5,118 research outputs found

    Market Equilibrium with Transaction Costs

    Full text link
    Identical products being sold at different prices in different locations is a common phenomenon. Price differences might occur due to various reasons such as shipping costs, trade restrictions and price discrimination. To model such scenarios, we supplement the classical Fisher model of a market by introducing {\em transaction costs}. For every buyer ii and every good jj, there is a transaction cost of \cij; if the price of good jj is pjp_j, then the cost to the buyer ii {\em per unit} of jj is p_j + \cij. This allows the same good to be sold at different (effective) prices to different buyers. We provide a combinatorial algorithm that computes Ï”\epsilon-approximate equilibrium prices and allocations in O(1Ï”(n+log⁥m)mnlog⁥(B/Ï”))O\left(\frac{1}{\epsilon}(n+\log{m})mn\log(B/\epsilon)\right) operations - where mm is the number goods, nn is the number of buyers and BB is the sum of the budgets of all the buyers

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Geometry Helps to Compare Persistence Diagrams

    Full text link
    Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems have not been explored. We implement geometric variants of the Hopcroft--Karp algorithm for bottleneck matching (based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query. Our interest in this problem stems from the desire to compute distances between persistence diagrams, a problem that comes up frequently in topological data analysis. We show that our geometric matching algorithms lead to a substantial performance gain, both in running time and in memory consumption, over their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only other implementation available for comparing persistence diagrams.Comment: 20 pages, 10 figures; extended version of paper published in ALENEX 201

    Converging an Overlay Network to a Gradient Topology

    Get PDF
    In this paper, we investigate the topology convergence problem for the gossip-based Gradient overlay network. In an overlay network where each node has a local utility value, a Gradient overlay network is characterized by the properties that each node has a set of neighbors with the same utility value (a similar view) and a set of neighbors containing higher utility values (gradient neighbor set), such that paths of increasing utilities emerge in the network topology. The Gradient overlay network is built using gossiping and a preference function that samples from nodes using a uniform random peer sampling service. We analyze it using tools from matrix analysis, and we prove both the necessary and sufficient conditions for convergence to a complete gradient structure, as well as estimating the convergence time and providing bounds on worst-case convergence time. Finally, we show in simulations the potential of the Gradient overlay, by building a more efficient live-streaming peer-to-peer (P2P) system than one built using uniform random peer sampling.Comment: Submitted to 50th IEEE Conference on Decision and Control (CDC 2011

    Clustering Algorithms for Scale-free Networks and Applications to Cloud Resource Management

    Full text link
    In this paper we introduce algorithms for the construction of scale-free networks and for clustering around the nerve centers, nodes with a high connectivity in a scale-free networks. We argue that such overlay networks could support self-organization in a complex system like a cloud computing infrastructure and allow the implementation of optimal resource management policies.Comment: 14 pages, 8 Figurs, Journa
    • 

    corecore