14,239 research outputs found

    Re-Pair Compression of Inverted Lists

    Full text link
    Compression of inverted lists with methods that support fast intersection operations is an active research topic. Most compression schemes rely on encoding differences between consecutive positions with techniques that favor small numbers. In this paper we explore a completely different alternative: We use Re-Pair compression of those differences. While Re-Pair by itself offers fast decompression at arbitrary positions in main and secondary memory, we introduce variants that in addition speed up the operations required for inverted list intersection. We compare the resulting data structures with several recent proposals under various list intersection algorithms, to conclude that our Re-Pair variants offer an interesting time/space tradeoff for this problem, yet further improvements are required for it to improve upon the state of the art

    Fast evaluation of union-intersection expressions

    Full text link
    We show how to represent sets in a linear space data structure such that expressions involving unions and intersections of sets can be computed in a worst-case efficient way. This problem has applications in e.g. information retrieval and database systems. We mainly consider the RAM model of computation, and sets of machine words, but also state our results in the I/O model. On a RAM with word size ww, a special case of our result is that the intersection of mm (preprocessed) sets, containing nn elements in total, can be computed in expected time O(n(logw)2/w+km)O(n (\log w)^2 / w + km), where kk is the number of elements in the intersection. If the first of the two terms dominates, this is a factor w1o(1)w^{1-o(1)} faster than the standard solution of merging sorted lists. We show a cell probe lower bound of time Ω(n/(wmlogm)+(1logkw)k)\Omega(n/(w m \log m)+ (1-\tfrac{\log k}{w}) k), meaning that our upper bound is nearly optimal for small mm. Our algorithm uses a novel combination of approximate set representations and word-level parallelism

    Universal Indexes for Highly Repetitive Document Collections

    Get PDF
    Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Fast Parallel Operations on Search Trees

    Full text link
    Using (a,b)-trees as an example, we show how to perform a parallel split with logarithmic latency and parallel join, bulk updates, intersection, union (or merge), and (symmetric) set difference with logarithmic latency and with information theoretically optimal work. We present both asymptotically optimal solutions and simplified versions that perform well in practice - they are several times faster than previous implementations

    Compressed Representations of Permutations, and Applications

    Get PDF
    We explore various techniques to compress a permutation π\pi over n integers, taking advantage of ordered subsequences in π\pi, while supporting its application π\pi(i) and the application of its inverse π1(i)\pi^{-1}(i) in small time. Our compression schemes yield several interesting byproducts, in many cases matching, improving or extending the best existing results on applications such as the encoding of a permutation in order to support iterated applications πk(i)\pi^k(i) of it, of integer functions, and of inverted lists and suffix arrays

    Efficient and Effective Query Auto-Completion

    Full text link
    Query Auto-Completion (QAC) is an ubiquitous feature of modern textual search systems, suggesting possible ways of completing the query being typed by the user. Efficiency is crucial to make the system have a real-time responsiveness when operating in the million-scale search space. Prior work has extensively advocated the use of a trie data structure for fast prefix-search operations in compact space. However, searching by prefix has little discovery power in that only completions that are prefixed by the query are returned. This may impact negatively the effectiveness of the QAC system, with a consequent monetary loss for real applications like Web Search Engines and eCommerce. In this work we describe the implementation that empowers a new QAC system at eBay, and discuss its efficiency/effectiveness in relation to other approaches at the state-of-the-art. The solution is based on the combination of an inverted index with succinct data structures, a much less explored direction in the literature. This system is replacing the previous implementation based on Apache SOLR that was not always able to meet the required service-level-agreement.Comment: Published in SIGIR 202
    corecore