4,723 research outputs found

    An Optimistic Approach for Clustering Multi-version XML Documents Using Compressed Delta

    Get PDF
    Today with Standardization of XML as an information exchange over web, huge amount of information is formatted in the XML document. XML documents are huge in size. The amount of information that has to be transmitted, processed, stored, and queried is often larger than that of other data formats. Also in real world applications XML documents are dynamic in nature. The versatile applicability of XML documents in different fields of information maintenance and management is increasing the demand to store different versions of XML documents with time. However, storage of all versions of an XML document may introduce the redundancy. Self describing nature of XML creates the problem of verbosity,in result documents are in huge size. This paper proposes optimistic approach to Re-cluster multi-version XML documents which change in time by reassessing distance between them by using knowledge from initial clustering solution and changes stored in compressed delta. Evolving size of XML document is reduced by applying homomorphic compression before clustering them which retains its original structure. Compressed delta stores the changes responsible for document versions, without decompressing them. Test results shows that our approach performs much better than using full pair-wise document comparison

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Vectorwise: Beyond Column Stores

    Get PDF
    textabstractThis paper tells the story of Vectorwise, a high-performance analytical database system, from multiple perspectives: its history from academic project to commercial product, the evolution of its technical architecture, customer reactions to the product and its future research and development roadmap. One take-away from this story is that the novelty in Vectorwise is much more than just column-storage: it boasts many query processing innovations in its vectorized execution model, and an adaptive mixed row/column data storage model with indexing support tailored to analytical workloads. Another one is that there is a long road from research prototype to commercial product, though database research continues to achieve a strong innovative influence on product development

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Grammar compressed sequences with rank/select support

    Get PDF
    An early partial version of this paper appeared in Proc. SPIRE 2014: G. Navarro, A. Ordóñez Grammar compressed sequences with rank/select support, Proc. 21st International Symposium on String Processing and Information Retrieval, LNCS, SPIRE, vol. 8799 (2014), pp. 31–44The final publication is available at Springer via http://dx.doi.org/10.1016/j.jda.2016.10.001[Abstract] Sequence representations supporting not only direct access to their symbols, but also rank/select operations, are a fundamental building block in many compressed data structures. Several recent applications need to represent highly repetitive sequences, and classical statistical compression proves ineffective. We introduce, instead, grammar-based representations for repetitive sequences, which use up to 6% of the space needed by statistically compressed representations, and support direct access and rank/select operations within tens of microseconds. We demonstrate the impact of our structures in text indexing applications.Chile. Fondo Nacional de Desarrollo Científico y Tecnológico; 140796Ministerio de Economía, Industria y Competitividad; 00645663/ITC-20133062Ministerio de Economía, Industria y Competitividad; TIN2009-14560-C03-02Ministerio de Economía, Industria y Competitividad; TIN2010-21246-C02-01Ministerio de Economía, Industria y Competitividad; TIN2013-46238-C4-3-RMinisterio de Economía, Industria y Competitividad; TIN2013-47090-C3-3-PMinisterio de Economía, Industria y Competitividad; AP2010-6038Xunta de Galicia; GRC2013/05
    corecore