2,065 research outputs found

    Firing properties of muscle spindles supplying the intrinsic muscles of the foot in unloaded and free-standing humans

    Get PDF
    Human posture and locomotion are dependent on the sensory apparatus – involving muscle spindles, cutaneous afferents and the vestibular system – that provides proprioception. In my previous work with my Bachelor of Medical Research, I investigated the relationship between galvanic vestibular stimulation and the sensitivity of muscle spindles of the long muscles of the leg. While that study showed no correlation between these systems it was limited by the lack of subject postural threat. In order to record from muscle spindles directly during unsupported free-standing, a new methodology for microneurographic recording from the posterior tibial nerve at the ankle was developed. For the first time, we have been able to identify the firing properties of muscle spindle endings in the small (intrinsic) muscles of the foot, as well as mechanoreceptors in the skin of the sole, while the participant is standing unsupported. This thesis presents this methodology along with the recordings made. In Study 1, the firing properties of 26 muscle spindles supplying the intrinsic muscles of the foot are described in unloaded conditions. Their responsiveness to stretch and related joint movements is shown to be similar to those in the short muscles in the hand and the long leg muscles. Only 27% were spontaneously active, of which there was no consistent resting firing rate or discharge variability. In Study 2, activity from 12 muscle spindles supplying the intrinsic foot muscles in unsupported free-standing conditions is described. In this group 50% were spontaneously firing and 67% had activity correlated with changes of centre of pressure recorded by a force plate, primarily (88%) along the anteroposterior axis. In Study 3, the activity of 28 multiunit cutaneous afferent recordings, as well as of 15 single-unit cutaneous afferents, supplying the sole of the foot in unsupported free standing is described. Activity of cutaneous afferents was found to be dependent on receptor type and location of receptive field. The data presented in this report is proof of this novel methodology’s suitability for detailed study into the sensory sources in the foot contributing to maintaining the upright posture

    Integration of 3D printed sensors into orthotic devices

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2020Nos últimos anos tem-se vindo a registar um aumento do interesse, por parte da comunidade científica, pela área dos exosqueletos, onde novos modelos e conceitos são constantemente apresentados, com o objetivo de desenvolver a próxima geração de dispositivos. Uma das razões que pode vir a justificar este aumento de interesse, por parte da comunidade científica, é o aumento da esperança média de vida. De acordo com a organização mundial de saúde, a percentagem de população mundial com mais de 60 anos aumentará de 11% para 22%, entre 2000 e 2050. Com o aumento da esperança média de vida, espera-se também um aumento da incidência de doenças associadas ao envelhecimento que, em muitos dos casos, podem levar a incapacidades motoras. Como tal, é necessário desenvolver dispositivos capazes de assistir indivíduos que se encontrem nestas situações. Uma possível medida a implementar, seria o desenvolvimento de exosqueletos dedicados à reabilitação, assim como dispositivos capazes de assistir indivíduos com deficiências locomotoras, no seu dia-a-dia. Com a perspetiva do aumento da esperança média de vida, é também importante adotar medidas de prevenção, de modo a evitar complicações no futuro, ao nível do sistema locomotor, especialmente para pessoas com trabalhos mais físicos. Estas complicações poderiam ser potencialmente reduzidas com a aplicação de exosqueletos nos variados locais de trabalho, com vista a melhorar a postura e desempenho dos trabalhadores, auxiliando-os nas suas tarefas diárias. Independentemente do objetivo para qual o exosqueleto está a ser desenvolvido, é essencial que o mesmo tenha uma boa estratégia de controlo. Existem várias estratégias de controlo, sendo uma delas o controlo baseado na força/torque aplicado pelo utilizador. Neste tipo de controlo, como o nome indica, a força/torque aplicado pelo exosqueleto é proporcional à leitura de sensores que se encontram entre o utilizador e o exosqueleto, que indiretamente interpretam a intenção do utilizador. Estes sensores são normalmente sensores de eletromiografia (EMG) e/ou sensores de força. Para além de uma boa estratégia de controlo é também importante monitorizar as forças de interação entre o exosqueleto e o utilizador. A incorreta aplicação de forças, por parte do exosqueleto, pode levar à alteração do padrão natural de ativação dos músculos, sendo por sua vez contraprodutivo no caso da fisioterapia, por exemplo. Por outro lado, forças que são incorretamente aplicadas podem também desencadear fadiga, desconforto e, em último caso, colocar em risco a segurança do utilizador. Como tal, a monitorização das forças aplicadas pelo exosqueleto é algo verdadeiramente importante, que pode ser executado através da implementação de sensores de força. A partir da informação apresentada, é possível concluir que a integração de sensores de EMG e força nas interfaces dos exosqueletos é uma possível estratégia a adaptar, quando o objetivo é otimizar o desempenho dos mesmos. No entanto, não existem muitos casos de exosqueletos com este tipo de sensores incorporados. Uma das razões que pode vir a justificar este fenómeno é a geometria deste tipo de sensores, que se encontram atualmente no mercado, ser fixa e de difícil customização, o que influencia diretamente o design do exosqueleto. Para além da geometria dos sensores, na maioria dos casos, quando o objetivo é fabricar sensores de alta resolução, o processo de fabrico é constituído por múltiplas etapas, o que pode dificultar a escalabilidade de manufatura, aumentando o custo de fabrico, o que em última instância comprometerá o design e o processo de fabricação dos exosqueletos. Com o objetivo de encontrar alternativas aos sensores convencionais, alguns desenvolvimentos têm sido feitos numa tentativa de incorporar a tecnologia de impressão 3D ao mundo dos sensores. Uma das grandes vantagens desta simbiose é a possibilidade de poder, numa só etapa, produzir e integrar o sensor, sem limitações de design, no local desejado, neste caso na interface do exosqueleto. Como tal, o objetivo deste trabalho seria o desenvolvimento de uma interface de um exosqueleto, impressa em 3D, com sensores de EMG e de força incorporados, também impressos em 3D. O exosqueleto que será utilizado provirá de um projeto em desenvolvimento pelo grupo Brussels Human Robotics Research Center, BruBotics, mais especificamente pelo projeto BioMot. Neste projeto em específico, devido à complexidade do objetivo estipulado, apenas os sensores de EMG e de força, impressos em 3D, foram desenvolvidos e testados. Para além dos sensores, um estudo sobre a deformação dos músculos da parte inferior da perna, durante ciclo de marcha, foi também realizado, de modo a facilitar o futuro design da interface do exosqueleto. Um sensor de EMG é constituído por dois elétrodos condutores, isolados por um material não condutor, de modo a possibilitar a captação dos sinais elétricos provenientes dos músculos, que, por sua vez, refletem a intenção do utilizador. Como tal, para produzir este tipo de sensores, utilizando técnicas de impressão 3D, mais especificamente, técnicas de impressão FDM (modelagem por deposição fundida), é preciso: um material condutor (neste caso semicondutores, devido à inexistência de filamentos condutores, para este tipo de impressão 3D) e um material não condutor. Para este projeto foram utilizados: o filamento semicondutor Proto-pasta conductive PLA (Protoplant, Inc., USA) e o filamento não condutor Ultimaker TPU 95A (Ultimaker B.V., The Netherlands). Com estes dois materiais foi possível, com algumas limitações, produzir um sensor EMG funcional, que poderá, possivelmente, vir a ser integrado num exosqueleto, em trabalho futuro. É necessário, no entanto realizar primeiro um estudo intensivo, de modo a compreender as restrições de funcionamento deste mesmo sensor. Relativamente aos sensores de força, o seu design/modo de funcionamento, foi baseado num condensador de elétrodos paralelos. De forma a produzir este tipo de sensor, é necessário um material semicondutor (dado, mais uma vez, a inexistência de materiais condutores para o tipo de técnica de impressão 3D que será utilizado) e um material não condutor. A ideia seria imprimir um sensor com duas finas placas semicondutoras, separadas por outra fina placa não condutora, denominado de dielétrico. Neste tipo de sensores, quando uma força é aplicada, a distância entre as placas semicondutoras diminui, induzindo um aumento da capacidade do condensador, sendo que este aumento será proporcional à força aplicada ao sensor, permitindo assim o seu registo. Com o objetivo de desenvolver este tipo de sensor, foi necessário primeiro desenvolver um sistema capaz de captar, e posteriormente transferir para um computador, as variações da capacidade do sensor de forma a possibilitar a sua posterior análise. Para além do sistema de registo, foi também necessário testar vários tipos de materiais e as várias definições de impressão, de modo a selecionar quais os mais adequados para a impressão deste sensor, dado que. Neste caso, os materiais e as definições de impressão mais adequadas, seriam as que conferissem ao dielétrico a maior flexibilidade possível dado que, quanto maior a flexibilidade do dielétrico, maior a variação da capacidade, e, como tal, maior resolução dos sinais captados. Após o desenvolvimento de um sistema de registo, e da escolha dos materiais mais adequados ao objetivo deste projeto, um sensor capacitivo foi produzido. As placas condutoras foram impressas com o filamento PI-ETPU 95-250 Carbon Black (Palmiga Innovation, Sweden) e o dielétrico com o filamento não condutor NinjaFlex 85A (Fenner Inc., USA). Ao contrário das placas condutoras, o dielétrico foi impresso com um preenchimento concêntrico ocupando apenas 50% do espaço, conferindo deste modo uma maior flexibilidade ao sensor. Com a produção do sensor completa, o mesmo foi testado. A partir dos resultados dos testes realizados, foi possível verificar um aumento da capacidade do sensor quando sujeito à aplicação de uma força, sendo que este aumento foi proporcional à magnitude da força aplicada. Apesar dos resultados terem sido bastante positivos, o sensor demonstrou ter uma elevada histerese, como tal, antes da implementação destes sensores em exosqueletos, os mesmos terão de ser rigorosamente testados, com vista a melhor compreender as suas limitações e modular, se possível, a resposta dos sensores tendo em conta a sua histerese, dependência do tempo de aplicação das forças, entre outros fatores. Após o desenvolvimento dos dois tipos de sensores, foi crucial compreender qual o melhor local para os aplicar, de modo a otimizar a informação proveniente dos sinais, por eles captados. Seguindo esta ordem de pensamentos, um algoritmo foi desenvolvido de modo a melhor compreender a deformação da superfície da parte inferior da perna, e como tal dos músculos que a constituem, durante o ciclo de marcha. Esta informação é especialmente relevante aquando da implementação dos sensores de EMG, dado que os locais onde os mesmos devem ser colocados, correspondem à zona mais proeminente dos músculos que estão a ser avaliados, que naturalmente estão sujeitos a maiores níveis de deformação. Para compreender quais os vários locais de deformação da parte inferior da perna, vários varrimentos de imagem (scans) de vários indivíduos, em várias fases do ciclo de marcha, foram obtidos, e comparados entre si, através do algoritmo desenvolvido, nestes scans as parte mais proeminentes dos músculos em estudo foram assinaladas com marcadores. O algoritmo desenvolvido tem a capacidade de identificar, com algum erro associado, os marcadores, alinhar os diversos scans das várias fases do ciclo de marcha, com base na localização espacial desses mesmos marcadores e segmentar transversalmente os scans, nas zonas mais proeminentes dos músculos. A análise da deformação é feita a partir do raio de curvatura deste segmento em zonas especificas previamente estipuladas. Apesar do algoritmo precisar de alguns melhoramentos, de forma a possibilitar uma avaliação pormenorizada e exata da deformação da superfície da parte inferior da perna, foi possível concluir, a partir dos resultados de saída do algoritmo, que as maiores deformações ocorrem nos limites dos músculos e não nas zonas mais proeminentes dos músculos (apesar de existir um deslocamento espacial das mesmas zonas). Esta informação será bastante relevante para a construção da interface do exosqueleto, mais especificamente para a escolha dos materiais, mais rígidos ou mais flexíveis por exemplo, e onde os corretamente colocar, de modo a assegurar o constante contacto entre o utilizador e os sensores, enquanto a eficiência do exosqueleto é assegurada.There has been an increasing interest on the research of exoskeletons in the last years, with novel designs and concepts emerging to develop the next generation of devices. One of many research areas, involved in the optimization of the exoskeletons’ performance, is the integration of sensors, more specifically Electromyography (EMG) sensors and force sensors, into the exoskeleton’s interfaces, being the interfaces, the exoskeleton’s component responsible for the power transmission from the exoskeleton to the user’s biological structures. The integration of sensors into the exoskeletons’ interfaces can potentially improve the exoskeleton’s control, comfort, safety, and ergonomics. However, the integration of the sensors that are currently on the market into the exoskeletons’ interfaces has complications such as the sensors’ fixed geometry, lack of customisation and fabrication costs. One alternative to these conventional sensors is combining the 3D printing technology to the sensor’s world and produce 3D printed orthosis embedded with 3D printed sensors, where an integrated manufacturing strategy can be adopted, allowing the production of customized interfaces. Therefore, the goal of this project was to develop and test 3D printed EMG and force sensors to be integrated, in future work, into the cuffs of 3D printed orthotic devices. To help the design of these orthotic devices, an analysis of the deformation of the lower limb muscles, during the gait cycle will was also performed. In this project a working 3D printed EMG sensor, along with a 3D printed capacitance-based force sensor were successfully produced, also an efficient reading system for the force sensor was developed. Besides the 3D printed sensors, an algorithm, able to detect possible deformations, and measure those same deformations, was developed. From the algorithm’s results, it was possible to conclude the existence of variations in the muscle’s limits due to changes in the gait cycle positions

    Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat

    Get PDF
    The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle-tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s-1). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways

    Toward the use of temporary tattoo electrodes for impedancemetric respiration monitoring and other electrophysiological recordings on skin

    Get PDF
    The development of dry, ultra-conformable and unperceivable temporary tattoo electrodes (TTEs), based on the ink-jet printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on top of commercially available temporary tattoo paper, has gained increasing attention as a new and promising technology for electrophysiological recordings on skin. In this work, we present a TTEs epidermal sensor for real time monitoring of respiration through transthoracic impedance measurements, exploiting a new design, based on the application of soft screen printed Ag ink and magnetic interlink, that guarantees a repositionable, long-term stable and robust interconnection of TTEs with external “docking” devices. The efficiency of the TTE and the proposed interconnection strategy under stretching (up to 10%) and over time (up to 96 h) has been verified on a dedicated experimental setup and on humans, fulfilling the proposed specific application of transthoracic impedance measurements. The proposed approach makes this technology suitable for large-scale production and suitable not only for the specific use case presented, but also for real time monitoring of different bio-electric signals, as demonstrated through specific proof of concept demonstrators

    Food properties that influence neuromuscular activity during human mastication

    Get PDF
    published_or_final_versio

    Cervical flexion relaxation phenomenon and the modulating effect of trunk flexion angle

    Get PDF
    The purpose of this study was to assess the presence of the flexion relaxation phenomenon (FRP) in cervical paraspinal musculature in an upright standing posture, and to examine the modulating effect of non-neutral trunk postures on cervical FRP (cFRP). Cervical spinal angles and muscle activation patterns were monitored in 17 participants while performing a neck flexion task in six postures. EMG and angle traces from the flexion trials were used to determine the presence and magnitude of the cFRP (Extension Relaxation Ratio: ERR) and the cervical angles associated with cFRP (onset and cessation angles). The cFRP was observed in the cervical paraspinal muscles (CPS) muscles unilaterally in 11 participants (64.7 %), and bilaterally in 8 participants (47.1 %), across all postures and conditions. Onset angle was lower and ERR was higher in the 45░ trunk inclination condition compared to the upright and slumped conditions. ERRs and onset angles were not significantly different in the slumped condition compared to the upright condition. The data from this study contributed to the knowledge base for the under-researched area of cFRP

    전자피부 어플리케이션을 위한 투명 키리가미 전극 개발

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 공과대학 기계공학부, 2019. 2. 고승환.For relieving the inconvenience while wearing electronic devices, stretchability and imperceptibility are essentially required characteristics for desired form of electronic-skin devices. Yet accomplishing these properties simultaneously is still challenging although some progress has been made on materials and structure designs. Here, we suggest a novel fabrication technique brining an idea from kirigami, Japanese ancient paper-cutting craft, to enable transparent and highly conductive electrodes to be deformable. By using facile and fast laser patterning process, we show transparent kirigami electrodes composed of silver nanowires partially embedded in ultra-thin colorless-polyimide film. Owing to rapid laser patterning method, versatile patterns are developed in few minutes under non-vacuum and room temperature condition. These patterns impart tunable elasticity to the electrodes, which can be stretched over 400% tensile strain with strain-invariant electrical property and also show good electromechanical stability even after 10,000 cycles of 400% stretching while exhibiting high optical transparency (more than 80%). In addition, gold coating on the exposed surface of silver nanowires ensure biocompatibility and improved electrical stability, preventing allergic reaction of skin and oxidation of the silver nanowires. The transparent kirigami electrodes with customizable elasticity pave the innovative way that offers facile construction of appropriate geometries for achieving multi-functional transparent and wearable electronic skin applications. The versatility of this work is demonstrated by ultra-stretchable transparent kirigami heater for personal thermal management and conformal transparent kirigami electrophysiology sensor for continuous health monitoring of human body conditions. Finally, by integrating electronic-skin sensors with a quadrotor, we have successfully demonstrated human-machine interface using our stretchable transparent kirigami electrodes.웨어러블 전자소자를 착용할 때 이질감을 최소화하기 위해 전자피부의 형태로서 사용되는 전극은 투명하여 눈에 잘 보이지 않아야 하고, 피부처럼 구부러지며 늘어날 수 있어야 한다. 하지만 전극의 재료와 구조적 측면에서 많은 연구가 진행되었음에도 여전히 투명하면서 늘어나는 전극을 구현하는 데 어려움이 많다. 본 논문에서는 이러한 어려움을 극복하기 위해 무색의 폴리이미드와 은 나노와이어를 기반으로 한 플렉서블 투명전극에 레이저 공정을 이용한 키리가미 패턴을 넣음으로써 스트레처블 투명전극을 구현하는 공정을 고안했다. 이를 바탕으로 본래 길이의 400%까지 늘이는 반복인장시험을 10,000회 이상 진행한 후에도 저항변화가 거의 없는 투명전극을 제작했다. 또한 드러난 은 나노와이어의 표면에 선택적으로 금을 코팅함으로써 전극의 산화를 방지하고 생체에 부착 및 착용하기에 적합할 수 있도록 했다. 본 연구에서는 이를 이용해 용도에 맞게 디자인된 키리가미 패턴을 가진 투명전극을 적용한 웨어러블 히터와 생체신호 측정센서를 제작했다. 더 나아가 근전도 센서를 양팔에 부착한 후 역동적인 움직임에 대응되는 근전도 신호를 읽어 쿼드로터를 조종하는 시스템을 구축함으로써 진보된 인간-기계 인터페이스를 구현했다.Chapter 1. Introduction 1 1.1. Study Background 1 1.2. Purpose of Research 3 Chapter 2. Experiment 5 2.1. Fabrication of Transparent Kirigami Electrodes 5 2.2. Synthesis of Silver Nanowires 7 2.3. Fabrication of AgNWs/cPI Electrodes 8 2.4. Laser Ablation Patterning Process 9 2.5. Gold Coating on The Exposed AgNWs 10 2.6. Finite Element Simulation 12 Chapter 3. Result 13 3.1. Characterization of Transparent Kirigami Electrodes 13 3.2. Highly Stretchable and Transparent Kirigami Heater 18 3.3. Conformal and Transparent Kirigami Electrophysiology Sensor 20 3.4. Human-Machine Interface for Controlling a Quadrotor 23 Chapter 4. Conclusion 26 References 27 Abstract in Korean 30Maste
    corecore