8,085 research outputs found

    Interaction Embeddings for Prediction and Explanation in Knowledge Graphs

    Full text link
    Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.Comment: This paper is accepted by WSDM201

    Psychophysical identity and free energy

    Get PDF
    An approach to implementing variational Bayesian inference in biological systems is considered, under which the thermodynamic free energy of a system directly encodes its variational free energy. In the case of the brain, this assumption places constraints on the neuronal encoding of generative and recognition densities, in particular requiring a stochastic population code. The resulting relationship between thermodynamic and variational free energies is prefigured in mind-brain identity theses in philosophy and in the Gestalt hypothesis of psychophysical isomorphism.Comment: 22 pages; published as a research article on 8/5/2020 in Journal of the Royal Society Interfac

    Flexibly Instructable Agents

    Full text link
    This paper presents an approach to learning from situated, interactive tutorial instruction within an ongoing agent. Tutorial instruction is a flexible (and thus powerful) paradigm for teaching tasks because it allows an instructor to communicate whatever types of knowledge an agent might need in whatever situations might arise. To support this flexibility, however, the agent must be able to learn multiple kinds of knowledge from a broad range of instructional interactions. Our approach, called situated explanation, achieves such learning through a combination of analytic and inductive techniques. It combines a form of explanation-based learning that is situated for each instruction with a full suite of contextually guided responses to incomplete explanations. The approach is implemented in an agent called Instructo-Soar that learns hierarchies of new tasks and other domain knowledge from interactive natural language instructions. Instructo-Soar meets three key requirements of flexible instructability that distinguish it from previous systems: (1) it can take known or unknown commands at any instruction point; (2) it can handle instructions that apply to either its current situation or to a hypothetical situation specified in language (as in, for instance, conditional instructions); and (3) it can learn, from instructions, each class of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file

    Decision-making and problem-solving methods in automation technology

    Get PDF
    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    The Road to General Intelligence

    Get PDF
    Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century. We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book

    Zsyntax: A Formal Language for Molecular Biology with Projected Applications in Text Mining and Biological Prediction

    Get PDF
    We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word ζωή, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first step towards a comprehensive formal language for molecular biology in which any biological process can be written and analyzed as a sort of logical “deduction”. Moreover, we illustrate the potential value of this language, both in the field of text mining and in that of biological prediction

    An approach to case-based reasoning based on local enrichment of the case base

    Get PDF
    International audienceThis paper describes an approach to case-based reasoning by which the case base is enriched at reasoning time. Enrichment results from the local application of variations to seed cases: new hypothetical cases are created which get closer and closer to the target problem. The creation of these hypothetical cases is based on structures associated to the problem and solution spaces, called variation spaces, that enable to define a language of adaptation rules. Ultimately reaching the target problem (exactly or nearly) allows the system to deliver a solution. A realistic application of the proposed approach to machine translation between French and English shows behind state-of-the-art, but promising results
    • …
    corecore