752 research outputs found

    Computationally Efficient IAA-based Estimation of the Fundamental Frequency

    Get PDF
    Optimal linearly constrained minimum variance (LCMV) filtering methods have recently been applied to fundamental frequency estimation. Like many other fundamental frequency estimators, these methods are constructed using an estimate of the inverse data covariance matrix. The required matrix inverse is typically formed using the sample covariance matrix via data partitioning, although this is well-known to adversely affect the spectral resolution. In this paper, we propose a fast implementation of a novel optimal filtering method that utilizes the LCMV principle in conjunction with the iterative adaptive approach (IAA). The IAA formulation enables an accurate covariance matrix estimate from a single snapshot, i.e., without data partitioning, but the improvement comes at a notable computational cost. Exploiting the estimator's inherently low displacement rank of the necessary products of Toeplitz-like matrices, we form a computationally efficient implementation, reducing the required computational complexity with several orders of magnitude. The experimental results show that the performance of the proposed method is comparable or better than that of other competing methods in terms of spectral resolution

    Robust Fundamental Frequency Estimation in Coloured Noise

    Get PDF
    Most parametric fundamental frequency estimators make the implicit assumption that any corrupting noise is additive, white Gaus-sian. Under this assumption, the maximum likelihood (ML) and the least squares estimators are the same, and statistically efficient. However, in the coloured noise case, the estimators differ, and the spectral shape of the corrupting noise should be taken into account. To allow for this, we here propose two schemes that refine the noise statistics and parameter estimates in an iterative manner, one of them based on an approximate ML solution and the other one based on removing the periodic signal obtained from a linearly constrained minimum variance (LCMV) filter. Evaluations on real speech data indicate that the iteration steps improve the estimation accuracy, therefore offering improvement over traditional non-parametric fundamental frequency methods in most of the evaluated scenarios

    Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations

    Get PDF
    International audienceMagnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such an hypothesis only holds for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets

    Parametric Modeling for Two-Dimensional Harmonic Signals With Missing Harmonics

    Get PDF

    Spatio-Temporal Audio Enhancement Based on IAA Noise Covariance Matrix Estimates

    Get PDF

    Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Get PDF
    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity
    • …
    corecore