4,988 research outputs found

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy

    Get PDF
    [Abstract]: Outlier detection is an important research problem in data mining that aims to discover useful abnormal and irregular patterns hidden in large data sets. Most existing outlier detection methods only deal with static data with relatively low dimensionality. Recently, outlier detection for high-dimensional stream data became a new emerging research problem. A key observation that motivates this research is that outliers in high-dimensional data are projected outliers, i.e., they are embedded in lower-dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very challenging task for several reasons. First, detecting projected outliers is difficult even for high-dimensional static data. The exhaustive search for the out-lying subspaces where projected outliers are embedded is a NP problem. Second, the algorithms for handling data streams are constrained to take only one pass to process the streaming data with the conditions of space limitation and time criticality. The currently existing methods for outlier detection are found to be ineffective for detecting projected outliers in high-dimensional data streams. In this thesis, we present a new technique, called the Stream Project Outlier deTector (SPOT), which attempts to detect projected outliers in high-dimensional data streams. SPOT employs an innovative window-based time model in capturing dynamic statistics from stream data, and a novel data structure containing a set of top sparse subspaces to detect projected outliers effectively. SPOT also employs a multi-objective genetic algorithm as an effective search method for finding the outlying subspaces where most projected outliers are embedded. The experimental results demonstrate that SPOT is efficient and effective in detecting projected outliers for high-dimensional data streams. The main contribution of this thesis is that it provides a backbone in tackling the challenging problem of outlier detection for high- dimensional data streams. SPOT can facilitate the discovery of useful abnormal patterns and can be potentially applied to a variety of high demand applications, such as for sensor network data monitoring, online transaction protection, etc

    Effective And Efficient Approach for Detecting Outliers

    Get PDF
    Now a days in machine learning research anomaly detection is the main topic. Anomaly detection is the process of identifying unusual behavior. It is widely used in data mining, for example, medical informatics, computer vision, computer security, sensor networks. Statistical approach aims to find the outliers which deviate from such distributions. Most distribution models are assumed univariate, and thus the lack of robustness for multidimensional data. We proposed an online and conditional anomaly detection method based on oversample PCA osPCA with LOO strategy will amplify the effect of outliers. We can successfully use the variation of the dominant principal direction to identify the presence of rare but abnormal data, for conditional anomaly detection expectation-maximization algorithms for learning the model is used. Our approach is reducing computational costs and memory requirements

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    Outlier Detection of Time Series with A Novel Hybrid Method in Cloud Computing

    Get PDF
    In the wake of the development in science and technology, Cloud Computing has obtained more attention in different field. Meanwhile, outlier detection for data mining in Cloud Computing is playing more and more significant role in different research domains and massive research works have devoted to outlier detection, which includes distance-based, density-based and clustering-based outlier detection. However, the existing available methods spend high computation time. Therefore, the improved algorithm of outlier detection, which has higher performance to detect outlier is presented. In this paper, the proposed method, which is an improved spectral clustering algorithm (SKM++), is fit for handling outliers. Then, pruning data can reduce computational complexity and combine distance-based method Manhattan Distance (distm) to obtain outlier score. Finally, the method confirms the outlier by extreme analysis. This paper validates the presented method by experiments with a real collected data by sensors and comparison against the existing approaches, the experimental results turn out that our proposed method precedes the existing
    • ā€¦
    corecore