30 research outputs found

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    A VHDL design of a JPEG still image compression standard decoder

    Get PDF
    Digital images require large amounts of memory to be stored in a computer system. The JPEG compression standard allows the amount of memory storage required by a digital image to be reduced with little to no perceptible loss of image quality. This thesis is a design of an ASIC that implements a decoder of JPEG compressed images. The decoder implements the baseline decoder defined by the JPEG standard with a few exceptions, the most notable being that only grayscale images can be decompressed. With such an ASIC, the speed of decompressing images is greatly increased. The decoder was designed by writing VHDL source code, which in turn was used to synthesize the ASIC using standard cells

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems

    Data comparison schemes for Pattern Recognition in Digital Images using Fractals

    Get PDF
    Pattern recognition in digital images is a common problem with application in remote sensing, electron microscopy, medical imaging, seismic imaging and astrophysics for example. Although this subject has been researched for over twenty years there is still no general solution which can be compared with the human cognitive system in which a pattern can be recognised subject to arbitrary orientation and scale. The application of Artificial Neural Networks can in principle provide a very general solution providing suitable training schemes are implemented. However, this approach raises some major issues in practice. First, the CPU time required to train an ANN for a grey level or colour image can be very large especially if the object has a complex structure with no clear geometrical features such as those that arise in remote sensing applications. Secondly, both the core and file space memory required to represent large images and their associated data tasks leads to a number of problems in which the use of virtual memory is paramount. The primary goal of this research has been to assess methods of image data compression for pattern recognition using a range of different compression methods. In particular, this research has resulted in the design and implementation of a new algorithm for general pattern recognition based on the use of fractal image compression. This approach has for the first time allowed the pattern recognition problem to be solved in a way that is invariant of rotation and scale. It allows both ANNs and correlation to be used subject to appropriate pre-and post-processing techniques for digital image processing on aspect for which a dedicated programmer's work bench has been developed using X-Designer

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    An accurate analysis for guaranteed performance of multiprocessor streaming applications

    Get PDF
    Already for more than a decade, consumer electronic devices have been available for entertainment, educational, or telecommunication tasks based on multimedia streaming applications, i.e., applications that process streams of audio and video samples in digital form. Multimedia capabilities are expected to become more and more commonplace in portable devices. This leads to challenges with respect to cost efficiency and quality. This thesis contributes models and analysis techniques for improving the cost efficiency, and therefore also the quality, of multimedia devices. Portable consumer electronic devices should feature flexible functionality on the one hand and low power consumption on the other hand. Those two requirements are conflicting. Therefore, we focus on a class of hardware that represents a good trade-off between those two requirements, namely on domain-specific multiprocessor systems-on-chip (MP-SoC). Our research work contributes to dynamic (i.e., run-time) optimization of MP-SoC system metrics. The central question in this area is how to ensure that real-time constraints are satisfied and the metric of interest such as perceived multimedia quality or power consumption is optimized. In these cases, we speak of quality-of-service (QoS) and power management, respectively. In this thesis, we pursue real-time constraint satisfaction that is guaranteed by the system by construction and proven mainly based on analytical reasoning. That approach is often taken in real-time systems to ensure reliable performance. Therefore the performance analysis has to be conservative, i.e. it has to use pessimistic assumptions on the unknown conditions that can negatively influence the system performance. We adopt this hypothesis as the foundation of this work. Therefore, the subject of this thesis is the analysis of guaranteed performance for multimedia applications running on multiprocessors. It is very important to note that our conservative approach is essentially different from considering only the worst-case state of the system. Unlike the worst-case approach, our approach is dynamic, i.e. it makes use of run-time characteristics of the input data and the environment of the application. The main purpose of our performance analysis method is to guide the run-time optimization. Typically, a resource or quality manager predicts the execution time, i.e., the time it takes the system to process a certain number of input data samples. When the execution times get smaller, due to dependency of the execution time on the input data, the manager can switch the control parameter for the metric of interest such that the metric improves but the system gets slower. For power optimization, that means switching to a low-power mode. If execution times grow, the manager can set parameters so that the system gets faster. For QoS management, for example, the application can be switched to a different quality mode with some degradation in perceived quality. The real-time constraints are then never violated and the metrics of interest are kept as good as possible. Unfortunately, maintaining system metrics such as power and quality at the optimal level contradicts with our main requirement, i.e., providing performance guarantees, because for this one has to give up some quality or power consumption. Therefore, the performance analysis approach developed in this thesis is not only conservative, but also accurate, so that the optimization of the metric of interest does not suffer too much from conservativity. This is not trivial to realize when two factors are combined: parallel execution on multiple processors and dynamic variation of the data-dependent execution delays. We achieve the goal of conservative and accurate performance estimation for an important class of multiprocessor platforms and multimedia applications. Our performance analysis technique is realizable in practice in QoS or power management setups. We consider a generic MP-SoC platform that runs a dynamic set of applications, each application possibly using multiple processors. We assume that the applications are independent, although it is possible to relax this requirement in the future. To support real-time constraints, we require that the platform can provide guaranteed computation, communication and memory budgets for applications. Following important trends in system-on-chip communication, we support both global buses and networks-on-chip. We represent every application as a homogeneous synchronous dataflow (HSDF) graph, where the application tasks are modeled as graph nodes, called actors. We allow dynamic datadependent actor execution delays, which makes HSDF graphs very useful to express modern streaming applications. Our reason to consider HSDF graphs is that they provide a good basic foundation for analytical performance estimation. In this setup, this thesis provides three major contributions: 1. Given an application mapped to an MP-SoC platform, given the performance guarantees for the individual computation units (the processors) and the communication unit (the network-on-chip), and given constant actor execution delays, we derive the throughput and the execution time of the system as a whole. 2. Given a mapped application and platform performance guarantees as in the previous item, we extend our approach for constant actor execution delays to dynamic datadependent actor delays. 3. We propose a global implementation trajectory that starts from the application specification and goes through design-time and run-time phases. It uses an extension of the HSDF model of computation to reflect the design decisions made along the trajectory. We present our model and trajectory not only to put the first two contributions into the right context, but also to present our vision on different parts of the trajectory, to make a complete and consistent story. Our first contribution uses the idea of so-called IPC (inter-processor communication) graphs known from the literature, whereby a single model of computation (i.e., HSDF graphs) are used to model not only the computation units, but also the communication unit (the global bus or the network-on-chip) and the FIFO (first-in-first-out) buffers that form a ‘glue’ between the computation and communication units. We were the first to propose HSDF graph structures for modeling bounded FIFO buffers and guaranteed throughput network connections for the network-on-chip communication in MP-SoCs. As a result, our HSDF models enable the formalization of the on-chip FIFO buffer capacity minimization problem under a throughput constraint as a graph-theoretic problem. Using HSDF graphs to formalize that problem helps to find the performance bottlenecks in a given solution to this problem and to improve this solution. To demonstrate this, we use the JPEG decoder application case study. Also, we show that, assuming constant – worst-case for the given JPEG image – actor delays, we can predict execution times of JPEG decoding on two processors with an accuracy of 21%. Our second contribution is based on an extension of the scenario approach. This approach is based on the observation that the dynamic behavior of an application is typically composed of a limited number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., similar actor execution delays in the context of this thesis. The previous work on scenarios treats only single-processor applications or multiprocessor applications that do not exploit all the flexibility of the HSDF model of computation. We develop new scenario-based techniques in the context of HSDF graphs, to derive the timing overlap between different scenarios, which is very important to achieve good accuracy for general HSDF graphs executing on multiprocessors. We exploit this idea in an application case study – the MPEG-4 arbitrarily-shaped video decoder, and demonstrate execution time prediction with an average accuracy of 11%. To the best of our knowledge, for the given setup, no other existing performance technique can provide a comparable accuracy and at the same time performance guarantees

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    Language and compiler support for stream programs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-166).Stream programs represent an important class of high-performance computations. Defined by their regular processing of sequences of data, stream programs appear most commonly in the context of audio, video, and digital signal processing, though also in networking, encryption, and other areas. Stream programs can be naturally represented as a graph of independent actors that communicate explicitly over data channels. In this work we focus on programs where the input and output rates of actors are known at compile time, enabling aggressive transformations by the compiler; this model is known as synchronous dataflow. We develop a new programming language, StreamIt, that empowers both programmers and compiler writers to leverage the unique properties of the streaming domain. StreamIt offers several new abstractions, including hierarchical single-input single-output streams, composable primitives for data reordering, and a mechanism called teleport messaging that enables precise event handling in a distributed environment. We demonstrate the feasibility of developing applications in StreamIt via a detailed characterization of our 34,000-line benchmark suite, which spans from MPEG-2 encoding/decoding to GMTI radar processing. We also present a novel dynamic analysis for migrating legacy C programs into a streaming representation. The central premise of stream programming is that it enables the compiler to perform powerful optimizations. We support this premise by presenting a suite of new transformations. We describe the first translation of stream programs into the compressed domain, enabling programs written for uncompressed data formats to automatically operate directly on compressed data formats (based on LZ77). This technique offers a median speedup of 15x on common video editing operations.(cont.) We also review other optimizations developed in the StreamIt group, including automatic parallelization (offering an 11x mean speedup on the 16-core Raw machine), optimization of linear computations (offering a 5.5x average speedup on a Pentium 4), and cache-aware scheduling (offering a 3.5x mean speedup on a StrongARM 1100). While these transformations are beyond the reach of compilers for traditional languages such as C, they become tractable given the abundant parallelism and regular communication patterns exposed by the stream programming model.by William Thies.Ph.D
    corecore