multi-GPU rendering.

As was mentioned earlier some geometry representations such the triangular mesh

or the voxel model can be rendered directly but other model such as the height map has to

be converted to another geometry representation for rendering. There are many rendering

techniques that have been developed for various situations and geometry representations.

For example, a ray tracing approach attempts to simulate a physical world and can

produce a photorealistic image. However it requires a lot of computational resources and

cannot be easily parallelized. On the opposite side, a ray casting approach can be easy

parallelized but usually produces not physically realistic images. The developed in this

work approach uses a mix of ray casting and direct rendering approaches for producing

an image that is not photo realistic but provides even more useful information than a

physically accurate pictures. The proposal for this research project contained description

of a possible rendering technology for the proposed geometry data structure. Since during

the research project there was made a decision to use the simplified version of a volume

representation, the actually implemented renderer uses a simplified algorithm adopted for

the simplified data structure. However it is important to describe the originally proposed

approach since it may be implemented in future for more complicated geometry

representation.

117

The originally proposed rendering algorithm works in two steps. First it iteratively

generates a height map oriented as a screen by casting rays from each filled cell to a

screen plane and subdividing the visible boundary cells to increase the resolution until the

size of each cell becomes smaller than half of a pixel size. Then normals are calculated

for each height map point for a correct lighting. There are two possible options for

normal calculation: the first is to estimate normals directly from a height map which will

produce reasonable results. The second option is to calculate normals based on analytical

information about a surface which has to produce exact values for normals but requires

additional calculations. In this case the algorithms will identify the closest surface that is

represented analytically and use an analytically calculated normal at the closest surface

point. The closest point is not always an actual ray intersection point; however, the

maximum possible error cannot be greater than the pixel size. Therefore, it is possible to

assume that a surface is continuous and the calculated normal approximates the actual

normal to a high degree of accuracy. Figure V-11 shows the results of the two iterations

used by rendering algorithm to generate a height map where red line shows actual surface

and yellow line shows an approximated height map value at each pixel.

Figure V-11: Two height map generation iterations used for rendering

118

The Figure V-11demonstrates only an idea of an algorithm for generating a height

map that can be used for true dynamically generated geometry models. Actually

implemented geometry model has only 2 levels and use spherical cells in opposite to

shown rectangular cells as shown on following figures that describe a rendering process.

The implemented rendering algorithm starts by creating a list of all boundary cells

that are shown on Figure V-12 in yellow.

Figure V-12: Curve represented by spherical cells

Then it processes all boundary cells and creates a list of boundary subcells as

shown on Figure V-13.

119

Figure V-13: Curve represented by spherical subcells

A list of boundary subcells is the main input for the next big step of the rendering

algorithm. It is important to notice that these cells are completely independent and may

actually be stored on different GPUs. The problem here is that multiple cells from

different devices may affect the same pixel. As result there is a need for additional

synchronization. Since synchronization reduces performance, the implemented algorithm

is trying to do as much work as possible simultaneously on multiple GPUs and then

synchronize results. One of the most important steps that it does in parallel is calculation

of a height map by calculating distances from a rendering plane to the closest cell.

However, as was mentioned above, each GPU has only part of the volume, and as a result

each GPU calculates only distances to cells that are stored on this GPU.

120

Figure V-14: Rays casted from each pixel on a screen plane

The current implementation does not actually cast rays from screen plane but

casts them from each cell to a screen plane and stores the closest distance for each pixel

as shown on Figure V-14. When all distances are calculated, they are downloaded to one

GPU and combined there into a one complete real height map (before this step, GPUs had

only parts of a height map although they were stored as a height map).

121

Figure V-15: Estimated surface and normals

The same GPU that combines all height maps also performs the last part of the

rendering process. Calculated height map allows estimating a surface (shown in green on

Figure V-15). But what is even more important, it allows estimating normals. The

developed implementation uses expression (V-7), where Hx,y is height map value at point

(x, y), for estimating normal of a height map based on neighbor height values.

[]

[]

 [

]

(V-6)

122

When normals are estimated for each surface point associated with a screen pixel,

a surface intensity is calculated as a dot product of a normal vector and light direction

vector. An actual pixel value is calculated as a product of surface point intensity and a

surface material color.

The complete list of steps performed during rendering process is shown by

Algorithm V-3.

1 Collect a list of all boundary cells in parallel

2 Collect a list of all boundary subcells in parallel

3 For all subcells in parallel:

4 | Calculate cell projection to a screen plane

5 | For all pixels in projection area:

6 | | Calculate a distance between screen plane and cell surface

7 | | Update pixel value by a minimum between current value and calculated value

8 Combine height maps from multiple devices

9 For all pixels in parallel:

10 | Estimate normal values

11 | Calculate pixel color

Algorithm V-3: Rendering

The Figure V-16 demonstrates rendering results of the implemented rendering

algorithm. It is similar to the original rendering algorithm but it has one significant

limitation. It uses only single iteration, since the underlying data structure is static and

limited to 2 levels. The implemented renderer cannot show perfect accuracy due to

geometry model limitation but it already runs on 3 GPUs with almost linear performance

improvement which is a very hard task that cannot be achieved even by multi-million

computer games.

123

Figure V-16: Rendering results

It is interesting to notice that the selected method of normals reconstruction from

a height map results in interesting visual effects. If one object stays in front of another

object then it is not only rendered in foreground but there is also shown a dark border

when it intersects deeper object. Figure V-17 demonstrates this effect. It is very easy to

see which line is closer and which line is deeper.

Figure V-17: Demonstration of dark borders around foreground objects

124

Accuracy analysis

The simulation of any process does not make sense if the simulation is not

accurate enough. The key word in the previous sentence is “enough”, but there is no

information about desired accuracy. It is obvious that perfect sub-atomic level simulation

would be nice to have but would it really help in a machine shop from a practical point of

view? It can be seen that sub-atomic level simulation would be quite slow. It would

probably be at least a thousand times slower that actual machining and this level of

performance already makes it useless. What is more interesting is that it is actually

impossible to achieve sub-atomic precision level just because modern CNC machines

cannot achieve this level of accuracy. Before discussing the accuracy of the developed

simulator it is important to understand possible precision limits and practical

requirements for machining simulation from an end user point of view.

Modern CNC controllers limit the input tool path accuracy to 0.002mm. It means

that it does not make sense to simulate anything with input trajectory accuracy higher

than 2µm because a machine does not know about this extra precision in any case. But

2µm is pure software limit that is not connected to physical world. During the machining

process, the accuracy is affected by tool vibrations, external vibrations, thermal

expansion, material deflection, etc. And many of these parameters cannot be measured

because they depend on environment condition, tool properties, workpiece properties, etc.

As result, 2µm precision can be achieved only in very well controller environment on

expensive machines, tools and after good preparation. Most of real life machining

provides more than an order of magnitude lower accuracy (20-50µm) that is still good

125

enough for most practical applications. It is easy to see that in most cases, simulation

with precision higher than 20-50µm (2µm in very special cases) does not make sense at

all since the actual accuracy is limited by machine capabilities.

Limits described in the previous paragraph are based on the machines limitations.

This paragraph will discuss what makes sense from the end user point of view. But before

going into this discussion it is important to describe use cases for machining simulation

software. Most popular use cases include: collision detection, exceeding axis movement

limits, exceeding tool load limits, overcuts detection and surface quality control. The

collision detection has two components: collisions of machine parts (including tool and

tool holder) with each other that and collisions between machine parts and workpiece.

Collision detection between machine parts and exceeding axis limits actually do not

require material removing simulation and are not discussed here. Now, when most

popular use cases are listed, their simulation accuracy requirements can be discussed.

The collision detection process need to know if a machine part intersects

workpiece material. Since it is not safe to have moving machine parts closer than few

millimeters to material surface (for parts under 500mm long), it is safe to assume that

0.5mm accuracy of surface position is good enough for the collision detection purpose.

Overcuts detection is a bit more complicated problem. It can be viewed as collision

detection between tool and target geometry in case of large overcuts and it can be viewed

as a bad finishing surface quality in case of small overcuts. For large overcuts scenario

the same requirements as for collision detection can be used and it is safe to assume that

0.5mm accuracy is enough. Small overcuts and finishing surface quality control are two

126

most demanding use cases. Their requirements depend on the desired surface tolerance

and generally it is possible to say that it is does not matter where surface is as far as it is

possible to prove that it lies in tolerance limit. As an example of possible tolerance limits

let use the ANSI B4.1 standard [63]. Figure V-18 shows tolerance limits for multiple

grades defined in this standard. The milling process under normal conditions is capable of

producing parts with tolerance grade in the range 10-13. For example, considering the

best possible grade and a part with a size of 50mm the tolerance limit defined by the

standard is ~0.1mm. And for a 500mm part which is a quite popular work envelope limit

for modern 5-axis CNC milling machines, the tolerance limit is ~0.25mm.

Figure V-18: Tolerances for multiple tolerance grades [64].

Now, when there are known accuracy requirements for popular milling simulation

usage scenarios, it is possible to discuss capabilities of the developed simulation system

and to see if it meets the requirements. The developed geometry representation does not

127

naturally represent surface but stores information about presence of a surface in each cell.

As a result, surface position can be measured with precision limited to a small cells size

and it is possible to say that geometry representation accuracy is equal to a size of the

smallest cell. It is also important to mention that due to using spherical cells, linear cells

size has to be multiplied by ~1.732. Considering resolution of 4096x4096x4096 for a

workpiece with dimensions 50x50x50mm, it is easy to see that a cell size is ~0.021mm.

For a larger workpiece (500x500x500mm) the resolution will be ~0.21mm.

It is easy to see that simulation with a resolution of 4096x4096x4096 meets

requirements for all popular machining simulation use cases for parts with dimensions up

to 500x500x500mm which is a common machining envelop size for modern 5-axis

machines and the most accurate tolerance requirements for the ANSI B4.1 standard. It is

also easy to see that for smaller parts such as 50x50x50mm a resolution can be reduced

by 2 or even 4 times without significant problems from practical point of view.

Performance benefits of resolution reduction will be described later. Although the

developed system meets the precision requirements for popular use cases, its precision is

quite close to this requirements and it is important to notice that it cannot be used for

extra high precision simulation without modifications. In case of a need for highly

accurate simulation, a possible way to do it is to implement the full version of the initially

proposed geometry representation that can be dynamically generated. But as was

mentioned earlier, even the already developed system is accurate enough.

128

Experimental 5-axis simulation results

The described data structure and algorithms were implemented during the

research project. All low level highly parallel algorithms and data structures were

implemented in C++ and OpenCL. High level algorithms and data management were

implemented in Python. And a rendering was implemented as a mix of OpenGL with

OpenCL based custom software renderer running on GPU. The developed system

successfully uses a multiple GPUs (tested with 2 x GTX 580 + Quadro 6000) and

provided good performance and scalability results which will be discussed later.

The set of input G-code files used for testing contains mainly programs generated

by tool path planning solutions discussed in this work (both 3 and 5 axis) as well as few

test programs from industrial partners.

The first part of the testing process is simulation of previously described 3-axis

parts from chapter about 3-axis machining simulation and tool path planning.

129

Figure V-19: 3-axis model “Sculptures” (new 5-axis simulator on the right)

130

Figure V-20: 3-axis model “Zoo” (new 5-axis simulator on the right)

Figure V-19 and Figure V-20 demonstrate the results of the developed 5-axis

simulator in comparison to the height map based 3-axis simulator from previous chapters.

It is easy to notice that the produced results are very similar to the original 3-axis

simulation results except color (easy adjustable) and projection type. The original 3-axis

simulator uses perspective projection and the new 5-axis simulator uses orthogonal

projection.

131

The next part of the testing process is the continuous simulation of 5-axis parts.

Since an editing process is a continuous test pictures will demonstrate workpiece state at

multiple time points during an editing process with a target geometry model at first image

and actually milled part on the last image.

Figure V-21: 5-axis machining simulation process for model “Puppy”

132

Figure V-22: 5-axis machining simulation process for model “Fan”

133

Figure V-23: 5-axis machining simulation process for model “Fan”

Figure V-24: Simulation result for model “Dragon”

134

Figure V-25: Roughing process of the “Teapot” model

Figure V-26: Various simulation results

Figures above demonstrate that the developed 5-axis simulation system is capable

producing accurate CNC milling simulation by using the newly developed geometry

representation and parallel algorithms that can run on multiple GPUs. It is also easy to

see the high quality of images produced by implemented rendering algorithms. The

comparison of the simulator output to real machined parts also shows that simulated

results accurately predict machined results.

135

Simulation performance analysis

The previous part demonstrated that the developed 5-axis simulator is capable of

producing correct simulation results. This section will discuss performance measurements

of the simulation and rendering algorithms as well as scalability issues.

First of all it is important to describe how performance will be measured since

there are no known tests for CNC machining simulators at time of testing and by the

author knowledge. Since there is no significant dependency between target shape and

underlying algorithms behavior, material removing test is designed to be as simple and as

general as possible. It simulates removing a layer of material from a cube workpiece as

shown on Figure V-27. The rendering test will actually use the result of the material

removing test and render the machined workpiece from multiple sides.

Figure V-27: Machining test setup

136

All performance measurements are performed with following default parameters:

 Resolution of 2048x2048x2048. For simplicity only one number will be

written latter but it is always a cube of a material;

 A big cell contains 16x16x16 small cells.

 Step size is 64. The step size is a number of tool movements processed

concurrently during each material removing simulation operation;

 Zoom level is 1X (as shown on Figure V-27);

 The test computing system includes 3 NVidia GPUs (Table V-3):

o 2x GeForce GTX580

o 1x Quadro 6000

Name CUDA cores Clock frequency IPC SP GLOPS

GeForce GTX580 512 1594 MHz 2 1632

Quadro 6000 448 1147 MHz 2 1027

Table V-3: GPUs parameters

The default configuration demonstrates performance results shown in Table V-4.

Simulation speed (mm/min, ms/mm) 24414, 0.04

Simulation speed (edits/s, ms/edit) 897, 1.11

Rendering speed (ms, fps) 60, 16.5

Table V-4: Base performance results

The difference between the two ways of measuring simulation speed is related to

the fact that tool motions may have different length and as result remove significantly

different amount of material. The first row represents the simulation speed measurement

137

technique normalized from distance point of view. Basically it shows how long trajectory

can be simulated in a minute or how many milliseconds required for simulation of one

millimeter of a tool path. Using mm/min units also allow direct comparison to a machine

feed rate. For example simulation speed of ~25000 mm/min means that simulation can be

done 5X times faster than machining at feed rate of 5000 mm/min. Another measurement

way uses the actual number of tool movements called “edits” and useful in case when

there are many short tool movements. The idea behind these performance measurement

techniques is similar to measurement storage performance that can be done from

bandwidth point of view or from number of input/output operations point of view.

It is also important to notice that the developed simulation is not a production

grade software system that is precisely tuned and optimized. As result it is more

important to measure not a pure simulation performance itself (although it is good

enough even now) but how well it scales with respect to available computational

performance, resolution, etc. Although the performance of current implementation can be

significantly improved by optimization for desired hardware, scalability and

parallelizability cannot be improved so easily, and they were the initial goal for the new

geometry representation and algorithms design.

One of the most important properties of any simulator is accuracy. As was

mentioned above, the data structure implemented in this work is static and as a result,

accuracy is directly related to model resolution. At the same time resolution obviously

affects a number of elements that have to be processed for editing simulation. In case of

pure 3D discrete volume representation such as voxel model, the number of elements is

138

N
3
 where N is resolution, which is extremely bad from computation time point of view.

However for the developed geometry representation, a number of elements that have to

be processed is:

 (

)

(V-7)

where X is a number of big cells containing material boundary and modified by a

set of processed tool movements. T1, T2 time required to process big and small cells

accordingly. It may look like the complexities are O(N
3
) in both cases and there is no

benefit from using the developed geometry representation. And it is theoretically correct

but in real use cases under memory size limitation N has values about ~2000. As a result,

it is possible to assume that the first part of the (V-7) becomes negligible and only the

second part represented by X affects simulation performance.

As was mentioned before, the X represents a subset of all big cells (so it is already

bounded by (N/16)
3
 value) that meat two conditions: modified by one or more tool

movements and contain material boundary. It is actually very hard and almost impossible

to estimate how many cells are affected by tool movements under an assumption that

there are no limitations on tool movement geometry. But it is possible to assume that a

number of modified cells is proportional to a surface area affected by tool motions and a

surface area is completely independent from resolution. As result it is easy to see that X

is proportional to a number of big cells required for containing a given surface area. In

order to estimate X now, it is important to make one more assumption: big cells are small

enough that a surface that they contain can be represented by a plane. With respect to this

assumption, a big cell contains surface area equal to (16/N)
2
 and X is equal to:

139

(

)

(V-8)

Where, S is modified surface area. Now the (V-7) can be rewritten in the form:

(V-9)

Based on (V-9) it is possible to assume that at reasonably low values of N (such

as few thousands) the machining simulation algorithm should show a quadratic

dependency of simulation time and resolution. The experimental performance

measurement shown on Figure V-28 has proved the assumption about quadratic

simulation complexity. It is easy to see that the 2
nd

 order approximation of processing

time data perfectly describes measured results.

Figure V-28: Editing time vs. Resolution

As was shown above, the newly developed geometry representation has managed

to reduce machining simulation complexity from cubic to quadratic. But this is only one

of the important benefits that the new data model provides. Other extremely important

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1000 2000 3000 4000 5000

P
ro

ce
ss

in
g

ti
m

e
, m

s/
m

m

Resolution, cells/dimension

Measured data

2nd order approximation

140

benefits are the parallelizability and scalability required for running developed algorithms

on multiple highly parallel devices such as GPUs. From a theoretical point of view, the

developed data model and parallel algorithms should scale really well since different

parts of the volume can be processed completely independent. However real

implementations always contain some overheads related to jobs scheduling,

synchronization, load balancing, etc. As a result, real systems do not scale perfectly

linear.

Figure V-29: Performance vs. Available computing power

The Figure V-29 demonstrates how the simulation performance of the developed

5-axis simulator scales with respect to available computational resources. There were 5

possible combinations of available GPUs used and the simulation speed of each was

measured. The “Perfect scaling” line was constructed by linear scaling of the single

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000

Si
m

u
la

ti
o

n
 s

p
e

e
d

, m
m

/m
in

Available computing power, GFLOPS

Measured
data

141

slowest card performance with respect to performance of each combination measured in

single precision GFLOPS. It is easy to see that the actual measurement performance is

very close to the theoretical limit. As Figure V-30 shows, all configurations (even with 3

different graphics cards) achieve more than 90% of theoretically possible performance

that assumes perfect linear scaling.

Figure V-30: Utilization of available computation power

There is an interesting fact: only adding more GPUs reduces efficiency.

Increasing number of cores and frequency does show perfect linear scaling. It means that

the developed system is bounded by available computing power, not by memory

bandwidth which is extremely important for GPGPU approach.

The last part of the material removing algorithm testing is measuring dependency

between simulation speed and a number of tool motions processed during single iteration

(called step size). The step size affects performance in two ways. Too small step size

does not allow hiding kernel launch overhead. And a too large step size results into high

0

20

40

60

80

100

Q6000 GTX580 GTX580 +
Q6000

2 x GTX580 All

P
e

rf
o

rm
an

ce
 u

ti
liz

at
io

n
, %

Used GPUs

142

algorithm branching that reduces GPU efficiency since multiple threads in a warp have to

wait for each other.

Figure V-31: Performance vs. Step size

The Figure V-31 demonstrates measured performance of the simulation

algorithms for multiple step sizes. It shows the described above behavior with a peak

performance that lies in a range from 16 to 32 edits per iteration. Although during real

life continuous simulation a step size is not constant, measured data can be used for

selection of the best step size if simulation of an entire tool path is requires and a user is

interested only in a final result.

Performance measurement of the simulation algorithm has shown great scalability

and parallelizability which can be explained by the fact that all volume cells can be

processed completely independent. But good milling simulator also requires efficient

rendering algorithm. However in the case of rendering, it may be a bit more complicated

0

5000

10000

15000

20000

25000

30000

35000

4 8 16 32 64 128 256

Si
m

u
la

ti
o

n
 s

p
e

e
d

, m
m

/m
in

Step size, edits

143

to achieve the same level of scalability because results computed on all GPUs have to be

combined and this process was not parallelized in current implementation.

As was done with editing algorithm, the first part of the rendering performance

testing is measuring of the dependency between rendering speed and volume resolution

shown on Figure V-32.

Figure V-32: Rendering speed vs. Resolution

The analytical analysis of the rendering algorithm cannot be done easily since the

rendering algorithm heavily depends on actual rendering geometry and volume

orientation. However, it is possible to do some non-accurate theoretical estimation. But

even based on actually measured data, it is hard to find one mathematical dependency. It

may be either two independent linear segments related to two independent bottlenecks.

For example memory bandwidth limitation in for resolutions less than 2000 and

computational power limitation for higher than 2000 resolution. It also may be a single

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e

n
d

e
ri

n
g

sp
e

e
d

, F
P

S

Resolution, cells/dimension

144

quadratic dependency with some random errors in measurements. In any case it is

important to notice that for resolutions up to 3000 the developed algorithm provides high

enough speed for well interactive work (>10FPS) with the simulator.

Figure V-33: Frame rendering time vs. Resolution

Another important aspect of the rendering process is the amount of time that the

renderer spends on non-parallel work. This work includes mixing image components

from multiple devices, drawing to a screen, job scheduling and other required operations.

It can be calculated as a difference between time that each device spends concurrently

with other devices and time required for rendering of an entire frame. As Figure V-33

shows, this difference is constant for all tested resolutions and it is equal ~12ms.

Although this time is usually hard to parallelize, it is possible to convert it into delay

between user input and rendering output and reduce GPUs idling. In this case a

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e

n
d

e
ri

n
g

ti
m

e
, m

s

Resolution, cells/dimension

Total time spent per frame

Volume rendering time

145

calculation of the next frame has to be started before previous frame is visible. This

approach will increase frame rate by improving hardware utilization.

Figure V-34: Rendering time vs. Zoom level

In opposition to editing algorithms, the rendering performance depends not only

on the geometry itself but also on a way how it is rendered and especially on scale or

zoom level. Figure V-34 presents measured results for rendering time versus zoom level

where zoom level equal 1.0 means that an entire volume is shown on a screen and it fills

entire screen. Lower than 1.0 zoom levels mean that the image is zoomed out or scaled in

a way that an image fills only a portion of a screen. Higher than 1.0 zoom levels mean

that a volume is zoomed in and only a part of it is visible. It is noticeable that extremely

high zoom levels (>100X) require significantly more time for rendering. It may be

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000

R
e

n
d

e
ri

n
g

ti
m

e
, m

s

Zoom level

146

explained easily because at very high zoom levels only few big cells are visible and there

is not enough work for loading all available GPU cores. But except this extra high zoom

levels, rendering performance fluctuates in the range of 50-150% relatively to a default

zoom level which is acceptable from practical point of view.

Figure V-35: Rendering speed vs. Available computing power

The last and probably one of the most interesting part of the rendering

performance testing is the analysis of its scalability with multiple GPUs. Figure V-35

demonstrates rendering performance versus amount of computational resources available.

As in case of editing performance testing, there were used 5 possible combinations of

available GPUs and the “Perfect scaling” line demonstrates the best possible linear

scaling. It may look like the rendering performance scales is much worse than the editing

even for the same number of graphics cards. It actually makes sense since images

generated by each GPU has to be mixed and displayed and this time is not parallelizable.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

R
e

n
d

e
ri

n
g

sp
e

e
d

, F
P

S

Available computing power, GFLOPS

Measured data

Perfect scaling

147

However, as was mentioned before, mixing and drawing time can be hidden by

converting into output delay.

Figure V-36: Rendering speed vs. GFLOPS (w/o constant time)

Figure V-36 demonstrates how it would look if there is no constant non-

parallelized time. Now it easy to see that increasing number of cores and frequency

increases rendering performance linearly. This means that rendering algorithm is also

limited by pure computational performance which is actually a good thing because it can

be relatively easily improved with GPU processors and multiple GPUs. Although, as

shown on Figure V-37 the efficiency of multi-GPU rendering configurations is lower

than multi-GPU editing because results have to be combined, 75% of theoretically

possible limit on 3 devices is still a very good result, especially for a non-optimized code

that already provides real-time rendering.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

R
e

n
d

e
ri

n
g

sp
e

e
d

, F
P

S

Available computing power, GFLOPS

Measured data (no constant time)

Perfect scaling

148

Figure V-37: Available computing power utilization

Discussion

This chapter has described the developed highly parallel geometry representation,

appropriate data structure and parallel geometry processing and rendering algorithms. As

proof of concept, the 5-axis milling simulator based on the described geometry

represented was developed and tested by performing accuracy, performance and

rendering benchmarks of the developed 5-axis milling simulator.

As was discussed earlier, in opposition to traditional analytical geometry

representation, the new designed geometry representation is based on discretized

geometry representation approach that allows solving some of the important issues of

traditional geometry models. The most important benefit is ability to design highly

parallel and scalable geometry processing algorithms because the geometry

representation is naturally parallel. Another important benefit that comes from its discrete

0

20

40

60

80

100

120

1 1 2 2 3

Q6000 GTX580 2 x GTX580 GTX580 +
Q6000

All

C
o

m
p

u
ti

n
g

p
o

w
e

r
u

ti
liz

at
io

n
,

%

GPUs number and configuration

149

nature is the simplicity of algorithms and absence of the requirement to describe all

possible special cases and their combinations.

The mentioned ability to design highly parallel and scalable geometry processing

algorithms was proved during the performance testing. It was shown that the developed

data structure and algorithms may successfully run on highly parallel hardware such as

GPU and also proved that the developed system has great scalability and shows almost

linear performance improvement by using multiple GPUs.

The accuracy analysis has shown that the developed 5-axis milling simulator can

be successfully used for most simulation jobs but extra high precision simulation requires

significant accuracy improvement that can be implemented by using dynamic geometry

generation.

150

VI. TOOL PATH PLANNING FOR 5-AXIS MACHINING

Tool path planning for multi-axis milling CNC machines is a complicated

problem that requires knowledge of the material removing process, selecting multiple

appropriate strategies and highly accurate calculations. Today in most cases knowledge

and appropriate strategies selection are the responsibilities of a human engineer and

calculations are performed by geometry processing engine. CAM software lies in

between and allows interaction between human and computer. This approach can solve

almost every problem that appears in modern manufacturing, but it requires two

important components: a trained engineer and time that is actually quite high even for

simple parts. Although these requirements can be easily resolved, especially for high

volume production, they become extremely critical when there is a need to make a single

or few parts. In the case of low volume production, time of an engineer may cost many

times more than actual machining cost. As a result, today the low volume market is

occupied by usually additive Rapid Prototyping technologies such as 3D printing which

allow manufacturing of a part almost without machine-human interaction. However

existing RP technologies cannot provide a set of cost, surface quality and available

material properties found in traditional subtractive CNC machining. As a result there is

an important need for a change in modern CNC milling manufacturing process that will

bring traditional CNC milling in par with 3D printing technologies from time

requirements point of view and allow using existing multi-axis milling machines

efficiently for low-volume production or RP.

151

The key for this change is reducing the time required for tool path planning. This

time includes two components: the time used by a computer for calculations and the time

used by an engineer for selecting the right machining approach. Although these

components look completely independent, they are parts of the same performance related

problem. Time used by a computer for calculation obviously depends on performance of

this computer and on ability to use available performance efficiently which is not so

obvious. Time used for selection of right machining strategy depends on experience of an

engineer and complexity of algorithms that may help with this decision or even select a

right strategy automatically. It is important to notice that a complex automated algorithm

may eventually replace an engineer completely, which is the target for fully automated

manufacturing, and in this case a tool path planning part will include only computational

part. However in order to do it, automated path planning algorithms should be good

enough and the problem is that good algorithms almost always require a lot of

computations. As a result it is possible to say that in order to solve the tool path planning

problem, the computational performance problem has to be solved first and new

automated path planning algorithm should be developed.

A solution for the computational problem, as was mentioned before, requires

having enough computational performance and an ability to use available resources

efficiently. At the time when further increasing of processors clock frequency is almost

impossible, both requirements are pretty much identical and mean support for parallel

processing and ability to use multiple cores, devices and even computers simultaneously.

Although parallel processing itself is not a complicated idea, the parallelization of

152

existing geometry processing algorithms and data structures is not a trivial process. In

order to simplify this process, there was proposed earlier in this work the fundamentally

parallel geometry representation. The idea behind it is to move parallelization complexity

from an algorithms design level to a data structure design level. As a result, every

algorithm that uses the described geometry representation can be easily parallelized.

This chapter provides a methodology for designing parallel algorithms by

reformulating path planning problems in a way that they can be described in terms of

operations supported by the developed geometry representation. As a proof of concept

this chapter will describe a complete and fully automated 5-axis tool trajectory planning

system capable of machining almost any possible shape. First there will be presented a

highly parallel GPGPU based volume offset calculation approach based on the developed

data structure. Then there is be described the developed surface filling algorithm that is

used as a foundation for two tool center trajectory planning algorithms. These two fully

automated robust 5-axis tool path planning algorithms are used for path planning of

roughing and finishing processes with ball end mills. All described algorithms follow the

proposed methodology and can run on multi-GPU system. As a final part of the tool path

planning system, a tool orientation selection approach based on a developed accessibility

map calculation algorithm will be presented. At the end this chapter the results of

experimental 5-axis machining will be demonstrated and the implementation of all

developed algorithms that run on multi-GPU system will be discussed.

153

Parallel algorithms design methodology

Before discussing problem reformulation and algorithms design methodologies it

is important to know what operations are provided by underlying data structure. The most

flexible and powerful basic operation is the belonging test that can be performed for each

cell. It uses two user provided expressions that determine if a sphere with a given position

is completely inside or completely outside of a target shape. These expressions are

calculated independently for each cell and their results are used for updating cell state

based on predefined rules as shown by Algorithm VI-1. If a cell fails both tests it is

assumed that a cell potentially has a boundary.

1 For each cell in parallel:

2 | Calculate belonging expressions

3 | | Update cell state

Algorithm VI-1: Belonging test

The flexibility of the belonging test allows it to be used as a main component for

designing many useful algorithms such as machining simulation volume offset

calculation or contour offset path planning which will be described later. But what is

more important is that any derived algorithm is always highly parallel.

1 For each cell in parallel:

2 | For each tool movement:

3 | | If cell is completely inside of a tool movement swept volume:

4 | | | Mark cell as empty

5 | | If cell is not completely inside or outside of a tool movement swept volume:

6 | | | Mark cell as boundary

Algorithm VI-2: Belonging test for machining simulation

154

For example, the simulation algorithm that uses the belonging test is described by

the Algorithm VI-2. It is easy to see that user defined expressions used only in steps 3

and 5 do not affect the loop on step 1. At the same time, this loop always can be

parallelized since it process completely independent cells. If higher parallelizability is

needed, loop on step 2 can be parallelized as well with additional synchronization

required for updating cell state.

Another important base operation is the volume surface intersection calculation. It

takes two independent volumes and outputs a set of points that contain volume

boundaries in both volumes. Then it uses a post processing algorithm that converts a

point cloud into a list of continuous curves. The idea behind the post-processing

algorithm is to start with a random boundary point and to use a wave approach iteratively

for connecting neighbor points. By calculating a center of each wave for all iterations it is

possible to get a continuous curve that describes actual volume intersection curve. The

described operations are shown by Algorithm VI-3.

1 Find all cells that have boundary states in both volumes

2 While there are non-processed cells:

3 | Select a random cell

4 | Initialize new intersection curve

5 | While there are non-processed neighbors around selected cell:

6 | | Mark all neighbors as a current wave cells

7 | | Calculate center of the current wave

8 | | Append a wave center to a current intersection curve

Algorithm VI-3: Volume surface intersection

155

It is important to notice that only step 1 of the described algorithm can be easily

parallelized but other steps are iterative and cannot be performed in parallel easily.

However, this should not be a problem since they always process a reasonably small

subset of all cells that represents a curve. There is also possible a situation when volume

surface intersection a represented by a surface and not a curve. This special case can be

detected by calculating a standard deviation of processing waves and should be processed

separately but it is not considered in this work.

Two main operations described above are enough for implementing most path

planning algorithms. However there were also developed some special algorithms for

solving the tool orientation selection problem. These algorithms will be discussed later in

this chapter.

Volume based parallel algorithms design methodology and limitations

As was mentioned before belonging test and volume intersection are main tools

for working with the developed geometry representation. But solutions for most tool path

planning problems should be reformulated in a way that allows expression of these

solutions with available tools. For example a simple iso-planar [3-5] approach that uses

intersection between a sequence of parallel planes and a part surface as contact point

curves, can be easily implemented in a parallel fashion in two ways. First, intersection

between part surface and planes can be represented as intersection between part volume

and a sequence of parallelepipeds. Second, the belonging test can be applied where a

target shape is actually a sequence of plains. Although both approaches do the same task,

156

they are quite different and use different tools. But they both have two important benefits.

First, there is no need to care about special cases, singular points, discontinuities, etc.

Second, both approaches can be implemented in a highly parallel way and run on highly

parallel hardware.

The most important concept is to reformulate operations with surfaces by

operations with volumes that can be represented by independent operations with

volume’s cells. This reformulation guaranties that a new algorithm can be easily

parallelized. It also makes algorithms simpler since there is no need to handle special

cases anymore. Although reformulation of algorithms in volumetric fashion is usually not

too complicated, this approach requires caution due to some limitations of the underlying

discrete geometry representation.

The first important and probably the most dangerous limitation is related to the

volume boundary position. It is important to accept the fact that an actual surface position

is never perfectly known. The reason for it is a fact that a surface is represented by cells

that have very little information about what happens in them. Precisely each cell stores

only 2 bit of information that represent 3 states and only 2 of 3 states are guaranteed. If

cell has a completely empty state, it is guaranteed that it does not have any material

inside and vice versa for a completely full cell. But if a cell does not hold any of these

states, there is no guarantee that it actually contains a surface. In most cases and for most

applications it is safe to assume that such cell actually contains a surface. However even

if cell does contain a volume surface there is no way to know where a surface lies inside

of a cell. In most cases, especially for roughing planning application when removing few

157

tens of microns of material more or less does not really matter, the precision provided by

a cells size itself (since surface positioning error is limited by cell dimensions) is enough

for valid tool path planning process. But for finishing and especially high precision

finishing path planning additional tool path corrections may be needed.

The second limitation is related to the derivatives calculation. It is important to

eliminate using derivatives or assume that their accuracy is not perfect. Since the

underlying geometry representation has a discrete nature, derivatives calculation cannot

produce perfectly accurate results in many cases. However approximate derivatives

values can be calculated and used if they are needed. For example, surface normals used

in the rendering process for lightning calculations are actually estimated from a discrete

geometry representation in runtime and still provide good enough precision for rendering

accurate images.

Offset volume calculation

Despite the described limitations, many complex geometrical problems can be

easily solved by following the described approach. One of these tasks is the offset surface

finding problem. The offset surface is defined as a surface at equal distance from an

original surface (Figure VI-1). It is often used in tool path planning process as a surface

where a tool center may move freely without producing overcuts. By replacing tool

contact point trajectory planning with tool center trajectory planning it is possible to

eliminate a complicated gouge prevention process and make tool path planning

algorithms simpler.

158

Figure VI-1: Offset surface [65]

Although the offset surface makes path planning algorithms simpler, finding an

offset surface is not a trivial problem for analytical geometry representations. Most

common problems of this process are special cases such as holes and self-intersections

[66] as shown Figure VI-2. The developed offset surface finding approach eliminates the

self-intersection problem completely and allows using models with holes that are smaller

than offset distance. It is important to notice that the developed approach uses triangular

meshes as an input geometry representation but similar algorithms can be implemented

for other data structures. The reason for selecting the triangular mesh format is the weak

support of this format in modern CAM software and its popularity in RP industry.

Figure VI-2: Offset surface self-intersections [66]

The main idea behind the developed surface offset algorithm is working with

volumes and not with surfaces, so it is more correctly to describe it as the “offset

159

volume” algorithm. Here the offset volume represents a volume that contains all points

that are closer than an offset distance to initial surface. At the same time, it is easy to see

that a boundary surface of the offset volume contains a target offset surface and an offset

surface calculation can be replaced by offset volume calculation. In 2D case an offset

curve calculation can be replaced by offset area calculation as shown on Figure VI-3.

Figure VI-3: 2D offset surface decomposition

In order to construct an offset volume efficiently, it can be represented as a

composition of primitives associated original surface elements. For 2d case (Figure VI-3)

every point is associated with a circle and every line is associated with a rectangle. For 3d

model and triangular geometry representation there is a similar association list:

 Vertex – Sphere

 Edge – Cylinder

 Face – Prism

As a result a triangular mesh may be converted in a list of volumetric primitives

that can be composed together and represent an offset volume. Then every cell of

geometry model can be tested against this list of volumetric primitives and marked as a

160

part of an offset volume if it passes belonging test with one of these primitives. The offset

volume calculation algorithm that combines all these steps is shown by Algorithm VI-4.

1 For all vertexes in input model in parallel:

2 | Add appropriate sphere to primitives list

3 For all edges in input model in parallel:

4 | Add appropriate cylinder to primitives list

5 For all faces in input model in parallel:

6 | Add appropriate prism to primitives list

7 For all cells in geometry model in parallel:

8 | For all primitives in list:

9 | | If cell belongs to primitive:

10 | | | Mark cell as an offset volume cell

Algorithm VI-4: Volume offset calculation

Loops 1, 3, 5 of the described algorithms are completely independent and can be

easily parallelized. Loop 7 is actually a part of the belonging test described before and

can be easily parallelized as well since all cells are always completely independent in the

developed geometry model. Even loop 8 can be parallelized with an additional

synchronization required for the cell updating process. It is obvious that the selected

approach can be parallelized in many ways but the implemented version is parallelized

only in step 7. Everything else is done sequentially, and there are few reasons for this.

First, with a high enough number of cells (which happens almost always for high

resolution models), there is no real need for higher level of parallelization. Second, steps

1-6 do not take too much time in any case. And finally, serial processing of primitives for

each cell allows stopping when a cell changes state first time and it saves a significant

amount of calculations.

161

For testing the developed offset volume algorithm implementation there were

selected 4 test models (their properties are shown in Table VI-1) and performed offset

volume calculations for multiple offset distance values and geometry model resolution

equal to 2048x2048x2048. All tests were performed with 3 GPUs: 2x GTX580 and

Quadro6000.

Model name Vertices number Edges number Faces number

Turbine 10897 32691 21794

Teapot 28922 86280 57360

Candle holder 18998 57008 38000

Head 115147 345429 230286

Table VI-1: Test models properties for offset volume calculation

The Table VI-2 demonstrates performance results measured during testing

process.

Model Offset value Time (s)

Turbine

1 43.441

3 43.26

5 40.383

7 39.835

10 40.387

Teapot

1 99.542

4 102.253

7 105.862

Candle holder

1 72.669

4 72.319

7 69.803

Head

1 0

4 386.024

7 393.356

Table VI-2: Offset volume calculation performance results

It is noticeable that the offset value itself almost does not affect calculation time.

At the same time the offset volume calculation time almost linearly depends on

162

complexity of a geometry model. The Figure VI-4 demonstrates the offset volume

calculation performance in faces/second for all tried models and it is easy to see that

calculation speed is almost constant for all of them.

Figure VI-4: Offset volume generation performance

Pictures below demonstrate offset volume testing results for all test models.

0

100

200

300

400

500

600

700

1 3 5 7 10 1 4 7 1 4 7 1 4 7

Turbine Teapot Candle holder Head

P
e

rf
ro

m
an

ce
, f

ac
e

s/
s

Model and offset value

163

Figure VI-5: “Teapot” volume offset

164

Figure VI-6: “Turbine” volume offset

165

Figure VI-7: “Candle holder” offset volume

166

Figure VI-8: “Head” offset volume.

167

Surface filling algorithm based on 3D contour offset approach

The example of the offset volume calculation algorithm has shown that it is

possible to use the described earlier methodology and geometry representation for

solving computational geometry problems. This part will talk about problems that are

more closely related to tool path planning process itself.

First of all it is important to notice that modern CAM systems support a large

variety of tool path planning strategies (such as iso-parallel, spiral, contour offset, etc.)

that produce efficient tool paths for a variety of different situations. And although there

are so many possible options for tool path planning, these solutions are usually quite

specialized and do not work well as a true general purpose solution for any possible

situation. This limitation requires the presence of an engineer that select a sequence of

appropriate strategies with appropriate parameters and it has to be eliminated in order to

create a fully automated path planning system. One of possible ways for resolving this

problem is creating a system that can make decisions like an engineer and select the best

sequence automatically. However such a system should be quite smart and it should

support all known strategies in order to replace a human. It is obvious that the

development of such system will require a significant amount of time and it will be quite

useless before it is finished since there is no sense to use a program that can generate only

a portion of a tool path. The solution for this problem is development of a robust tool path

planning strategy that can take any possible geometry and produce a tool path for

machining it. It is obviously not possible to make this strategy optimal and efficient for

all cases but its goal is different. With such a strategy, development of a fully automated

168

tool path planning system will be much easier and useful because even if the developed

system cannot generate a complete tool path, it can always use the generalized robust

strategy for making a part. The robust strategy in this case becomes the foundation for a

fully automated tool path planning system. Such strategy was designed by following the

described methodology and implemented in this work. Before discussing the details, it is

important to notice that the developed version is designed especially for ball-end mills

but it can be improved for supporting other cutter types.

The idea behind the developed robust path planning strategy is generalizing the

2D contour offset strategy often used in modern CAM software to 3 dimensions.

Although 2D and 3D versions are conceptually similar (in fact a 2D version is a special

case of a 3D algorithm), there are some important differences related to where and how

they generate a tool path. Traditional contour offset approach calculates a tool path on a

plane which is orthogonal to a tool direction. It iteratively offsets a contour and uses

offset curves as tool path components. Usually a sequence of parallel planes is used for

removing most of volume during a roughing process. The 3D version does perform very

similar steps but does not require using a planar surface (although it can use a plane and

in this case it becomes a 2D contour offset approach). It uses any possible user selected

surface called “Target surface”. The problem here is an additional dimension. As a result,

offsetting a contour creates a tube like shape that cannot be used for path planning

(Figure VI-9b). As a solution for this problem, an additional step is required – calculation

of the intersection between a tube and a target surface (Figure VI-9c). By calculating the

intersection, it generates a curve that lies on a constant distance from an original contour

169

and can be used for further path planning. The important property of the contour offset

approach is preserved – the distance between path components is constant in most cases

and always bounded. This property allows controlling a scallop height of the machined

surface by controlling distance between path components.

a) target surface with initial curve

b) curve offset volume

c) intersection curve

d) offset volume of an intersection curve

Figure VI-9: Curve offsetting

Iterative performing of the contour offset algorithm until an entire surface (or a

surface part) is covered (Figure VI-10) generates a sequence of curves that completely fill

a target surface and that are further than the offset distance to each other. The developed

implementation determines that an entire surface is processed if it is not possible to

calculate intersection between curve offset volume and a target volume. It is also

important to notice that curve offset volume combines all offset volumes calculated

170

during previous iteration, so if a part of a target surface is already processed it will not be

processed again.

Figure VI-10: Iterative surface area filling

Before describing the complete surface filling algorithms it is important to talk

about the third component used in this process – restriction volume. Boundary conditions

and also any required restrictions are represented as a restriction volume that contains

areas where tool movements are not desired or dangerous. For example, during roughing

path planning for ball end tool, restriction volume includes a part offset volume with an

offset value equal to a tool radius. By not allowing path planning in areas that are too

close to a part surface, it predicts overcuts because a tool center will never come closer

than a tool radius and a tool surface will never intersect a part surface as a result. A

restriction volume also limits filling algorithm in a way that only a desired part of a

surface is processed even if an entire surface is not processed yet. This is useful for

protecting fixtures from accidental machining. For example, Figure VI-11 demonstrates

171

the restriction volume for the “Head” model that contains two parts: offset volume of the

model with offset distance equal the tool radius and a box volume in the bottom for

protecting fixtures.

Figure VI-11: Restriction volume for the “Head” model

The entire surface filling process is described by Algorithm VI-5.

1 Current curve = Initial curve

2 Do:

3 | Offset current curve

4 | Calculate Intersection curve between Target surface and Offset volume

5 | If intersection curve exists:

6 | | Save intersection curve as a tool path component

7 | | Current curve = Intersection curve

8 Until: Intersection curve does not exist

Algorithm VI-5: Surface filling

The most important property of the developed surface filling algorithm is

parallelizability. Since it is based on volume offset (curve offset algorithm, which is

actually used, is a special case of volume offset algorithm described earlier) and volume

172

intersection algorithms which are both parallel, the entire surface filling algorithm

becomes naturally parallel and all algorithms that use it are also naturally parallel.

Robust tool trajectory generation for 5-axis machines

The described 3D contour offset algorithm is used both for the roughing and the

finishing tool path planning by using different target surfaces. In case of finishing a

model offset volume surface is used as s target surface. An offset value in this case is

equal a tool radius. And a contour offset value controls path step and it is selected based

on a desired scallop height. As it was mentioned before, limiting tool center movements

to an offset surface prevents overcuts by a ball part of a tool. For the finishing path

generation, an initial curve can be selected in many ways but the current implementation

uses an intersection between a horizontal plane and a top of an offset model.

The Figure VI-12 demonstrates an example of the surface filling process used for

a finishing tool path generation and Algorithm VI-6 demonstrates required algorithm

steps. Intersection curves calculated during this process are used as tool center trajectory

curves in a finishing tool path.

1 Calculate intersection curve between part offset volume and horizontal plane

2
Apply the Surface filling algorithm starting with the intersection curve (Algorithm

VI-5)

3 Generate a finishing tool path by combining all generated curves

Algorithm VI-6: Finishing tool path generation

173

Figure VI-12: Surface filling for finishing tool path generation

The roughing tool path generation process is a bit more complicated than the

finishing process because it has to process a volume, not a surface. There are three main

differences. First, it uses iterative approach and generates a tool path that removes

material layer by layer until it reaches a part surface. Second, a target surface for

roughing process is a workpiece material surface itself. Similarly to the finishing process,

it uses surface filling algorithm for generating a set of curves on a material surface that

are used as tool center trajectory curves. And finally, roughing algorithm selects initial

curves differently. The current implementation uses the intersection between a workpiece

and a model offset volume for selecting an initial curve. After the intersection is

174

calculated, the longest intersection curve is selected (Figure VI-13) and the surface filling

algorithm is used. This process repeats until all intersection curves are processed and it is

not possible to find a curve that lies outside of a safety zone. All roughing path planning

steps are demonstrated by Algorithm VI-7.

Figure VI-13: Initial curve selection for roughing process

1 Calculate part and fixtures offset volume (Algorithm VI-4)

2 Do:

3 | Calculate intersection curves between workpiece and part offset volumes

4 | While non-processed intersection available:

5 | | Select the longest intersection curve

6 | | Apply the Surface filling algorithm starting with the selected curve

7 | | Generate a roughing tool path for a layer by combining all generated curves

8 Until intersection curves exist

9 Generate a roughing tool path by combining all layers

Algorithm VI-7: Roughing path planning

175

The Figure VI-14 demonstrates workpiece geometry after removing each layer of

material during a roughing process with a tool path generated by the described roughing

algorithm. It is also easy to see exact tool trajectory on the first few layers.

Figure VI-14: Layer by layer material removing during a roughing process.

The described finishing and roughing tool path planning approaches have some

important properties that should be mentioned. First of all, these algorithms follow the

developed methodology and mainly perform volume offset, volumes intersection and

176

surface filling operations. Since all these operations are naturally parallel, all developed

tool path planning algorithms hold this property. The second important property is

robustness. In context of this work, robustness means an ability to generate a valid tool

path for any given geometry. It is easy to see that both algorithms just perform a set of

steps without knowledge about geometry itself so they are geometry agnostic and can be

applied to any possible part. It is also easy to see that both algorithms stop to work only

when they process an entire surface or volume since it is part of existing conditions.

These properties make the described algorithms great candidates for a foundation

of a completely automated tool path planning platform because even if an optimal

algorithm for geometry is not known, these algorithms can always generate a tool path.

However it is important to remember that in most cases they do not provide an optimal

result, and that they should be used as a last resort.

Orientation selection

The previous part described algorithms that are capable of generating a tool center

trajectory that results in machining of a desired geometry. But a tool center trajectory is

only a part of a tool path for 5-axis machines since there is a need for a valid tool

orientation at each point. This work makes an important assumption: tool orientation can

be calculated independently after calculation of a tool trajectory. Although this

assumption does not always work and probably does not allow generating an optimal tool

path for all possible scenarios, it works in most cases and significantly simplifies a tool

path planning process by decomposing it into two independent process of trajectory and

177

orientation planning. It is also important to notice that in spite of the assumption made,

the implemented tool path planning system generates orientation for each layer of a

roughing path planning process and as result orientation planning on each layer actually

does affect trajectory planning on a next layer. For example if some volume cannot be

removed on a layer because it is not possible to select a collision free orientation for a

tool path, it may become possible on future layers because there are less constraints due

to removed volume.

Before discussing a tool orientation selection process, it is important to mention

that it heavily depends on a concept of accessibility map that represents all collision- and

gouge-free orientations for a given tool center position (cutter contact point can be used

as well with minor changes but it is not discussed in this work). An accessibility map is

stored as a bitmap where each pixel represents two rotary axis coordinates and has a

value of 0 if this is a valid orientation or value 1 if this orientation results into collision as

shown on Figure VI-15. A description of a highly parallel efficient algorithm for

accessibility map calculation will be provided later in this work. Although this algorithm

does not include a prediction of machine components collisions, there is an assumption

that it is possible to calculate an accessibility map with a high enough resolution in a

reasonably short time for any given point.

Figure VI-15: Accessibility map example

A

C
Angles limited

to this area

178

It is also important to describe the desired orientation properties used in this work.

Since there are infinite possible tool orientations, selection of tool orientation can be

viewed as an optimization process with constraints represented by accessibility maps

(machine dynamics constraints are not considered directly in this work) and a selected

optimization criteria that represent desired orientation properties. In this work a smooth

orientation change is selected as a target tool orientation property. The idea behind this is

to be as continuous as possible, and to use as low speed rotary axis movements as

possible. This can be described as true 5-axis machining which usually happens during

machining complex true 5-axis parts. There was an assumption that solving a tool

orientation problem for this scenario will allow solving orientation problems for simpler

3+2 axis cases by adding more constraints.

The developed orientation selection system uses an assumption that orientation

selection happens after tool trajectory planning and 3 of 5 axis values are already known

for each tool path point, so there is a need to find only 2 more axis values. An orientation

of each tool trajectory point can be described as a 2D point in orientation space and

orientation for all tool path points can be described as a set of 2D points. Considering the

fact that orientation change physically means a continuous rotary axis movement, tool

orientation change during following a tool trajectory should be continuous and can be

described as moving a point on a 2D curve. Movement of a 2D point brings a 3
rd

dimension that can represent either a time or a distance from the beginning of tool center

trajectory. There is obviously no difference from a mathematical point of view between

point movement on 2D curve and a curve in 3D space but the last one is better from a

179

constraints visualization point of view. Since every tool center point has a different

accessibility map, an orientation selection process can be viewing as construction of a 3d

curve that goes through a stack of accessibility maps (Figure VI-16).

Figure VI-16: 3D curve going through a stack of bitmaps

The implemented version of the orientation selection algorithm actually works by

constructing a curve through a stack of accessibility map. It uses a two stage process:

first, it selects an optimal accessibility space topology; second, it generates an initial

curve, by selecting points that lie as far as possible from borders, and iteratively optimize

a curve shape for making it smooth.

The first step is needed for reducing the number of tool retractions due to

impossibility of continuous orientation change (these retractions will be called “jumps”).

Jumps happen when a tool center position can be accessible only from orientations that

cannot accessed by continuous rotary axis movement from a position that was selected

180

for a previous tool center position. In this case a tool is retracted, orientation is changed

and a tool center is moved to the next tool center position.

Figure VI-17: Example of a tool trajectory that requires a tool retraction

For example, as shown on Figure VI-17, if a tool center follows the showed

trajectory, earlier or later it will not be able to continue without a jump. It is important to

notice that the last point where tool can go without a jump depends on a tool movement

direction as shown on Figure VI-18.

Figure VI-18: Dependency of a jump point on tool movement direction

The shown example is a simple case when only one jump is done and required.

But, even with this example, it is already possible to notice that this situation is a

181

limitation of the earlier assumption about the independency of a tool trajectory planning

process and orientation selection. It is easy to see that an entire surface of the

demonstrated teapot can be processed without any jumps if a different tool trajectory is

selected. However in many situations jumps are not avoidable at all. In these cases a tool

path planning algorithm can try to minimize a number of jumps because tool retractions

increase total machining time and also may decrease a tool life by increasing a number of

tool load changes. For example, in situation shown on Figure VI-19 there are 2 possible

ways for selection a tool orientation if a tool follows a straight line trajectory as shown on

Figure VI-20.

Figure VI-19: A scenario with a complicated tool space topology

Figure VI-20: Two possible ways of orientation selection

182

It is easy to see that the left way requires two jumps and the right one requires

only one jump and it probably should be selected. In order to understand how the right

way can be selected it is important to look on an accessibility space that shows all valid

tool orientations. For a 5-axis machine with 2 rotary axises, an accessibility space has 3

dimensions (2 axis + time). But in order to simplify explanation and visualization an

assumption is made that there is only 1 rotary axis (around and axis that lies in a wall

plane perpendicular to a tool path line on Figure VI-20) and an accessibility space has 2

dimensions (accessibility map accordingly has only 1 dimension in this case). In this case

an accessibility space for the described situation looks similar to Figure VI-21 where a

center line represents a tool orientation along a wall normal and grey area represents valid

orientations.

Figure VI-21: Accessibility space

The Figure VI-22 provides an explanation of a construction process for the

accessibility map shown on Figure VI-21. The top part of it demonstrates a top view on a

183

target part. The accessibility space is located in the bottom and divided into 5 zones

accordingly to a possible combination of orientations in each zone. Approximations of

accessible zones are marked by blue rectangles. Finally, considering the fact that a tool

moves continuously, black lines represent corrected accessibility area borders.

Figure VI-22: Explanation of an accessibility map construction process

Before the explanation of the optimization process, it is impossible to explain how a jump

looks in accessibility map space. Considering that a jump always happens for exactly the

same tool center orientation, it means that it always happens in a vertical slice of the

accessibility space. As a result it can be viewed as a rapid movement from one

accessibility zone to another (

184

Figure VI-23). Where an accessibility zone is a part of the accessibility space for a given

tool center position that includes all points that can be accessible by continuous

orientation change. It is important to notice that accessibility zone always has the same

number of dimension as an entire accessibility space.

Figure VI-23: “Jump” concept explanation

The developed topology optimization approach is based on the idea of

representation of an accessibility space as a graph of connected accessibility zones and

searching for a shortest path. It is easy to see that an accessibility space can be discretized

by slicing it into a sequence of accessibility map (the developed implementation actually

works in an opposite way, it generate a sequence of accessibility map and constructs an

accessibility space from them). Each accessibility map will have a set of accessibility

185

zones that can be connected based on possibility of moving from one zone to another as

shown on

Figure VI-24. Two accessibility zones can be connected only if they intersection

is not empty. From a machining point of view it means that a tool can move from one

tool center position to another without changing a tool orientation.

Figure VI-24: Accessibility space slicing and connection

It is easy to see that accessibility zones can be viewed as nodes of a graph that

represent an accessibility space topology. However, it is not possible to find a path from

186

beginning to end in such a graph without some additional improvements that represent

jumps. As was mentioned before, a jump is a movement from one accessibility zone to

another in a slice. This movement can be represented as an edge in a graph but a number

of edges will be equal to a square of accessibility zones number in each slice. The

developed version uses a slightly different approach and introduces a “Jump” node

connected to each accessibility zone of each slice that has more than one accessibility

zone. It allows using less edges and better visualization. The Figure VI-25 demonstrates a

graph constructed for the accessibility space shown on Figure VI-24 based on the

described rules. Edges that have the gold color represent the shortest path in the graph.

This path contains a sequence of accessibility zones and jumps that have to be used for

selecting a part of an accessibility space that contains an orientation curve with the lowest

possible number of jumps.

Figure VI-25: Graph representation of an accessibility space

 Jump

Jump

 Jump

Jump

187

The developed implementation of the discussed algorithm uses the “NetworkX”

Python library for managing a graph structure and searching for the shortest path in a

graph (“Dijkstra's algorithm with Fibonacci heap” [67] with O(E+V*logV) complexity)

and implements the graph construction process described by the Algorithm VI-8.

1 Calculate accessibility map (AS slices) for each tool center point (Algorithm VI-11)

2 For all accessibility maps:

3 | Find all accessibility zones (AZ)

4 For all accessibility zone:

5 | Add a node to a graph

6 | For all accessibility zones on a previous slice:

7 | | If intersection between AZ on current layer and previous layer exist:

8 | | | Add an edge

9 For each slice:

10 If there are more than one accessibility zone:

11 | Add “Jump” node and edges from this node to all AZ in this slice

Algorithm VI-8: Accessibility graph construction

It is important to note that the developed version of the described algorithm

actually works with 3D accessibility space in opposite to the described 2D case. Although

a number of dimensions is different, it implements conceptually the same ideas of

representing an accessibility space as a graph and search for the shortest path. An

example of a real life accessibility space graph is shown on Figure VI-26 (node values

represent a number of an accessibility zone in a slice).

188

Figure VI-26: Real life example of an accessibility map graph

The next step in the orientation planning process is the construction of an

orientation curve in a selected part of the accessibility space. Before the construction of

an actual curve, an accessibility space should be reduced by using only accessibility

zones represented by the shortest path in a graph. At this point a tool path is also divided

into a sequence of segments corresponding to segments of nodes in the shortest path.

Since there are jumps between these regions, tool orientation at ends of these segments

can be selected independently and it does not make sense to optimize them together. As a

result it is possible to reduce a length of a curve that has to be optimized at once. The

curve construction process has two main parts: construction of an initial curve and

iterative optimization.

189

Generally, an initial curve can be selected randomly if a stable optimization

algorithm is used but, as with any other optimization techniques, a good initial guess

results in much faster convergence. The developed accessibility curve construction

system generates a curve from points that lie as far as possible from border of

accessibility zones. The developed implementation uses the “Distance transform”

algorithm [68] (with O(N
2
) complexity) implemented in OpenCV library in order to find

these points. The distance transform algorithm calculates an approximate distance to the

closes zero pixel of a given bitmap. As a result, a pixel with the maximum distance value

represents the furthest point from an accessibility zone boundary. As a result, an initial

curve is constructed by applying a distance transform to all accessibility maps and using

points with maximum distance values. Although the described way guarantees that all

accessibility curve points lie inside accessibility zones, there is no guarantee that an entire

curve lies in accessible area because some curve segments between initial points may lie

in non-accessible areas. A solution for this problem is the developed implementation is

applying Boolean “And” operations between all neighbor accessibility maps before

construction of an accessibility space graph. Although it reduces an accessibility space

and can result into impossibility of a tool path construction, this situation is not likely.

However if Boolean “And” produces an empty map, this will mean that it is dangerous to

machine this area since a tool will be very close to a part. As a result, it will be treated as

an inaccessible area and the tool path planning algorithm will try to machine it later when

more material is removed and the area may become accessible.

190

The complete process of preparing of an accessibility space and an initial curve

construction is described by Algorithm VI-9.

1 Calculate the shortest path in an accessibility space graph

2 Remove all accessibility zones that are not part of the shortest path

3 For all accessibility zones:

4 | Apply a distance transform

5 | Find a point with maximum distance value

6 | Add found point to an initial curve

Algorithm VI-9: Initial accessibility curve construction

After generating an initial curve, the last part of the accessibility curve

construction is an iterative optimization. The implemented optimization approach is quite

simple and tries to smooth a curve as much as possible while staying in accessible area.

For simplicity of an algorithm explanation, there is an assumption that an accessibility

curve has only 2 dimensions. The actual system works with 3 dimensional curves since it

is designed for 5-axis machines, but it uses conceptually the same algorithm.

A 2D curve can be represented by 1D array of floats (as it is done in a height map,

Figure VI-27) under assumption that all curve points are evenly spaced, which is correct

since they are located on accessibility space slices in the developed system. Before

continuing the optimization part it is possible to note that although the idea of slicing an

accessibility space is a good way to deal with it, selecting equal space between slices in

some cases is inefficient and bring a lot of problems. It is possible to recommend that

dynamic accessibility space subdivision with non-constant slices density is a better

approach that may save a significant amount of memory. But the actually implemented

191

orientation system uses constant distance between slices and all following explanation

will be done based on this fact.

Figure VI-27: Curve representation

The first step of optimization iteration is calculation of a gradient by using the

formula (VI-1).

(VI-1)

Where “ ” is a coordinate of ith point and “k” is a damping coefficient used for

prevention oscillation. The used value for the “k” is 0.9. After calculating gradients for

each point (except first and last points which are always locked at their initial positions),

a new point position is calculated:

 ̃ (VI-2)

If the new position lies inside accessible zone, a point position is updated by a

newly calculated value. However if a new position is not a valid orientation, a point is not

moved. The developed orientation curve optimization system performs described

iterations continuously during a given time that is based on a curve length. Using a time

Y0

Y1
Y2

Y4

Y5

Y3

Y6 Y7 Y8 Y9

Y

 X

192

limit as a single stopping condition was selected for simplification of the development

process and better control over optimization time.

1 Calculate an initial accessibility curve

2 While time limit is not reached:

3 | For each point in a curve:

4 | | Calculate gradient

5 | | Calculate next position

6 | | If next position is in accessible zone:

7 | | | Update point position

Algorithm VI-10: Accessibility curve optimization

The Algorithm VI-10 demonstrates steps performed during an accessibility curve

optimization process.

193

Figure VI-28: 3D curve optimization example

The Figure VI-28 demonstrates an example of a real 3 dimensional accessibility

curve optimization. It is important to remember that this curve has 3 dimensions and is

calculated for 5-axis machine with a continuous C axis, so it is normal to see rapid

movements from one end to another. These movements are just a visualization of the

continuous axis rotation and going from 359 to 0 degrees.

194

Figure VI-29: Accessibility space (views from multiple camera positions)

The Figure VI-29 demonstrates an example of a 3D accessibility space. On the

picture, borders between accessible and non-accessible areas for each accessibility zone

are represented by tubes. This accessibility space is calculated for the first few segments

of a roughing path that process a cube of material. A real world example of an

accessibility curve constructed in accessibility space is shown on Figure VI-30 - Figure

VI-32.

195

Figure VI-30: Accessibility curve going through accessibility space, view 1

Figure VI-31: Accessibility curve going through accessibility space, view 2

196

Figure VI-32: Accessibility curve going through accessibility space, view 3

Accessibility map generation

It was mentioned above that all orientation selection algorithms are based on an

assumption that there is a known accessibility map. This part describes an algorithm

developed for computing accessibility map for a given point and a given tool/holder

combination. Most of research project related to orientation selection [69, 70] are based

on a concept of accessibility (or visibility) cone [71]. The problem with this approach is

the simplification of an accessibility map by a cone or a set of cones. Although it is often

a good enough approach that saves a lot of memory and computational resources, it does

not provide an accurate representation of a real accessibility map.

The developed approach is based on the completely opposite idea of using

inaccessibility cones calculated for each geometry model element independently.

Considering the fact that the developed geometry representation uses a set of spherical

cells for representing a volume, it is possible to say that a valid orientation is an

orientation that does not result in a collision with any of cells. So if it is possible to find

197

all orientations that result into collision for each cell, all collision prone orientations will

be described by a union of collision prone orientations of each cell and all collision free

orientation will be described by a complement of that union. Independence of cells and

their collision prone orientation also allows calculation of these orientations in parallel

which is an important property for this work. An interesting part here is the calculation of

inaccessible orientations for a spherical cell and a give tool and tool holder combinations.

It is easy to see that for a fixed tool center position and a given spherical cell, a tool may

come to a cell as close as possible until their surfaces touch each other as shown on

Figure VI-33. It is also possible to calculate the angle between a tool orientation and a

vector from tool center to a sphere center.

Figure VI-33: Touching a cell surface by a tool surface

198

It is also obvious that a tool may touch a sphere from many different sides as

shown on Figure VI-34 but an angle between tool direction and a vector to a sphere

center is constant in all cases.

Figure VI-34: Touching a sphere from multiple sides

By looking on all possible tool orientations when a tool center is fixed and tool

touches a sphere as shown on Figure VI-35, it is possible to see that the tool direction

vectors make a cone around the vector to a sphere center.

199

Figure VI-35: All tool orientation when a tool touches a sphere

This cone is called an inaccessibility cone since all tool directions that lie inside

of this cone result into a collision. If given the tool center, the sphere center and the tool

geometry, the angle between the cone center line and the cone surface can be calculated.

Since a cone center line is a vector between a tool center and a sphere center, and a cone

top is a tool center, this angle completely determines an inaccessibility cone. Since an

Inaccessibility Cone Angle (ICA) is a single dimension value, there is no need to

consider 3D space and an explanation can be done in 2D by using a 2D tool model shown

on Figure VI-36.

200

Figure VI-36: 2D tool model

An ICA has two components related to a spherical cell itself and tool geometry as

shown on Figure VI-37. The spherical part of an ICA is needed since a cell is actually a

sphere, rather than a point. So this part represents an angle between a cell center and a

cell tangent.

Tool offset

line

Spherical cell

 -radius

(̂ ̂)-center

Circle with center

at tool center

Tool

surface

Tool center

line

 (̂ ̂)

201

Figure VI-37: Inaccessibility cone angle components

The second component can be easily calculated by formula:

√ ̂
 ̂

Where (̂ ̂) – k-th cell center and cell radius.

The first part, which is related to a tool and tool holder geometry, is a bit more

complicated. It is also important to mention here that for safety reasons, a tool surface

offset is used instead of a tool surface itself. It allows controlling the gap between

material and a moving tool during a machining process by changing surface offset value.

Calculation of the first ICA components is a bit more complicated. It is defined as

an angle between a tool center line and a vector to a sphere center when a sphere center

1

2

202

lies on a border of a tool. Here an assumption should be made that the developed

approach does not support a situation when a tool has complex shape that allows so that it

is possible to have a material between tool surface and a tool centerline. Considering this

assumption and the fact that a tool model has many components, the first ICA

components can be found as a maximum angle between tool center line and a vector to an

intersection between tool offset components and a circle with a center at tool center and

radius equal to a distance to a sphere center. This can be calculated with formula:

 ⃗
 ⃗⃗ ⃗

| ⃗⃗ ⃗|

Where ⃗⃗ ⃗ vector to p-th intersection between tool surface offset components and

a circle around tool center that intersects a cell center and ⃗ – tool center line. As a result

the ICA for a k-the cell can be defined as:

√ ̂
 ̂

 ⃗
 ⃗⃗ ⃗

| ⃗⃗ ⃗|

Now, when ICA can be calculated, it is possible to write a complete mathematical

definition of an accessibility map. It can be represented as a matrix of Boolean values

with resolution (n, m):

 [

]

Where each matrix element with coordinates (i, j) represent a tool orientation

defined by angles:

203

All matrix elements can be calculated as:

 ⋂()

Here the is an ICA defined earlier and is an angle between a tool

orientation vector associated with a matrix element and a vector to a k-th cell center. This

vector is defined by following formulas:

 ⃗⃗⃗⃗ ⃗

⃗⃗⃗⃗

|
⃗⃗⃗⃗ |

⃗⃗⃗⃗ =()

 ⃗⃗⃗⃗ ⃗ ()
⃗⃗ ⃗

√

From a computational point of view, the implemented version uses OpenCL and

runs all calculations on multiple GPUs by following the Algorithm VI-11. It calculated

all ICA in parallel first and then calculates all accessibility map elements in parallel as

well. Calculation of a single AM with resolution 256x512 takes approximately 20-40ms.

1 For all cells in parallel:

2 | Calculate ICA

3 For accessibility map element in parallel:

4 | For all cells in parallel:

5 | | Calculate angle between represented direction and cell center

6 | | If calculated angle is less than ICA:

7 | | | Mark map element as inaccessible

Algorithm VI-11: Accessibility map calculation

204

The developed accessibility map calculation approach has shown great

parallelizability and scalability as well as a quite good performance. In opposition to the

other accessibility map calculation techniques mentioned earlier, it does not use any

simplifications of an accessibility space and produces very accurate accessibility maps.

However since there are no simplifications used, it uses significantly more memory for

the storing accessibility map.

Another important property of the developed algorithm is an ability to use a

complete tool and tool holder geometry representation without any simplifications. It

allows considering all parts of a tool and holder and using orientations that are safe but

not defined as safe for other methods due to simplified tool geometry representation.

205

High level tool path planning control algorithm

The previous parts have described all components required for creation of a

complete robust tool path planning strategy that can produce a valid result. But it is

important to show a high level algorithm that brings all components together into a path

planning system. This algorithm is shown by the Algorithm VI-12.

1 Offset target geometry and fixtures volumes for roughing tool (Algorithm VI-4)

2 Do:

3 | Generate roughing tool path for layer (Algorithm VI-7)

4 | Generate accessibility map for each point (Algorithm VI-11)

5 | Optimize accessibility space (Algorithm VI-8)

6 | Construct initial accessibility curve (Algorithm VI-9)

7 | Optimize accessibility curve (Algorithm VI-10)

8 | Simulate generated tool path (Algorithm V-1 & Algorithm V-2)

9 While generated tool path length is greater than zero

10 Offset target geometry and fixtures volumes for finishing tool (Algorithm VI-4)

11 Generate finishing tool path (Algorithm VI-6)

12 Perform steps 4-7 for the finish tool path

Algorithm VI-12: High level control algorithm

Experimental 5-axis milling results

All described tool trajectory and orientation planning algorithms were

implemented in Python, C++ and OpenCL languages during the research project. The

developed system was tested on a computer with 3 GPUs and showed great

parallelizability and scalability very similar to performance result showed in the previous

chapter describing 5-axis milling simulator. This chapter will not provide additional

206

performance details for three reasons. First, both the simulation and the low level part of

the path planning system use exactly the same implementation of the geometry

representation and processing core. As a result, they have exactly the same level of

parallelizability shown in the previous chapter and there is no need to show the same

results. Second, high level path planning algorithms heavily depend on input geometry

from the amount of calculations point of view. It means that all performance testing

results will be valid only for test geometry models. And finally, the developed version

uses a lot of reasonably slow Python code that can be much faster if it is rewritten in

C++. In spite everything mentioned above, it takes about 10-20 minutes to generate a

complete tool path for all tested models, so it can be stated that after performance tuning

and code improvement it will take less than 10 minutes for generating a valid tool path

for any given model.

In order to validate developed methodology and algorithms, the developed path

planning system was used for generation G-code programs for multiple parts. These G-

code programs were tested in both virtual and real environments on the developed 5-axis

machining simulator and Okuma MU500VA 5-axis milling machine.

The process of converting of a tool path into a G-code program is done by the

post-processor software. Commercial CAM systems usually include a generalized post-

processor that can be configured for a particular CNC controller but they require using a

special tool path description language. Since converting a tool path into a post-processor

language is more complicated (due to the lack of documentation) than converting it into

the G-code format itself, there was developed a simplified post-processor designed for

207

the used Okuma machine. It converts tool motions in the developed software format

directly to G1 commands and use some simple program optimization such as combining

collinear motions or removing constant components in order to reduce size of an output

program.

The following pictures demonstrate simulation and machining results for various

test models and materials.

208

(15 minutes planning type; 3 hours machining time)

Figure VI-38: Test model “Head”

209

(15 minutes planning type; 1.5 hours machining time)

Figure VI-39: Test model “Fan”

(10 minutes planning type; 1.5 hours machining time)

Figure VI-40: Test model “Puppy”

210

Discussion

This chapter has described the developed design methodology for a highly

parallel algorithm and a set of tool path planning algorithms developed by following the

methodology. These algorithms include a solution for common computational geometry

problems, such as offset surface calculation or volume surface intersections and a set of

robust algorithm for multi-axis tool path planning used in CNC milling. Following the

design methodology and using the developed highly parallel geometry representation

have resulted in high parallelizability and scalability of these algorithms. As a result, they

can efficiently run on multi-GPU systems with more than a thousand cores.

The developed path planning algorithms were combined in an automatic path

planning system capable of producing a valid G-code program for 5-axis CNC milling

machine with a very little guidance from a user. The developed path planning system was

tested in both a virtual and a real environment by generating G-code programs a running

them in the developed simulator and on a real machine.

The experimental results have proved that GPGPU approach can be used for

acceleration and automation of the tool path planning process for CNC milling machines.

Although the developed system often generates not the most efficient tool path, it can be

used as a foundation for a fully automated tool path planning system since it already

provides a set of very robust path planning algorithms that can generate a valid tool path

for almost any possible input geometry.

Although the developed system demonstrated good results, it is important to

remember that the implemented version of all path planning and accessibility map

211

generation algorithms is limited to the ball-end cutter only. It is also important that

remember that if a tool center point lies in inaccessible area, the developed path planning

system will just skip it and will not try to machine as close as possible. As a result, there

may be areas where material is not removed at all even if it was possible to remove

almost all material. And the most important limitation is the fact that the described path

planning algorithms were designed as robust and they do not provide the most efficient

tool path.

212

VII. CONCLUSIONS AND RECOMMENDATIONS

The first part of this work formulated the methodology for selection of a right

geometry representation and a data structure suitable for parallel processing on GPU.

Then the methodology was used for designing the 3-axis CNC milling simulation and

path planning algorithms accelerated with the GPGPU technology. The developed

algorithms were validated by performing 3-axis simulation and experimental machining.

The experimental results showed the importance of a highly parallel design and

demonstrate almost an order of magnitude difference between CPU and GPU

performance results.

The second part of this work generalized the developed methodology for

supporting multi-GPU systems and developed a completely new geometry representation

for designing algorithms capable of performing 5-axis CNC tool path planning and

simulation. Then the developed algorithms were verified by developing a fully automated

5-axis tool path planning system capable of producing valid G-code programs for any

geometry. Finally the developed system was used for the generation of test programs that

were tested in both virtual and real environments by running them in the developed 5-axis

CNC milling simulator and on a real 5-axis CNC milling machine.

The experimental results produced in this work proved that highly parallel

computing hardware (such as widely available and used in this work multi-GPU

computing system) and appropriate highly parallel algorithms can significantly expand

limits of modern tool path planning systems. The performance of parallel computing

213

allows implementing algorithms that were not considered before due to computational

requirements. And as a result, it allows further manufacturing automation that may create

completely automated manufacturing systems.

Although developed in this work algorithms and systems were successfully tested

and demonstrated good results, it is important to remember that there were made some

important assumptions and the developed solutions have many limitations. The most

important assumption made in this work is that it is possible to generate a good tool path

based just on geometric constraints without considering physical limitations. It is true in

most cases, but it will not work for machining some material such as titanium and there

will be a need to integrate physical limitations into a tool path planning process. Other

assumptions were made about optimization of a tool path. For example, it is assumed that

a tool orientation change should be as smooth as possible. Although it makes sense

sometime, it may be more appropriate to use a constant tool orientation with few rapid

changes. Some other limitations are more related to implementation of the developed

ideas and algorithms. For example, the developed path planning and accessibility map

generation algorithms are designed for the ball-end tool but it is possible to modify them

in order to support some other tool types such as flat-end or conic-end.

Considering the good results, it is possible to recommend continuing this research

project since there are still many areas that can be significantly improved. One of the

most important aspects from a practical point of view is the implementation of an

accessibility map algorithm that allows prediction collisions between machine

components. This improvement would make the machining process significantly safer

214

and allow using the full range of machine motions. The next important part is the

development of an expandable tool path planning system based on current robust path

planning algorithms. In this case, expandable means an ability to use multiple

implemented tool path planning strategies (that also have to be implemented in future)

and select them based on a part geometry analysis (feature detection and part subdivision

will be needed for this functional). Finally, it will be possible to create a tree of possible

solutions and at that point it would make sense to run a developed path planning system

on a cluster or cloud where each node processes an independent list of strategies used for

tool path planning. Development of all described features will eventually make it possible

to replace a human engineer completely and significantly reduce manufacturing the time

and cost as a result.

215

REFERENCES

[1] Centrifuge Brand Marketing Research, 2010, "Machine Tool Professionals, Outlook

on CNC Machine Investments," .

[2] Smith, K., Wang, A., and Fujino, L., 2012, "Through the Looking Glass: Trend

Tracking for ISSCC 2012," IEEE Solid-State Circuits Magazine, 4(1) pp. 4 - 20.

[3] BOBROW, J., 1985, "NC Machine Tool Path Generation from CSG Part

Representations" Computer-Aided Design, 17(2) pp. 69 - 76.

[4] HWANG, J., 1992, "Interference-Free Tool-Path Generation in the NC Machining of

Parametric Compound Surfaces," Computer-Aided Design, 24(12) pp. 667 - 676.

[5] LI, S., and JERARD, R., 1994, "5-Axis Machining of Sculptured Surfaces with a Flat-

End Cutter," Computer-Aided Design, 26(3) pp. 165 - 178.

[6] LONEY, G., and OZSOY, T., 1987, "NC Machining of Free Form Surfaces,"

Computer-Aided Design, 19(2) pp. 85 - 90.

[7] Suresh K, Y. D., 1994, "Constant Scallop Height Machining of Free Form Surfaces,"

Journal of Engineering for Industry, 9pp. 116-253.

[8] Rong-Shine Lin, Y. K., 1996, "Efficient Tool-Path Planning for Machining Free-

Form Surfaces," Transactions of the ASME, 118(1) pp. 20-28.

[9] Lasemi, A., Xue, D., and Gu, P., 2010, "Recent Development in CNC Machining of

Freeform Surfaces: A State-of-the-Art Review," Computer-Aided Design, 42(7) pp.

641 - 654.

[10] Lee, Y. -., and Ji, H., 1997, "Surface Interrogation and Machining Strip Evaluation

for 5-Axis CNC Die and Mold Machining," International Journal of Production

Research, 35(1) pp. 225 - 252.

[11] Lauwers, B., Kiswanto, G., Kruth, J. -., 2003, "Development of a Five-Axis Milling

Tool Path Generation Algorithm Based on Faceted Models," CIRP Annals -

Manufacturing Technology, 52(1) pp. 85-88.

[12] Giri, V., Bezbaruah, D., Bubna, P., 2005, "Selection of Master Cutter Paths in

Sculptured Surface Machining by Employing Curvature Principle," International

Journal of Machine Tools and Manufacture, 45(10) pp. 1202-1209.

216

[13] Han, Z., and Yang, D. C. H., 1999, "Iso-Phote Based Tool-Path Generation for

Machining Free-Form Surfaces," Journal of Manufacturing Science and

Engineering, 121(4) pp. 656.

[14] Ding, S., Mannan, M. A., Poo, A. N., 2003, "Adaptive Iso-Planar Tool Path

Generation for Machining of Free-Form Surfaces," Computer-Aided Design, 35(2)

pp. 141-153.

[15] Yang, D. C. H., and Han, Z., 1999, "Interference Detection and Optimal Tool

Selection in 3-Axis NC Machining of Free-Form Surfaces," Computer-Aided

Design, 31(5) pp. 303-315.

[16] Choi, B. K., Kim, D. H., and Jerard, R. B., 1997, "C-Space Approach to Tool-Path

Generation for Die and Mould Machining," Computer-Aided Design, 29(9) pp.

657-669.

[17] Morishige, K., Kase, K., and Takeuchi, Y., 1997, "Collision-Free Tool Path

Generation using 2-Dimensional C-Space for 5-Axis Control Machining," The

International Journal of Advanced Manufacturing Technology, 13(6) pp. 393 - 400.

[18] Yang, D. C. H., Chuang, J. J., Han, Z., 2003, "Boundary-Conformed Toolpath

Generation for Trimmed Free-Form Surfaces Via Coons Reparametrization,"

Journal of Materials Processing Technology, 138(1-3) pp. 138-144.

[19] Yang, D. C. H., Chuang, J. -., and OuLee, T. H., 2003, "Boundary-Conformed

Toolpath Generation for Trimmed Free-Form Surfaces," Computer-Aided Design,

35(2) pp. 127-139.

[20] Sun, W., Bradley, C., Zhang, Y. F., 2001, "Cloud Data Modelling Employing a

Unified, Non-Redundant Triangular Mesh," Computer-Aided Design, 33(2) pp.

183-193.

[21] Ren, Y., Yau, H. T., and Lee, Y., 2004, "Clean-Up Tool Path Generation by

Contraction Tool Method for Machining Complex Polyhedral Models," Computers

in Industry, 54(1) pp. 17-33.

[22] Yuan-Shin, L., 1997, "Admissible Tool Orientation Control of Gouging Avoidance

for 5-Axis Complex Surface Machining," Computer-Aided Design, 29(7) pp. 507-

521.

[23] Warkentin, A., Ismail, F., and Bedi, S., 2000, "Multi-Point Tool Positioning Strategy

for 5-Axis Mashining of Sculptured Surfaces," Computer Aided Geometric Design,

17(1) pp. 83-100.

217

[24] Gray, P. J., Ismail, F., and Bedi, S., 2004, "Graphics-Assisted Rolling Ball Method

for 5-Axis Surface Machining," Computer-Aided Design, 36(7) pp. 653-663.

[25] Gray, P., Bedi, S., and Ismail, F., 2003, "Rolling Ball Method for 5-Axis Surface

Machining," Computer-Aided Design, 35(4) pp. 347-357.

[26] Fan, J., and Ball, A., 2008, "Quadric Method for Cutter Orientation in Five-Axis

Sculptured Surface Machining," International Journal of Machine Tools and

Manufacture, 48(7-8) pp. 788-801.

[27] Morishige, K., Takeuchi, Y., and Kase, K., 1999, "Tool Path Generation using C-

Space for 5-Axis Control Machining," Journal of Manufacturing Science and

Engineering, 121(1) pp. 144.

[28] Balasubramaniam, M., Joshi, Y., Engels, D., 2001, "Tool Selection in Three-Axis

Rough Machining," International Journal of Production Research, 39(18) pp. 4215 -

4238.

[29] Jensen, C. G., Red, W. E., and Pi, J., 2002, "Tool Selection for Five-Axis Curvature

Matched Machining," Computer-Aided Design, 34(3) pp. 251-266.

[30] Tukora, B., and Szalay, T., 2011, "Real-Time Determination of Cutting Force

Coefficients without Cutting Geometry Restriction," International Journal of

Machine Tools and Manufacture, .

[31] Hsieh, H., and Chu, C., 2011, "Particle Swarm Optimisation (PSO)-Based Tool Path

Planning for 5-Axis Flank Milling Accelerated by Graphics Processing Unit

(GPU)," International Journal of Computer Integrated Manufacturing, 24(7) pp. 676

- 687.

[32] Li, J. G., Ding, J., Gao, D., 2010, "Quadtree-Array-Based Workpiece Geometric

Representation on Three-Axis Milling Process Simulation," The International

Journal of Advanced Manufacturing Technology, .

[33] Wang, C. C. L., Leung, Y., and Chen, Y., 2010, "Solid Modeling of Polyhedral

Objects by Layered Depth-Normal Images on the GPU," Computer-Aided Design,

42(6) pp. 535 - 544.

[34] "NEF: A Mesher Based on OpenCascade C.A.D. Software," 2012(11/28/2012)

from: http://www.ann.jussieu.fr/perronnet/mit/mit.html

[35] Wikipedia contributors, "Title="Constructive Solid Geometry" Invalid=""/>," 2012.

http://www.ann.jussieu.fr/perronnet/mit/mit.html

218

[36] "Clingman D., Kendall S., Mesdaghi S. Practical Java Game Programming / Scene

Graph Visibility Culling," 2012(11/28/2012) from:

http://flylib.com/books/en/2.124.1.130/1/

[37] Bertok, P., Takata, S., Matsushima, K., 1983, "A System for Monitoring the

Machining Operation by Referring to a Predicted Cutting Torque Pattern," CIRP

Annals - Manufacturing Technology, 32(1) pp. 439 - 444.

[38] Van Hook, T., 1986, "Real-Time Shaded NC Milling Display," ACM SIGGRAPH

Computer Graphics, 20(4) pp. 15 - 20.

[39] Hsu, P. -., and Yang, W. -., 1993, "Realtime 3D Simulation of 3-Axis Milling using

Isometric Projection," Computer-Aided Design, 25(4) pp. 215-224.

[40] Roth, D., Ismail, F., and Bedi, S., 2003, "Mechanistic Modelling of the Milling

Process using an Adaptive Depth Buffer," Computer-Aided Design, 35(14) pp.

1287 - 1303.

[41] Jang, D., Kim, K., and Jung, J., 2000, "Voxel-Based Virtual Multi-Axis Machining,"

The International Journal of Advanced Manufacturing Technology, 16(10) pp. 709

- 713.

[42] Cohen-Or, D., and Kaufman, A., 1997, "3D Line Voxelization and Connectivity

Control," IEEE Computer Graphics and Applications, 17(6) pp. 80 - 87.

[43] Wang, W. p., and Wang, K. k., 1986, "Geometric Modeling for Swept Volume of

Moving Solids," IEEE Computer Graphics and Applications, 6(12) pp. 8 - 17.

[44] Bohez, E. L. J., Minh, N. T. H., Kiatsrithanakorn, B., 2003, "The Stencil Buffer

Sweep Plane Algorithm for 5-Axis CNC Tool Path Verification," Computer-Aided

Design, 35(12) pp. 1129 - 1142.

[45] Özel, T., and Altan, T., 2000, "Process Simulation using Finite Element Method —

Prediction of Cutting Forces, Tool Stresses and Temperatures in High-Speed Flat

End Milling," International Journal of Machine Tools and Manufacture, 40(5) pp.

713 - 738.

[46] Rai, J. K., and Xirouchakis, P., 2008, "Finite Element Method Based Machining

Simulation Environment for Analyzing Part Errors Induced during Milling of Thin-

Walled Components," International Journal of Machine Tools and Manufacture,

48(6) pp. 629 - 643.

http://flylib.com/books/en/2.124.1.130/1/

219

[47] Uddin, M. S., Ibaraki, S., Matsubara, A., 2009, "Prediction and Compensation of

Machining Geometric Errors of Five-Axis Machining Centers with Kinematic

Errors," Precision Engineering, 33(2) pp. 194 - 201.

[48] Cortsen, J., and Petersen, H. G., 2012, "2012 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM); Advanced off-line simulation

framework with deformation compensation for high speed machining with robot

manipulators," 2012 IEEE/ASME, pp. 934 - 939.

[49] Hanwu, H., and Yueming, W., 2009, "Web-Based Virtual Operating of CNC Milling

Machine Tools," Computers in Industry, 60(9) pp. 686 - 697.

[50] Vichare, P., Nassehi, A., Kumar, S., 2009, "A Unified Manufacturing Resource

Model for Representing CNC Machining Systems," Robotics and Computer-

Integrated Manufacturing, 25(6) pp. 999 - 1007.

[51] NVidia, "Parallel Programming and Computing Platform | CUDA | NVIDIA,"

2012(10/23/2012) .

[52] Microsoft, "Compute Shader Overview," 2012(10/23/2012) .

[53] Khronos Group, "OpenCL - the Open Standard for Parallel Programming of

Heterogeneous Systems," 2012(10/23/2012) .

[54] Aaftab, M., 2011, "The OpenCL Specification," Khronos OpenCL Working Group .

[55] Zuperl, U., Cus, F., and Reibenschuh, M., 2011, "Neural Control Strategy of

Constant Cutting Force System in End Milling," Robotics and Computer-Integrated

Manufacturing, 27(3) pp. 485 - 493.

[56] Yazar, Z., Koch, K., Merrick, T., 1994, "Feed Rate Optimization Based on Cutting

Force Calculations in 3-Axis Milling of Dies and Molds with Sculptured Surfaces,"

International Journal of Machine Tools and Manufacture, 34(3) pp. 365 - 377.

[57] Ghani, J. A., Choudhury, I. A., and Hassan, H. H., 2004, "Application of Taguchi

Method in the Optimization of End Milling Parameters," Journal of Materials

Processing Technology, 145(1) pp. 84 - 92.

[58] Ridwan, F., and Xu, X., 2013, "Advanced CNC System with in-Process Feed-Rate

Optimisation," Robotics and Computer-Integrated Manufacturing, 29(3) pp. 12 -

20.

220

[59] Kanopoulos, N., Vasanthavada, N., and Baker, R. L., 1988, "Design of an Image

Edge Detection Filter using the Sobel Operator," IEEE Journal of Solid-State

Circuits, 23(2) pp. 358 - 367.

[60] Lin, S., and Kernighan, B. W., 1973, "An Effective Heuristic Algorithm for the

Traveling-Salesman Problem," Operations Research, 21(2) pp. 498 - 516.

[61] Cerný, V., 1985, "Thermodynamical Approach to the Traveling Salesman Problem:

An Efficient Simulation Algorithm," Journal of Optimization Theory and

Applications, 45(1) pp. 41 - 51.

[62] Chiou, C. -., and Lee, Y. -., 2002, "Swept Surface Determination for Five-Axis

Numerical Control Machining," International Journal of Machine Tools and

Manufacture, 42(14) pp. 1497-1507.

[63] "ANSI/ASME B4.1-1967 (R1999) Preferred Limits and Fits for Cylindrical Parts,"

2013(3/3/2013) from:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI/ASME+B4.1-

1967+(R1999)#.UTPwymdn15N

[64] "Machine Processing and Tolerance Grades," 2013(3/3/2013) from:

http://www.engineeringtoolbox.com/machine-processes-tolerance-grades-

d_1367.html

[65] "Getting Started," 2013(2/19/2013) from:

http://www.ironcad.com/products/IronCADV9/getting_started.htm.

[66] Seong, J., Elber, G., and Kim, M., 2006, "Trimming Local and Global Self-

Intersections in Offset Curves/Surfaces using Distance Maps," Computer-Aided

Design, 38(3) pp. 183 - 193.

[67] Fredman, M. L., and Tarjan, R. E., 1987, "Fibonacci Heaps and their Uses in

Improved Network Optimization Algorithms," Journal of the ACM, 34(3) pp. 596 -

615.

[68] Borgefors, G., 1986, "Distance Transformations in Digital Images," Computer

Vision, Graphics, and Image Processing, 34(3) pp. 344 - 371.

[69] Zhiwei, L., Hongyao, S., Wenfeng, G., 2011, "Approximate Tool Posture Collision-

Free Area Generation for Five-Axis CNC Finishing Process using Admissible Area

Interpolation," The International Journal of Advanced Manufacturing Technology, .

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI/ASME+B4.1-1967+%28R1999%29#.UTPwymdn15N
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI/ASME+B4.1-1967+%28R1999%29#.UTPwymdn15N
http://www.engineeringtoolbox.com/machine-processes-tolerance-grades-d_1367.html
http://www.engineeringtoolbox.com/machine-processes-tolerance-grades-d_1367.html
http://www.ironcad.com/products/IronCADV9/getting_started.htm

221

[70] Uddin, M. S., Ibaraki, S., Matsubara, A., 2009, "Prediction and Compensation of

Machining Geometric Errors of Five-Axis Machining Centers with Kinematic

Errors," Precision Engineering, 33(2) pp. 194 - 201.

[71] Yang, W., Ding, H., and Xiong, Y., 1999, "Manufacturability Analysis for a

Sculptured Surface using Visibility Cone Computation," The International Journal

of Advanced Manufacturing Technology, 15(5) pp. 317 - 321.

	Clemson University
	TigerPrints
	5-2013

	Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel Computing Architectures
	Dmytro Konobrytskyi
	Recommended Citation

	_

