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Abstract

Following the loss of a limb, the success of the rehabilitative process for
prosthesis control is dictated by the robustness of the prosthesis control
scheme, the capabilities of the prosthesis, and the ease of the rehabilita-
tive process. Unfortunately, limitations within current prosthesis sensing
for hand rehabilitation are lacking and subsequently prosthesis rejection is
still considerably high. Typical modalities in bio signal sensing focus on
the usage of surface electromyography (SEMG) due to its nature of being
non-invasive, intuitive, and effective. While the performance in laboratory
settings have shown great promise, these methods typically are focused for
intra-session or intra-day based efforts but are seldom applied to inter-day
applications, leading to a reduction in the quality of life of amputees. To
address lack of long term rehabilitation outcomes through bio signal sens-
ing it is important to gain a deeper understanding into the nature of the
transience within SEMG data and to expand into whether bio-signal led
hand rehabilitation can be improved through fused sensing and adaption
modalities. The contributions from this work therefore focus on how un-
derstanding and exploitation of intra-day SEMG signals can be exploited
for long term use, the use of a-mode ultrasound sensor fusion for long term
rehabilitation, and finally enacting closed loop haptic based hand control

in a Virtual Environment based rehabilitation system.

Firstly, SEMG sensing strategies are proposed to support long term use
with minimal patient input. Through the exploitation of transient changes
within SEMG data during intra-day periods, a generalized system of long
term hand motion recognition can be achieved. This thesis provides a
deeper insight into the transient change of sSEMG during frequent intra-day

sensing by demonstrating the decay of hand motion recognition during a



period of daily use. These transient changes are then exploited in training
strategies that provide increase hand motion recognition accuracy for long

term use.

Secondly, this thesis investigates the effect of sensor fusion led modalities
towards long term hand motion recognition by means of a-mode ultra-
sound and sEMG. Unlike sSEMG, a-mode ultrasound is capable of pro-
viding insight to deep muscle activity within the forearm while also be-
ing robust to crosstalk from neighboring muscle activation. The applica-
tion of traditional SEMG features to a-mode ultrasound is evaluated when
concerning sensor shift. Then a novel a-mode ultrasound led hand reha-
bilitation strategy is proposed through combination with SEMG sensing
during large arm movement centred exercises demonstrating superior per-

formance to SEMG alone.

Thirdly, in order to improve the feedback provided during rehabilitation
and to enable closed loop hand control a virtual environment enhanced
haptic rehabilitation system is proposed. In the proposed system, partici-
pants were provided feedback to their grasping effort through either visual
force bars or electrotactile feedback while controlling a virtual hand. The
performance of this rehabilitation strategy demonstrated a significantly re-
duced training period and highly repeatable finite hand control in various

scenarios.
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Chapter 1

Introduction

1.1 Background and Motivation

In our daily life such actions as buttoning a shirt or drinking from a glass are fre-
quently taken for granted. Such dexterous gesture interaction and object manipulation
produced by the human hand can be defined as a closed loop system of many actuators
and sensors working in almost perfect unison to perform a desired task. through upper
limb impairment or amputation the capability of a hand to perform such seemingly
pedestrian tasks can be heavily limited if not outright removed, subsequently causing
a massive negative impact to a persons quality of life. Such changes to quality of
life may manifest across a persons entire life from their sense of autonomy, ability to
partake within social interactions, in work environments, and independent daily living.

Within the UK alone, the rate of hand amputations per year can be expected to
be 10,000 of 250,000 per year whereas 55000-60000 amputees seek specialist support
and rehabilitation services.

As society develops, as does the drive to further focus on providing a form of
upper limb motor prosthesis that can primarily serve the purpose a patients original
limb provided and to furthermore do so in a way that is as natural and life like as
the original limb. There has been great focus and research towards answering the
question as to how to provide a upper limb prosthesis that can behave in such a similar
way to a natural hand. When considering the form of how such an ideal prosthesis
should manifest, Cordella et al. [3] specified that of accurately and reliably achieving

activities of daily living, providing the user with sensory feedback, stable control with



1.1 Background and Motivation

less visual attention, the capability of stable grasps and better handling of small or
delicate objects. It is from these objectives of achieving an ideal prosthesis that a form
of divide manifests within the focus of upper limb prosthesis between the hardware
development branch and the Human Machine Interaction (HMI) branch.

Within both branches of development for upper limb prosthesis, continuous devel-
opment to provide a more capable and usable prosthesis solution has occurred contin-
uously for decades. Although the simple cosmetic effect of prosthesis is highly desir-
able as a base requirement for many amputees, a clinically viable and usable dexterous
prosthesis is vital for not just enabling some degrees of environmental interaction for
amputees but furthermore to assist in establishing their sense of autonomy.

The concept of a functional as well as cosmetic upper limb prosthesis is nothing
new, yet early devices were simplistic with control coming from simple cable pulls and
often provided functionality but in a non fluid or natural manner with limited scope of
grasping ability. Moving forward from limited functionality prosthesis to fully dex-
terous hands with multiple degrees of freedom has been a large popular focus, where
modern prosthesis may enable various traits such as multiple degrees of freedom, dy-
namic movements, proportional control, and various sensors and actuators to provide
responses or assisted control during use. Such work into the hardware design exists
further than just in the scope of ideas such as prosthesis to include human controlled
exoskeletons to assist restoration of motor function. Although the extents of develop-
ment have seen a great degree of variation in control of upper limb prosthesis motions,
the range of gestures and grasps to perform still remain somewhat limited regardless
of improved dexterity. Furthermore, although modern prosthesis have a highly impres-
sive range of actuator functionality and sensing controls, the actual control schemes
and implementations of commercial prosthesis are largely similar to that of prosthesis
developed in the mid 20th century.

The reasoning behind this seeming lack of development in actual control for pros-
thesis when the hardware implementations of today enable so much more control is
potentially due to the human machine interfaces used to translate bio-signals into pros-
thesis movement have largely focused on the early direct control schemes and map-
pings to perform a subset of clear actions based largely on simple threshold functions
or impulse patterns instead of exploiting the larger range of control that modern pros-

thesis permit.



1.1 Background and Motivation

It could largely be concluded that the focus on simple direct control methods
largely route from the challenge of how to accurately infer motion intention from pro-
duced bio signals in a device that requires minimal cognitive and physical burden for
the user. The typical commercially available powered upper limb prosthesis uses a
noninvasive form of surface electromyography (sSEMG) as the main form of interpret-
ing motion intention from the user.

A typical sSEMG based sensing modality for upper limb prosthesis follows the pat-
tern of SEMG signal collection from electrodes placed on the user which are then
amplified and preprocessed by the sensing device or linked device. The preprocessing
stage attempts to remove certain noise that may exist from external sources such as
powerline noise and any signals outside of the target frequency range for the device.
Certain traits or features of the signal would then be collected from the raw sEMG
signal and a decision stream will be produced that would manifest as a response from
the prosthesis.

Within academia there has been great focus across the spectrum of SEMG sensing
from hardware devices to improve the quality of collected signals, improved filters and
preprocessing methods to provide clean signal free from external noise, methodologies
to reduce the variable input stream of raw sEMG signal into features that can easily
be computed, and to algorithms to better decode the SEMG signal stream with further
additions to post processing to either improve a trained model for classification.

As stated before, although there exists an extensive quantity of research into SEMG
sensing modalities and processing methods to interpret motion intent the methods pro-
duced in academia are seldom moved into clinical environments. The growing divide
between sensing and actuating has led to a situation where actuating devices can pro-
vide a remarkably advanced degree of motion in comparison to prior years while the
sensing and motion interpretation methods used in commercial systems are very remi-
niscent of early myoelectric upper limb prosthesis.

Potential reasons behind the lack of acceptance of many approaches to SEMG sens-
ing in academia may largely be attached to ensuring viable long term usability of con-
trol strategies found within academia. As the mechanisms that produce sEMG signals
are highly susceptible to changes in both the biological systems producing the signal,

such as experienced from fatigue, and the sensing medium, such as electrode displace-
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ment, long term accuracy of predictive methods for motion recognition may not be
assured.

Further aspects to present implementations of powered upper limb prosthesis ex-
ist from the capability of proportional control yet enabling such control schemes to
dynamic scenarios encountered during daily use is challenging. This challenge exists
in both current commercial prosthesis control schemes and pattern recognition based
approaches as the existence of an open loop in prosthesis control limits the mechanism
of ensuring accurate grasping to only visual feedback, which may inform of grasp yet
not the exact degree of force in use.

When considering the gap between sensing and actuating devices, it is evident that
HMI approaches must be improved with a focus to enabling long term use that is robust
to transient signal changes and in enabling proportional control.

Therefore this thesis intends to investigate and develop a series of methodologies
and strategies in hand motion recognition to resolve the problems and challenges de-

scribed in section 1.2

1.2 Problems and Challenges

Regardless of modality used, a prosthesis user would most value a powered upper limb
prosthesis to provide intuitive control that performs as expected with a high degree of
accurate and fast response to their motion intention whilst also requiring the minimal
degree of training and cognitive burden during active use.

Within these goals are the focus that whichever subset of gestures the prosthesis
can perform are capable of accurately being performed inline with the users motion
intention. Although there is an inherent mechanical delay within the prosthesis the
delay between muscle activation by the user and the activation of the prosthesis should
be imperceptible. A prosthesis that may only be used following years of training for
the user or requires heavy burden to perform simple actions is simply not viable for
daily use. For a prosthesis to provide the desired quality of life improvement in a user
the prior aspects must be addressed and be consistent over long term use.

Although there exists many control schemes that may be implemented for such a

prosthesis, the usage of SEMG sensing has proven to be extremely popular both in
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academia, clinical, and commercial implementations. As sSEMG based sensing typi-
cally involves attempting to distinguish motion intent from the same muscle groupings
that had previously been used to control the users original limb it is very fitting in
both concept and implementation to extract the patterns of signals produced during
contractions as the primary control of a prosthesis.

Ideally, the patterns produced form the residual muscle groupings would be able
to provide an accurate representation of the users motion intent. Within the focus of
pattern recognition based control there has been great progress in accurately sensing
motion intent through improved feature extraction approaches and classification meth-
ods. It is through these pattern recognition approaches that great promise has been dis-
played within clinical environments to perform tasks that would typically be involved
in activities of daily living.

However, the usage of SEMG based sensing with pattern recognition has appeared
to approach a form of bottleneck in providing a robust interface to the transient as-
pects of SEMG based control during long term use. Aspects of the randomness and
susceptibility of SEMG based sensing has been stated and approached by numerous
researchers however a complete solution has so far been illusive with some of the
mechanisms involved still not being fully understood [4]. Therefore to better provide a
sensing solution for prosthesis control during long term use, the following challenges

must be addressed:

1.2.1 Lack of Robustness in Pattern Recognition Approaches for
Long Term Use

Many researchers, have found that the quality of SEMG based hand motion recogni-
tion accuracy degrades as a function of time throughout a day and across multiple days.
There are numerous factors that may cause this decay in recognition accuracy that must
be accounted for to create a robust interface, specifically factors such as fatigue, elec-
trode shift, and skin impedance. As a consequence, many pattern recognition based
approaches must be retrained or calibrated both during daily use. For research proto-
types to be used clinically there must be a low burden of re-training and re-calibration

for the user and for such processes to be as infrequent as possible. In order to achieve
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ambitions such as limited or no retraining based control schemes it is vital to exploit
the invariable aspects of the SEMG signal.

If it can be assumed that outside of aggregating transient changes within an SEMG
signal there exists invariable traits that may persist over multiple days then these traits
of the SEMG signal can be focused on to improve the hand motion recognition accu-
racy.

Methods of extracting quality features of SEMG signal through TDAR approaches
have long been examined and developed to be robust for purpose. Moreover mature
methods of classification approaches such as Linear Discriminant Analysis (LDA) have
been widely used and applied for sSEMG hand motion recognition. However, combined
approaches still experience difficulties in accurately providing robustness to changes
in the SEMG signal during long term use. Were it possible to exploit the invariant traits
of the SEMG signal during long term use then it may be possible to further improve

the robustness of matured mechanisms of SEMG hand motion recognition.

1.2.2 Apparent Limitations from SsEMG Based Sensing

The degree of variable traits in SEMG signal from transient changes in signal and
crosstalk from neighboring muscles provides many issues when considering the ap-
plicability of such sensing methods for long term use. As the non invasive nature
of SEMG based sensing limits any detected activity to any electrical manifestation
detected at skin surface level there exists constraints on the extent of accurate infor-
mation that SEMG based sensing may provide. Moreover changes in signal quality
from sweat or fatigue hinders long term reliability during expected daily use. The lim-
itations imposed by variability of the SEMG signal and more importantly that SEMG
based sensing is unable to accurately recognize deep muscle activity it could be argued
that hand motion recognition through sEMG has reached a bottleneck when looking
towards clinical viability. The unimodal approach of SEMG sensing today may be
sufficient for limited usage scenarios yet for clinical viability may require a further

modality that are proficient in the areas which are limiting to SEMG.
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1.2.3 Difficulty in Enabling Proportional Control due to Open Loop

Prosthesis Control Schemes

Although current actuators in powered upper limb prosthesis provide a vast array of
dynamic control actual exploitation of these capabilities is seldom seen in implementa-
tion. While there does exist many hand motion recognition approaches that can provide
proportional control the capability of natural interaction within an environment is very
challenging as the only form of feedback reliably provided to the user is that of visually
seeing the prosthesis grasping an object. It is through this absence of direct feedback
beyond infrequently useful visual ques that such grasping can be considered as open
loop feedback, or rather absent of feedback to guide user outside of a task either being
completed or failed. Numerous methodologies have been proposed to close the loop
in proportional prosthesis control however few have seen much clinical acceptance.
Existing challenges are that of provision of feedback that can be implemented within a
prosthesis environment without being cumbersome or distracting to the user. Further-
more, in the provision of feedback there must exist clear difference between feedback
levels and for feedback to provide timely responses that may be able to guide the user
in such a way to provide reliable guidance during proportional control of an upper limb

prosthesis.

1.3 Overview of Approaches and Contributions

Considering the above challenges, this thesis proposes sensing and adaption approaches
to promote long term hand rehabilitation with a particular focus on the human factor of
prosthesis control. Through training strategies for long term SEMG based hand reha-
bilitation, multimodal sensing using a combination of A-mode ultrasound and sSEMG
sensing, and a closed loop electrotactile feedback enhanced virtual environment for

precise prosthesis control.

1.3.1 Long-term EMG Usage Inter-day

Firstly, this thesis contributes to the domain of SEMG based hand motion recognition

for long term use through training strategies that attempt to exploit temporal character-
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istics of the sSEMG signal. The setting for this contribution was collection of 16 data
collection sessions across a typical day with a period of 30 minutes between sessions
for a total length of 5 days. Firstly, typical classification strategies are explored with
training data consisting of a single session and the testing data being made of the 15
unseen sessions of the same day. From the results of exploring the change in accuracy
across a typical day, through exhaustive comparison of same day samples, it is demon-
strated that there exists a period of 2 hours for a given data collection session to be
considered still adequate for sSEMG hand motion recognition before the trained models
motion recognition accuracy is no longer considered reliable. Therefore it is through
recognition of this repeatable decay in SEMG accuracy across a day that the concept of
sEMG signal data freshness is introduced when considering hand motion recognition.
Secondly, as this concept of SEMG signal data freshness can be considered the period
of time such that the negative impact of variable traits within SEMG signals can most
easily be observed and inversely is such a period where invariant traits of the SEMG
signal may become more pronounced. The proposed strategy therefore attempts to ex-
ploit the concept of SEMG signal data freshness through constructing a training data
set that splits each set of 16 sessions into 3 or 4 windows and chooses a session from
within each window in such a way that the variable aspect of each class 1s maximized
while the invariable aspects of the signal remains constant. This spaced data selection
strategy is then expanded to inter-day applications utilizing either the data from 1 or 2
days as training against the remaining sessions from a second day and all unseen days
as testing. In the second day a window of the first 2 hour period, or the first "fresh”
window is used as a calibration data set.

The proposed data selection strategy is compared against several alternative data
selection strategies and is shown to either outperform alternative strategies or perform
to a similar quality with dramatically reduced burden of data collection. Therefore the
proposed data collection strategy is shown to exploit the invariant traits of the SEMG

signal in a manner that contributes to providing robust long-term use.

1.3.2 A Mode Ultrasound Lead Long-term Hand Rehabilitation

Secondly this thesis contributes to attempting to resolve challenges in SEMG based

sensing through an ultrasound led multimodal approach to hand motion recognition.
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The applicability of SEMG based feature extraction methods on A-mode ultrasound
signal is found to be feasible. As A-mode ultrasound based hand motion recogni-
tion had previously been highlighted as potentially being vulnerable to probe shift this
research also contributes to exploring the nature of A-mode ultrasound probe shift.
Multiple feature selection strategies and combinations are explored and the feasibility
of different SEMG feature extraction methods are demonstrated in conditions of vary-
ing probe shift. Finally, a multimodal fusion based hand motion recognition approach
is investigated using synchronised ultrasound and sSEMG data capture. The proposed
model attempts to exploit the deep muscle activity that can be detected through ul-
trasound based sensing to provide deeper information regarding hand activity while
sEMG signal collection enables robustness to larger changes in muscle activity through
distributed electrodes.

The proposed multimodal fusion based pattern recognition approaches are pro-
posed through firstly conducting feature extraction on both the SEMG and A-mode
ultrasound signal and subsequent concatenated feature vectors comprised of sSEMG
TDAR features and the modified SEMG features for use on A-mode ultrasound signal,
thereby providing improved recognition accuracy through the fused sensing modali-

ties.

1.3.3 Virtual Environment Based Haptic Control for Hand Reha-
bilitation

Thirdly, this thesis contributes towards improving the quality of hand rehabilitation for
precise control with a virtual environment enhanced rehabilitation system that attempts
to close the loop of prosthesis control through electrotactile feedback. The proposed
virtual environment primarily interprets the degree of muscle activation performed dur-
ing a grasping exercise directly to that of a virtual prosthesis with a corresponding de-
formation model to simulate pressure placed upon an object. To explore feasibility for
the environment for hand rehabilitation through grasping exercises three objects are
assigned to be grasped with a finite quantity of grasping force to simulate attempting
to not only grasp an object but lift it without breaking it. An open loop or otherwise
no feedback condition is compared against visual feedback through the provision of

force input bars and electrotactile feedback through spaced and mixed coding. The
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performance metrics of the length of the rehabilitative exercises and success of the re-
habilitative exercises are shown to experience improvement through the provision of

reliable feedback to a user and contributes to hand motion rehabilitation.

1.4 OQOutline of Thesis

The remaining chapters of the thesis are as follows.

Chapter 2 reviews the state-of-the-art work on muscular sensing based hand motion
recognition across various sensing modalities with a focus on SEMG based sensing. A
comprehensive understanding of hand motion recognition algorithms is provided to
the readers on classical and prominent methodologies. An extensive insight into the
field of hand rehabilitation for haptic sensing and achieving desirable rehabilitative
outcomes. finally the chapter concludes by summarising the current progress within
the state of the art and the limitations or challenges currently experienced, finishing
with future directions that may be taken.

Chapter 3 firstly considers the challenge of SEMG sensing during long term use and
the currently challenging function of time on SEMG hand motion recognition accuracy.
The seeming robustness of LDA during long term use in comparison to other classi-
fication strategies is then used to better evaluate the changing nature of SEMG hand
motion recognition accuracy over time. A period of 5 non sequential days each with
16 sessions spaced by 30 minutes is collected throughout and for each day is analyzed
through simple 1-1 training testing within each day. the shifting classification from
time of collection to time when hand motion recognition accuracy is no longer deemed
viable is subsequently referred to as the period of SEMG signal freshness. It can be
considered that this period of SEMG signal freshness is the function of time caused
by various physiological changes within the SEMG signal. As the challenge of detect-
ing invariant elements of the SEMG signal may be too cumbersome it is assumed that
through combination of SEMG signal datasets that are relatively not considered “fresh”
to one another would provide a median aspect of the signal closest to representing the
invariable traits. To achieve this, each day is segmented into several windows where
from each window an individual dataset is taken for use in a combined training dataset.
The spaced dataset strategy is then tested against the 4 remaining days both with and

without a dataset from the first 2 hour period of the testing day. In comparison, a
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morning only selection strategy, minimal data strategy, and full prior day strategy are
evaluated in comparison as to verify performance results stemming from the proposed
concept of exploiting data freshness as opposed to the concept of simply expanding a
dataset.

Chapter 4 incorporates an A-mode ultrasound sensing modality into current uni-
modal SEMG sensing approaches for muscle activity sensing and hand motion recog-
nition. Firstly this chapter investigates the application of SEMG based feature extrac-
tion methods on A-mode ultrasound data. Secondly, this chapter then evaluates the
performance of A-mode ultrasound under probe shift conditions. Finally, multimodal
sensing fusion through combining SEMG and A-mode ultrasound sensing specifically
utilizing ultrasound as the leading sensing modality when generating decision streams.
This fusion approach is then verified my major arm movements with healthy volun-
teers.

Chapter 5 targets the importance of closing the loop within prosthesis control
through proposing a Virtual hand rehabilitation system that utilizes virtual and haptic
feedback. Within this work, typical non feedback prosthesis control, otherwise referred
to as open loop feedback, is evaluated against feedback providing, closed loop feed-
back, approaches. These approaches are specifically a Virtual guidance platform and
electrotactile feedback system. The feasibility of the proposed virtual system is verified
in terms of rehabilitative efficiency through comparison of typical open loop feedback
to the closed loop virtual feedback and electrotactile feedback conditions. The im-
proved performance from closed loop feedback and assisted rehabilitation through the
virtual environment is evaluated and discussed.

Chapter 6 finally, summarises the contributions detailed within this thesis to the
current body of knowledge and discusses building points from this research and poten-

tial future directions to undertake.
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Chapter 2

Literature Review

2.1 Introduction

The human hand can be considered to be an extraordinary complex system of collabo-
rative sensors and actuators to enable many various forms of control with instantaneous
feedback to the nervous system. The developments afforded to humankind through the
structure of the hand can be considered a large factor towards the development of hu-
mans in relation to other species of animal. In a single hand there exists 27 bones with
numerous areas of connective tissue, muscle, ligaments, cartilage, etc. All of which
serving to enable the hand to perform numerous dynamic actions, absorb various de-
grees of shock, and to interact with the surrounding environment. An innate sense of
goal attainment enables humans to be able to utilize this complex system to articulate
and interact with vast variety of objects with ease. Through amputation, injury, or
sickness, the capability of a human to utilize a hand to the manner that they are used to
may be compromised or outright lost. For amputees, there is the promise of powered
upper limb prosthesis, however, these devices are typically heavily simplified in their
control scheme as to enable the patient to perform simple tasks with minimal burden,
most frequently with simple on / off control of grasping. Furthermore, although many
modern commercial powered upper limb prosthesis have a vast array of potential for
dexterity this may be seldom utilized in daily use. Although the powered upper limb
prosthesis may also provide faster and more powerful grasping than a typical human
hand the lack of sensing and natural adaption to the surrounding environment during

dynamic contraction causes these beneficial aspects to provide little real world benefit.
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When considering the prosthesis itself, there is the further aspect in how to inter-
pret the human intention and perform a matching action correspondent to the users
desire. There exists challenges into how such human intention may be collected and
subsequently what methodology can be best used to interpret it into a physical action
by the prosthesis.

Presently, the prime modality to control commercial prosthesis is SEMG based
approaches with direct control approaches. It is easy to understand that the direct
relationship between the SEMG based signal to the imparted effort on a muscle to
perform an action. However present SEMG based approaches lack the same sense of
intuitive control that an original limb provided. One solution would be to focus on
pattern recognition based approaches for prosthesis control with sSEMG. Alternatively,
there may exist a sensing modality or combination of sensing modalities which provide
a better sense of control during daily use. This following section will attempt to explore
present sensing modalities alongside potential combinations of sensing modalities to

enable a better sense of prosthesis control.

2.2 Sensing Modalities for Hand Rehabilitation

The control of any movement can be described as the result of the brain weighing the
reward of a movement to the cost of effort imparted [5, 6, 7]. In healthy individuals
this leads to optimising movements based on the bodies own closed loop feedback
system from the actions performed nerve and muscle reactions combined with the sen-
sory feedback provided by sight, touch, force, etc. However, in situations where the
hand or arm muscle are otherwise impaired, whether through reduced muscle activity,
feedback, or amputation, such optimisations of muscle activity are harder to achieve.
Subsequently, it is needed to assist in this decision making process by producing sens-
ing modalities that can provide an accurate representation of the muscle activity and
subsequently the patients motion intention.

In this next section, several of these sensing modalities will be explored and eval-
uated with regards to their mechanism of sensing, the processing of the data these
modalities acquire, and subsequently their implementation within the realm of hand

rehabilitation.
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2.2 Sensing Modalities for Hand Rehabilitation

2.2.1 Surface Electromyography (SEMG)

Within the realm of hand rehabilitation, SEMG has long been a popular sensing modal-
ity to represent muscle activity. The applications of this sensing modality range from
simple muscle analysis, to active control in most commercial upper limb prosthesis
and exoskeletons for motor limb restoration.

At its core, myoelectric sensing is based around detecting the electrical manifes-
tation of active motor units (MUs) that occur during muscle contraction. These MU’s
each consist of the cell body, neuron, and muscle fibers, which act as one unit. Within
this system, the neural control can excite the muscle fibres. Within these units, there
exists an ionic difference between the inner and out spaces of the muscle, described as a
resting potential. Through a process dictated by an internal ion pump, such that excita-
tion along a motor nerve sends a brief influx of Na+ ions. Following this influx of Na+
ions, a state of depolarisation occurs, which is immediately restored through a back-
ward exchange of ions, referred to as repolarization [8]. Provided a certain threshold
of Na+ influx is achieved then the depolarization of the membrane causes an Action
Potential (AP). The action potential in that moment creates a mono polar electrical
burst before being immediately restored through repolarization. After Hyperpolariza-
tion where the cell membranes potential falls below that of the resting potential. The
formed action potential then spreads through the muscle fibre in both directions to its
origin. As a result of this excitation, linked chemical processes provide shortening to
the contracting elements of the muscle, which can be observed as the muscle activation
[8].

Therefore, this relation between action potential and muscle contraction can be
exploited in an EMG system. Typically, many sEMG devices attempt to use paired
electrode schemes where the depolarization wave along the muscle fibre can be in-
ferred as the potential difference between electrodes can create a bipolar signal within
a differential amplification process. As each motor unit consists of many muscle fibres,
the placed electrodes are capable of seeing many of the innervated fibres within this
motor unit. The collective impulse of the excited muscle fibres within a motor unit
can be considered as the Motor unit action potential (MUAP). When looking towards
sEMG with regards to detecting these MUAPs is the recruitment of MUAPs across a
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muscle and their subsequent firing rate [9, 10, 11] where a raw sSEMG signal can be

considered as the observed recruitment and firing rate within a targeted muscle.

2.2.1.1 Hardware & Systems

When processing SEMG signal, there are several considerations into the hardware to
be utilized, specifically towards the factors of electrode type, signal amplification, A/D
resolution, A/D Sampling Rate, Signal filtering, and form factor elements such as hard-
ware power supply and size. When considering the sampling rate of the SEMG signal
from Analog to digital, the Nyqist sampling theorem should be considered such that
the sampling rate is at least twice the sampling rate of the input signal. In literature
the maximum frequency of SEMG signal is observed to be 500Hz [12] therefore many
authors set a sampling frequency of 1000KHz [13, 14, 15] although some authors have
observed under and over sampling to find that oversampling largely provides little ben-
efit while under-sampling may lose some signal or require anti aliasing [16, 17].
sEMG sensing may utilize several forms of electrode design, these are typically
divided into wet and dry electrodes. Wet electrodes operate by having a conductive gel
layer on the electrode itself and a surrounding adhesive region. Wet electrodes are fre-
quently used within clinical environments as each electrode can be located on a target
area under its own attachment and can be replaced or disposed with ease after use. In
hospital environments this would be preferable as disposing electrodes minimizes time
spent decontaminating equipment alongside reducing time spent ensuring a proper fit-
ting. Dry electrodes, however, are typically the direct metal portion of the electrode,
usually without any form of adhesive material, or rather embedded into an armband.
A large benefit of dry electrodes is that they can be reused or moved as frequently as
desired, unlike wet electrodes that are typically disposed after use. As dry electrodes
do not utilize any conductive gel, other issues in sensing do appear. Common issues in
dry electrodes may manifest from humans sweating and therefore impacting the skin
impedance. As dry electrodes are frequently incorporated into armbands of elasticated
bands, there is an increased risk of electrode shift during regular use although it is also
recognized that recovery from electrode shift is possible with dry electrodes whereas

wet electrodes would need to be reapplied.
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Following the extraction phase, the raw SEMG is typically pre-processed as to re-
duce undesirable signals within the SEMG. Typically the more common set of unde-
sirable traits is that of power line noise, which regularly manifests at 50hz or 60 hz,
this often is through passing the raw signal through a Butterworth filter and notch fil-
ter. The aforementioned process also works towards preserving preserving all SEMG
signal between desirable frequencies. Following this, the preprocessing may begin as

to improve the quality of the inputted signal.

2.2.1.2 Features

Much akin to other pattern recognition problems, the quality of sSEMG based hand
motion recognition can often be only considered as good as the data and features pro-
vided. Traditionally these features are hand crafted and can be divided into several
categories of Time Domain(TD), Frequency Domain(FD), and Time-Frequency Do-
main(FD). The features used in any given situation may vary based on certain traits
of the application, such as whether the features used are required at a perceivable real

time. Traditional SEMG features are listed as follows.

* Mean Absolute Value (MAV): MAV is defined as the average of the total ab-
solute value for any sSEMG signal during a defined period of time. It could be
considered that mav is one of the most popular features in SEMG signal analysis

having been used by many researchers throughout the years [18, 19]
| N
MAV = N;'x” (2.1

* Root Mean Square (RMS) Root Mean Square is the square root of the mean
values for a set of squared raw SEMG values over a period of time. This method
is frequently used as a relatively stable measure in domain both hand motion

classification and analysis of stroke patients [20, 21, 22].

RMS = 2.2)
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* Waveform Length (WL) Waveform Length is the measure of complexity of the

sEMG signal over a specific time segment [23].
n—1
WL =) 241 — a4 (2.3)
=1

» Zero Crossing (ZC) Zero Crossing is summation over a period of time that the
input signal crosses the zero amplitude level. In order to avoid complications
from small fluctuations in the signal it is not uncommon for this method to have
a threshold implemented [24].

N-1

2C= Z [Sgn (zi X 2 + 1) N [@igita] > threshold} :
i=1
{1, if > threshold
sgn(z) =

) 2.4)
0, otherwise

2.2.2 Ultrasound (US)

Ultrasound based imaging is a non-invasive sensing modality that has long been used
as a diagnostic device to observe musculoskeletal disorders such as arthritis [25, 26].
The technique itself is non-invasive, utilizing an array of piezoelectric transducers to
project a focused wave of ultrasound into the body between a range of 2-20MHz. As
the beam of ultrasound interacts with the body tissues echoes are produced that can
then be converted into a signal. Because different tissue components produce vary-
ing qualities of echo, it is possible to infer aspects of muscle state during contraction
[27, 28]. It is through this capability to analyze muscle activity that the concept of
utilizing ultrasound in hand motion recognition. Hodges demonstrated that it is possi-
ble to observe low level of muscle contractions where the physical muscle architecture
changes the most, however, it was also described that moderate and higher levels of
muscle contraction could not be differentiated due to reduced change in muscle archi-
tecture [29]. A benefit of ultrasound based sensing being sensitive to changes in muscle
thickness is that ultrasound can provide insight into fatigue within an individual muscle
while SEMG signals experience crosstalk from nearby muscle recruitment [30]. Mov-
ing further to detecting hand motions, ultrasound sensing had been demonstrated by to

be capable of accurately detecting wrist extensions in complement to SEMG although
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it was highlighted that mounting both an SEMG electrode and ultrasound diode on the
same targeted muscle is a challenge due to the space required for both sensors [31]. A
further challenge to ultrasound based sensing for real time control is that processing
of the b-mode ultrasound images can be computationally expensive, although some
algorithms have been developed to resolve these issues and to enable real time control
with a 1 DOF hand [32].

In following years, interest in ultrasound expanded further towards individual fin-
ger flexion, where ultrasound has been demonstrated as a very effective method in
accurate finger position detection [33, 34, 35]. Castellini et al. observed that there
exists a simple linear relation between ultrasound image features and exact finger po-
sition subsequently meaning that fine finger control of a prosthesis could be achieved
with a wrist mounted b-mode ultrasound probe [36, 37]. This work was further ex-
panded in 2013 to detect the amount of force impart by a finger while also limiting
their data collection to minimum and maximum forces instead of a graded set of force
patterns [38]. The capability of ultrasound to provide knowledge of focused muscle ac-
tivation therefore is highly promising for enabling precision control over a prosthesis,
as opposed to on/off motion activation. The performance of ultrasound and sSEMG was
further evaluated by Huang et al. [39], who found that ultrasound based sensing could
provide a higher degree of accuracy in multiple finger based hand motions, whereas
prior research focused on individual finger movements. It was inferred that the rela-
tively superior performance of ultrasound is from SEMG based approaches experienc-
ing a higher degree of crosstalk from neighboring muscle activity, while an ultrasound
based method is robust against crosstalk. While ultrasound sensing has shown itself
to be highly effective at recognition of individual finger movement in comparison to
sEMG, there does exist the issue of making the device wearable. Although B-Mode
probes are excellent for providing high resolution information [40, 41], they are gen-
erally cumbersome and require both larger hardware to process their signal and also a
dedicated power source. To resolve the issue of creating a wearable device, researchers
have investigated single transducer based A-mode designs [35, 42]. A further inves-
tigation into the application of unimodal A-mode ultrasound is explored in chapter
4.

There are, however, some trade offs from the A-mode exclusive designs, specifi-

cally relating to the nature of the signals being received and their transmission through
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the body. As sEMG signals can travel across neighboring MU’s there will be an expe-
rience of crosstalk. However, ultrasound can ignore crosstalk due to the limited beam
of Ultrasound signals and their echoes. This state of the limited beam of ultrasound
somewhat eliminating crosstalk becomes a double edged sword as any probe shift may
remove important signal information from muscle activity while SEMG approaches
will still be capable of detecting the reduced muscle activity under shift. While the
majority of crosstalk is eliminated, it is hard to be certain if crosstalk from the action
of adversarial muscles may provide axis shift to the ultrasound probe, which may not
be anticipated in a trained model. Considering that A-mode uses a single beam, the
concept of probe shift may pose issues in daily use. Presently there has been little in-
vestigation into this aspect of A-mode ultrasound as to cover the robustness of A-mode
ultrasound and subsequently the optimal spatial placement of ultrasound probes as to
achieve high quality signal and robustness to shift.

Another aspect to consider is that ultrasound requires a couplant to function effec-
tively. While modalities such as SEMG may be able to use pre-gelled or “wet” sensors,
the construction of ultrasound probes makes it uneconomical to create disposable pre-
gelled transducers. Therefore in ultrasound based approaches, a gel based couplant

needs to be applied prior to sensing as to ensure clean signal.

2.2.3 Force Sensor Resistor FSR

Force Sensor resisters attempt to provide an interesting modality for bio signal sensing
through observing the force imparted during muscle contractions. The exact locations
of force sensing can range from forearm mounted sensors that take expanding force of
a users muscles against a fixed sensor rig whereas other applications may utilize the

force imparted on the back of a hand through a glove.

2.2.4 Near Infrared Spectroscopy NIRS

Near Infrared Spectroscopy attempts to utilize light based laser diodes to project a
beam of light into the targeted tissue area. Under the assumption of tissue and bones
consuming the light beam in varying quantities it would therefore be possible to ex-

tract a degree of inner muscle activity from the reflected beam of light. As numerous
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detectors work in partner with the pulsing beams it would therefore be capable of cap-
turing dynamic contractions alongside information surrounding the metabolic state of

the target muscle.

2.2.5 Fused Sensing Modalities

Frequently in literature, research for prosthesis control focuses on unimodal sensing
methods. In prosthesis control this modality is typically sSEMG, while other methods
are seldom seen outside of laboratory or research environments although they may be
used in other environments for diagnostic reasons such as with ultrasound. While a
single core reason behind methods other than SEMG not achieving clinical acceptance
is unknown [ 1], it could considered that the reason may be that few other methods have
outperformed SEMG in various conditions. While Mechanomyography has the benefit
of not requiring skin preparation nor is it affected by skin moisture [43] the sensors
used are highly sensitive and have to be calibrated prior to usage [44], which makes the
sensors less fit for convenient long term use. The relative performance of Ultrasound
to sSEMG found by Huang et al. [39] is promising, however, the lack of acceptance
for ultrasound based hand motion recognition may lie behind lack of sufficient testing
for daily use factors such as shift, donning and doffing, alongside continuous intra and
interday use.

While these methods are yet to achieve acceptance over SEMG, there exists clear
evidence that several of the described unimodal sensing methods can outperform sSEMG
in certain scenarios. Further to the lack of alternative unimodal sensing gaining clini-
cal acceptance, pattern recognition based SEMG hand motion recognition has also yet
to gain clinical acceptance over direct control SEMG control schemes which has led
to some researchers considering that there exists a bottleneck in SEMG sensing due to
the limitations in SEMG compositions [45]. Considering the state of the art in alterna-
tive unimodal sensing applications it can be recognized that alternative approaches to
SEMG sensing provide superior performance in areas where SEMG sensing currently is
limited. Therefore, to overcome the existing SEMG bottle neck and to translate better
in terms of clinical use would require mixed modality sensing.

The first aspect to consider when approaching multi modal sensor fusion is that of

the implementation of the multi modal control scheme, this can be divided as follows:
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* Single Fusion Algorithms: Features for each modality are extracted and fed

together as a combined feature into a single algorithm.

* Unimodal Switching: A primary modality detects transitions between operat-
ing modes and switches the classifier accordingly. In this scheme a secondary

modality is the only input to the classifier.

* Multimodal Switching: As with unimodal switching, a single primary modality
is used to detect transitions between the operating modes and switches to the
best fitting classifier. The difference in this approach is that both the primary

and secondary modalities are fed into the classifier.

* Mixing: Multiple classifiers run in parallel and each classifier may be fed by
one or more modalities. The output of all classifiers are added together (mixed)

with the independent weighting of each classifier decided by another modality.

The above definitions of approaches to multimodal sensing can be seen represented
in fig. 2.1. A further continuation to multimodal strategies is the selection of unimodal
sensing methods to apply. Typically, sensing modalities for hand motion recognition
can be divided into contact based such as SEMG and Data Gloves or Non-contact based
sensing modalities like depth cameras.

Presently there exists several popular methods for implementing single fusion algo-
rithms. Concatenation of features is a popular and simple method in multimodal sensor
fusion with sSEMG and alternative modalities such as finger joint angles [46], force and
trajectory [47] , load cells [48], MMG [49], and with EEG [50, 51]. In a comparison
of simple fusion, a Naive Bayesian fusion approach by Leeb et al. [52] found that
Bayseian sensor fusion can be robust to fatigue in EEG and SEMG interfaces. Linear
decoders such as linear Wiener filters were found to be viable in mapping EEG data
to limb kinematics [53]. However, non-linear relationships between neutral activities
and limb movements suggest complications in realtime applications of linear decoders
[54]. An alternative to linear decoders for joint angle recognition with EEG is that of
Unscented Kalman Filters [55, 56, 57]. Kalman filters have also demonstrated promise
in recreating handwriting from a fusion of pen state and SEMG data [58]. However
Kalman filters typically see usage towards fusion for trajectory planning, as opposed

to hand gesture recognition.
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Figure 2.1: Four approaches towards fusing two modalities in a wearable robotic con-
trol scheme, indicated by a single classifier approach (a), unimodal switching (b) mul-
timodal Switching (c), mixing (d) [1]

2.2.5.1 Accelerometers and sEMG

Fougner et al. [59] described the impact of adding an accelerometer to motion hand
motion classification such that the addition of a single accelerometer could provide a
significant increase of classification accuracy of large arm movements than the addition
of two sEMG electrodes. However, the benefit of accelerometers in the motions used
varies heavily on location as the forearm accelerometer provided a large benefit while
an upper arm accelerometer provided little benefit. Potentially the largest impact of
accelerometers towards multimodal classification with SEMG is in removing the issues
caused by large movements. Typically, SEMG classification in lab environments seeks
to focus on hand based gestures that introduce fewer variables from large movement
artifacts a consequence is that less scrutiny is paid to maintaining classification when
larger movements are performed. While Foughner et al. demonstrated that larger
electrode setups with prior training to expected arm movement locations the results
were still below that of multimodal sensing. [60] et al. revealed that larger motions

typically may get misclassified as the hand at rest position yet with an accelerometer
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these misclassifications were resolved to their correct motion class.

The performance of multimodal systems using SEMG and accelerometers has been
shown to further improve through the implementation of unimodal switching from the
accelerometer to provide further context towards the sSEMG motion as opposed to using

single fusion algorithms [61].

2.2.5.2 Dataglove Based Fusion

Datagloves offer a powerful advantage in hand motion sensing, often featuring multi-
modal sensing in the form of pressure and bend sensing. The capability of datagloves
enables precision measurement of hand motions and hand freedom therefore making
datagloves useful in the concept of hand motion evaluation [62, 47]. The scope of
datagloves and the information they can provide through typically joint bend based
information make them very suitable for hand motion recognition and human robot
collaboration [63, 64].

As datagloves are typically limited to bend sensing and force sensing it is difficult
to determine the differences between motions that are similar in hand but rely upon
information from the arm to infer motion intent. Xue et al. [65] combined a dataglove
with SEMG sensor to evaluate both the unimodal and multimodal performance when
performing numerous complex tasks. While SEMG performed worst as a unimodal
system it was observed that the multimodal approach outperformed each unimodal
approach. Xue et al. further made the observation that, while performance may be
superior in the multimodal approach, the varied keyframes in certain multi modal ap-
proaches may delay recognition and activation time potentially causing user frustration

in daily use.

2.2.5.3 Force and sEMG

As stroke patients may display changing SEMG patterns due to fatigue and abnormal
coactictivation [66] there exists a strong case for utilizing multimodal approaches. A
specific fusion of multimodal sensing for stroke patients was demonstrated by Park et
al. [67] through the addition of bend and pressure sensors during grasping exercises.

A noticeable trait of the work by Park et al. was to utilize different control systems
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without formal identification where control could be SEMG driven, bend sensor driven,
pressure driven, or a combination of each set of sensors.
Jaquier et al. [68] concluded that the combination of SEMG and Tactile-Myography

(TMG) could prove beneficial in real time performances in relation to unimodal SEMG.

2.2.5.4 NIRS with sSEMG

Hermrmann et al. recognized that the small size of NIRS sensors could enable the
development of a combined NIRS and sEMG sensor [69].

Paleari et al. [70] explored the fusion of SEMG and NIRS in hand motion recog-
nition citing that NIRS could be used individually or in synergy. One caveat of the
combination of SEMG and NIRS that Paleari highlighted, however, is that the band-
width of SEMG is 500Hz whereas NIRS sits at SHz alongside experiencing a slower
response time yet it was highlighted that these factors could be improved through fu-
ture research. This stance was mirrored by Guo et al [71]. that NIRS and sSEMG could
be successfully combined within a single sensor yet experienced limitations related to
temporal resolution yet it was highlighted that the resolution delay still rests within
300ms which is typically the period of time that is considered the cutoff point for no-
ticeable delay therefore making NIRS still fit in real time prosthesis control. A further
aspect of NIRS with sSEMG that Guo highlighted was that the improved spatial reso-
lution of NIRS could prove complementary to the high temporal resolution of sSEMG
in further research such as in detailing muscle fatigue information. A challenge, how-
ever, is that nirs signals are associated with limb movements and therefore depend on

the residual limb condition [72].

2.2.5.5 Ultrasound with sSEMG

As highlighted prior in section. 2.2.2 , ultrasound has demonstrated the capability
to reveal a wealth of information about deep muscle activity within the human body.
However the combination of Ultrasound and sSEMG in a multimodal environment is
somewhat scarce as opposed to other modalities.

Botter et al. aimed to achieve both the deep muscle activity of ultrasound with the
wide reaching activity detection of ultrasound as a diagnostic tool through the develop-

ment of electrodes that would be transparent to Ultrasound [73]. A general challenge of
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combining ultrasound and SEMG also lies within enabling clear ultrasound signal and
sEMG signal within the same region. Botter et al. [74] proposed a solution to this issue
may be possible through a single patch that uses hydrogel as both the medium to en-
sure conductivity for the electrodes and a medium to transmit ultrasound signals, with
a spacer in between as to prevent short circuiting from the hydrogel. In this situation
the probe used was still a B-mode probe therefore potentially limiting the applications
of this probe type to strictly laboratory environments until such a time that B-mode
probes and sensing hardware can be made portable.

Xia et al. [75] proposed an alternative solution to establishing a combined SEMG
and ultrasound probe through opting to utilize A-mode ultrasound and dry electrodes.
An immediate change between the design proposed by Botter and that of Xia is that
Botters device can be directly affixed to the human body with a reasonable degree of
grip and subsequently the patch design may serve to prevent electrode or ultrasound
diode shift. Xia’s diode typically involves a form of elasticated wrist band which re-
quires application of ultrasound transmission gel to ensure a stable connection and due
to this design there may exist a risk of electrode or diode shift during use. In terms of
long term use, there is potential that Botter’s electrode may provide longer intra-session
use yet as with any wet electrode will need to be replaced following use whereas Xia’s
design is reusable therefore making it more viable for interday use and robust to er-
roneous doffing. Although Xia’s design may lack the wide area spatial information
that Botter’s achieves, the increased portability of the design appears promising for
potential future implementation in a prosthesis.

When considering a multimodal sensing approach, important factors would be on
the ease of implementation of a modality, the robustness of each modality, and impor-
tantly what limitations are overcome by the additional modality. The common shortfall
of SEMG based sensing is that of collected signal being shallow muscle activity which
may be vulnerable to crosstalk. Surface level sensors such as force may provide de-
tailed information regarding touch yet will present pitfalls outside of grasping gestures
and may present challenges with proportional control. Both NIRS and Ultrasound
show distinct promise in providing deeper muscle activity on top of the surface level
activity gathered by sSEMG. However, a challenge with NIRS sensing is the delay in
sensing, which may impact the intuitive nature of a prosthesis. Ultrasound demon-

strates viability for usage in a prosthesis in terms of complementing the data gathered
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by SEMG while providing a low latency and a high unimodal motion recognition ac-
curacy. A further examination of the viability of ultrasound based sensing with sSEMG
is provided in chapter 4.

Outside of sensing modalities, a further challenge to consider in providing an intu-
itive control scheme is that of the specific classifier used. The next section will provide

an overview of the current state of the art in upper limb sEMG based sensing.

2.3 Algorithms in Upper Limb sEMG Based Sensing
and Adaption

When considering pattern recognition based approaches towards hand motion recog-
nition there exists two major branches of sensing algorithms based on those that use
feature based information and those that use more modern deep learning based ap-

proaches. A particular focus here shall be placed on SEMG based sensing.

2.3.1 Hand Crafted Feature Based

For feature based sensing there is a long history of different classification strategies and
implementations which have been widely studied towards bio signal based sensing in
offline and online environments. Typically many researchers will opt for Linear Dis-
criminant Analysis (LDA) or Support Vector Machines (SVM) based classifiers likely
due to their reliability, ease of implementation, and likely due to their prominence in
research [76, 77, 78, 79]. Although LDA and SVM are popular methods they may
not promise the best quality results. Within the state of the art other frequently used
classifiers include Quadratic discriminant Analysis (QDA)[80], K-Nearest Neighbors
(KNN)[81], Multi-layer Perceptron Networks (MLP)[82, 83], Hidden Markov Mod-
els (HMM)[84], Artificial Neural Networks (ANN)[85], Fuzzy Logic (FL), Gaussian
Mixture Models (GMM) [86].

All of the above algorithms have demonstrated excellent performance in labora-
tory conditions for SEMG based hand motion recognition for various forms of hand
motions and object manipulation, often seeing accuracy scores of over 90%. The real
challenge with these sensing approaches exist when moving towards clinical environ-

ments and longer term use. As described previously, there exists many variable traits
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of SEMG signals from changing physiological aspects of the user and environmental
factors during sensing. Towards clinical applications, researchers have observed the
performance of varying algorithms when considering fatigue [87, 88]. Whereas other
researchers have explored the capabilities of various algorithms towards inter day use
and others for the feasibility of inter subject use.

A common challenge seen in these tests is that of how to best approach the seem-
ing randomness of bio signals. One solution that has been experimented with is that
of constructing datasets which have larger training datasets that may contain these
variable changes. An alternative approach is that of utilizing adaptive algorithms to
update a trained model to whichever changes are seen. A promising route is that of
semi adaptive algorithms which require user input to update a model with new exem-
plars however a limitation of these models is that intervention is required which may
cause frustration during use. Unsupervised adaptive methods have also been proposed
to change during active use. A further investigation into the challenges of long term

SEMG based sensing algorithms is performed in chapter 3.

2.3.2 Deep learning

While hand crafted feature based approaches have long been the dominant method for
sEMG based pattern recognition, recent years have seen a growing interest in deep
learning. Typically, deep learning approaches had been connected to computer vision,
particularly that of object detection. The process of deep learning based approaches to
progressively extract low level input and convert it into high level features is particu-
larly valued in computer vision. It is this feature learning trait of deep learning trait
of deep learning that holds particular promise over traditional hand crafted features for
SEMG based hand motion recognition. Although deep learning methods are capable
of extracting high level features from a dataset, the nature of deep learning networks
demands a large dataset otherwise they risk overfitting and lack of generalisation. The
risk of overfitting is a particular challenge when converting deep learning approaches
from computer vision to SEMG based pattern recognition due to the relatively small
datasets traditionally used in SEMG sensing. While it is possible to construct a large

enough sEMG dataset for deep learning, large datasets such as the Ninapro dataset [89]
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provide both large volumes of SEMG data and a wide array of gestures for benchmark-
ing methods.

Deep learning approaches are often divided into three categories of unsupervised
pre-trained networks (UPNSs) such as Deep Belief Networks, convolutional neural net-
works (CNN), and recurrent neural networks (RNN). Shim et al. [90] utilized a Deep
Belief Network (DBF) on locally collected two channel data with 7 grasps, demon-
strating superior performance of a DBF against LDA and SVM. Of the forms of deep
learning network, convolutional neural networks appear to attract the most interest in
sEMG based sensing and other fields. It was in 2016 when CNN’s begun to be ap-
plied to sSEMG based sensing, where a CNN was demonstrated to achieve higher inter-
subject motion recognition than SVM [91]. Geng et al. [92] further applied CNN’s
on single SEMG images from a frame of data to enable instant recognition, which was
further improved across a 40 frame window with majority vote. Inter-day evaluations
of CNN’s further show promise as demonstrated by Du et al. [93] on two day interday
data compared against feature based classifiers. The long term viability for interday
classification with CNN’s was demonstrated by Rehman et al. [94] across a period of
15 days. Rehman et all posed that CNN approaches may overcome the feature calibra-
tion challenges of hand crafted feature based approaches.

While Deep learning based approaches demonstrate promise over traditional meth-
ods, the resource intensive nature of deep learning may pose challenges in clinical
environments, such as during user training.

With any combination of sensing modalities and algorithms to infer user intent, a
particularly vital aspect in sensing and adaption is that of user training and rehabili-
tation. It is important to verify that a training approach can ensure repeatability and
applicability to a users daily life. Furthermore, an ideal prosthesis would provide in-
tuitive control alongside feedback that can best guide its user. The next section will
firstly focus on present metrics to gauge rehabilitative performance and to train users.
Secondly, the next section will include an overview and evaluation of prosthesis haptic
feedback methods.
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2.4 Hand Rehabilitation and Application

Throughout each sensing modality there remains the important factor of user training
and the approach to rehabilitation. An important factor within hand rehabilitation and
subsequently in prosthesis control is for the patient to be able to produce both repeat-
able and consistent signals during operation. This process can vary in complexity and

approach dependent upon the situation of the patient.

2.4.1 Rehabilitative Performance Metrics

As the range of hand functionality that is to be assessed during hand rehabilitation can
range from simply demonstrating motion to completing real world complex tasks, the
metrics that we use to evaluate functionality will vary dramatically. In early rehabili-
tation, such as assessing muscle functionality, it may be necessary to only monitor the
intensity of any SEMG signals to focus on being able to produce consistently detectable
signals before moving onto more complex tasks.

When hand motion or simple control of a prosthesis becomes possible for a patient,
the rehabilitative focus can be assessed through to provide a benchmark on their recov-
ery. It is often seen that methodologies to evaluate performance come from needing a
method to benchmark different sensing modalities and algorithms.

Evaluation of sSEMG data, particularly that of offline recognition accuracy is both
one of the more trivial and covered metrics within academic research. Typically the
most popular public datasets is that of NinaPro [95]. The Nianapro dataset consists
of ten datasets from various sensing modalities and numerous subjects that are both
able bodied and amputees. The range of this dataset renders it to be very useful for re-
searchers focused on verifying algorithm performance on multiple subjects with larger
datasets. Unfortunately, the scope of interday data is limited to a dataset consisting of
only upto two datasets per participant across 5 days which may not be fit for evaluat-
ing the conditions highlighted by Kaufman over long term use [96]. For multimodal
data, the Ninapro dataset extends to kinematic, inertial, eye tracking, visual, clinical,
and neurocognitive data. While Ninapro proposes some of the modalities highlighted
in section 2.2.5, modalities such as ultrasound, NIRs, and force are not used. Alter-
native datasets to Ninapro have also been proposed, typically using subsets of the Ni-

napro gesture set and high density SEMG acquisition modules. The CapgMyo dataset

29



2.4 Hand Rehabilitation and Application

Table 2.1: Inter Session recognition accuracies (%) of different evaluation protocols
on CSL-HDEMG (27 gestures) and CapgMyo (8 gestures for DB-b).

CSL-HDEMG CapgMyo DB-b

Inter Session - no adaption ~ 62.7 47.9
Inter Session - with adaption  82.3 63.3

[97] utilized a 128 dimensional SEMG signals within an 8x16 electrode array. The
CapgMyo dataset consists of three sub-datasets, DB-a, DB-b, DB-c. DB-a consisted
of 8 gestures from 10 of the 23 subjects. DB-b and DB-c both consisted of only 10
subjects although DB-b used the same gestures as DB-a, DB-c consisted of 12 gestures
relating to finger flexion. A larger focus of the CapgMyo dataset is that of inter and in-
tra subject detection. Although DB-b provided some capability for longer term valida-
tion through consisting of two recording sessions that were over a week apart. A third
popular dataset is the CSL-GDEMG dataset proposed by Amma et al. [98] consist-
ing of Inertial Measurement Units and 192 dense electrodes on the forearm muscles.
The total dataset consists of 5 subjects across 5 days, performing 27 gestures. Dur-
ing evaluations for inter-session recognition accuracy performed by [97] and shown in
table 2.1, it can be assessed that expected interday recognition accuracy would fall be-
tween 47.9-62.7% without adaption and 63.3-82.7% with adaption performed by deep
domain adaptation.

In the case of rehabilitation there maintains the aspect of laboratory success to clin-
ical success. A control system or algorithm may demonstrate effective results with in a
laboratory but may not be robust enough to provide usability [99]. A factor that has led
to this dichotomy between laboratory and clinical environments could be considered
due to the different evaluation criteria, where laboratory and offline evaluation typi-
cally focuses on classification accuracy. Therefore researchers who focus on online
recognition systems have been gradually proposing, adopting, and adapting different
tasks for patients to perform. Certain tasks may focus on manipulating the hand itself
while other tasks integrate object manipulation tests.

The motion Test was originally devised by Kuiken et al. [100] as a method of
observing the performance of patients who had received TMR. The system enabled

the control of a multifunctional prosthesis within a virtual environment. From the
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participants perspective, an on screen window would display the reference image of
the intended motion alongside the virtual character that would provide feedback to the
participant. This method of evaluation incorporated the traditional motion recognition
accuracy yet also considered matters such as motion selection time, motion completion
time, and motion completion rate. Through these additions it became possible to not
only evaluate the performance of an algorithm but also of a patient’s recovery during
rehabilitation.

Although the Motion Test is very much capable of demonstrating the relative recog-
nition accuracy of an algorithm or the speed of a participant to perform a task, there still
maintains a degree of rigidity to the test itself. Within the Motion Test, it is assumed
that all actions performed would be identical provided that they achieved a particular
class. The issue is then in the scope of proportional control of a prosthesis. Simon
et al. [2] addressed this aspect through their proposed Target Achievement Control
(TAC) test. As with the motion Test, the TAC test utilizes control of a multi-function
prosthesis within a virtual environment. The defining difference between the TAC test
and the Motion Test is that the TAC test targets the capability to accurately position a
prosthesis within a virtual environment. In order to achieve this goal, the participant is
instructed to perform a motion such as wrist flexion until the on virtual users prosthe-
sis matches the virtual target position. Once the participant had achieved the desired
positioning then they were instructed to maintain that position for two seconds, any
loss of position would restart the process until the test period had concluded. The TAC
test demonstrates several benefits to the motion Test through enabling the participant
to control the relative speed of the virtual prosthesis under their control through chang-
ing the intensity of their muscle contraction, whereas the Motion Test was binary in
assessing if a motion was being performed or not.

Recognizing Motion Test is targeted to verify the performance of gestures and the
TAC test can be used to asses proportional control, both approaches are limited to
demonstration of activity as opposed to task solving. As detailed in fig. 2.2, the tac
test is capable of simulating prosthesis movement across multiple degrees of freedom.
Fittz law traditionally was a predictive model that attempts to model the time to move
a cursor towards target area rapidly. A 1-dimensional form of Fittz Law was examined
by Park et al. [101] through mapping two squares directly to the SEMG signal intensity
from a participants triceps and biceps. Through this work, it suggested that both sSEMG
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Successful
Trial End

Trial Start

Virtual
prosthesis

A.
Wrist Flexion
(C1 & C2)

B.

Wrist Flexion,
Wrist Supination,
Hand Close
(C3)

Figure 2.2: The above figure demonstrates the Tac Test virtual environment and an
example task. The participant is shown the location of a virtual prosthesis and the
target location for that virtual prosthesis to achieve. The total gesture pool was wrist
flexion, wrist extension, wrist supination, wrist pronation, hand open, one hand grasp,
and no movement. Dependent upon the scenario, the participant could be provided
one to three degrees of freedom of motion. In the above example, the start and finish
positions are shown for C1 and C2 where one to three degrees of freedom may be
provided but only movement on one degree of freedom is required. The lower image
shows the C3 condition, where three different movements are required to complete the
task [2]
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and force signals as control signals did follow Fittz Law. The implementations of
Fittz law within EMG would later focus on mapping individual hand motions classes
to the directional control of the cursor [102] would allow a good summary of motion
performance. Direct hand motions from the TAC test had also been considered intuitive
for the Fittz law test and therefore could be used in addition to hand open and close
gestures to enable a sense of 3-dimensional control [103].

When considering an ideal metric for performance during rehabilitation, virtual en-
vironments appear to provide viable alternatives to traditional prosthesis based training
due to their ability to mimic ADL’s, ease of implementation, and ability to engage pa-
tients. An environment should be modeled to provide the gestures or actions intended
for the final prosthesis such as those in the Fittz law test while being viable for early
prosthesis users like seen in the motion test and the TAC test. Chapter 5 attempts to uti-
lize the beneficial aspects of these environments while extending their implementation

to precise control of individual gestures.

2.4.1.1 Control Schemes

Following traditional amputation, bio-signal controlled prosthesis typically can be con-
trolled by sequential signal inputs or through controls not located in the residual limb.
These sequential input controllers in collaboration with modern prosthesis are able to
mimic a large degree of movements performed with their original limb. There does
exist some limitations to this approach as there would be a limit on the numbers of de-
grees of freedom, the sequential control requirement causes actions performed through
these systems to not be in a natural, and the control strategy would be unintuitive for
the user. As a consequence, commercial prosthesis may require an increased training
period as to accommodate the unintuitive control strategy or may see reduced capa-
bility as to reduce the cognitive burden experienced during the rehabilitative process
and subsequent usage. This causes some issue in attempting to provide a relatively
natural form of control which utilizes an intuitive control strategy as to avoid the is-
sue of prosthesis rejection that manifests from unintuitive prosthesis control strategies
[104, 105, 106].

In the case when enough of the residual limb remains, whether before or after am-

putation, then it has been shown possible to perform reinnervation surgery to transfer
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a nerve to another muscle through a method referred to as Targeted muscle reinnerva-
tion (TMR). Typical muscle locations in this surgery focus on the medical biceps and
shoulder region. The subsequent benefit of this approach is that it allows these new
regions to produce highly separable signals due to the separation from the crosstalk
that is typical in the lower arm muscle groupings. Prosthesis control through TMR had
previously been shown as a promising method by researchers such as Miller et al. and
Kuiken et al. [107, 108], although the tests conducted to evaluate TMR to non-TMR
testing were noted to be less capable of demonstrating an advantage of TMR due to the
relative performance ceiling of evaluation methods where both approaches performed
equally well.

As a benefit of the new spatial locations of the reinnervated nerves, it can become
possible for practitioners to better separate similar muscle groupings in an attempt to
shift further away from the sequential control schemes of commercial prosthesis. In
the case of proportional control and simultaneous control, it can therefore be possible
to exploit this mapping process to utilize it in a control strategy that enables concurrent
control of multiple DoFs. This concurrent control scheme achieved through TMR
was demonstrated to provide highly functional and natural control when completing
Southampton Hand Assessment Protocol (SHAP) and the Clothes Pin Relocation Test
(CPRT) by Aszmann [109].

Although there does exist benefits to the TMR process, there still demands a period
of training as to first be capable of producing motor activity from the new sites. As with
any rehabilitation, a major challenge is that of patient willingness that may stem from
demotivation after losing a limb. Delay in undertaking physiotherapy and occupational
therapy after receiving TMR may reduce patient outcomes as it has been demonstrated
that early therapy and feedback is crucial in fast and successful reinnervation and signal
generation [110, 111]. Maintaining patient motivation is further emphasized by the
process of voluntary activation at the TMR sites often being seen after a period of 3
months of therapy [112].

The issue of demotivating delaying the process of voluntary control and subse-
quent need for early therapy was support by Schweisfurth [113] when early patient
demotivation could be linked to visible voluntary EMG signal production. It was fur-
ther realized by Schwisfurth that HD-EMG could be used with TMR patients to enable

control of 12 separate motions to a superior degree than with standard EMG. However,
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the long term applicability of HD-EMG with TMR is still to be investigated and may
remain problematic to achieve due to the migratory nature of hotspots produced by
TMR surgery.

2.4.1.2 Feedback

Although simple on/off control of prosthesis can provide satisfactory functional results
in real life user, they still are not a fully satisfactory replacement. The typical human
hand can be considered to be a multi articulate structure of actuated muscles that have
contain a densely packed series of sensors which provide real time feedback to the
brain therefore enabling a sense of self within an environment.Without this sense of
connection to a surrounding environment then a large degree of proportional and in-
teractive control that a typical human hand is expected to perform daily would not be
possible. Moreover, factors such as lack of adequate sensory feedback within prosthe-
sis are often cited as a cause of prosthesis rejection among amputees [106, 114].

In consideration of feedback measures, there exists numerous modalities as to pro-
vide feedback as to either directly simulate missing sensations or provide a form of
stimulation as to indicate the activity imparted by either the subjects muscle activation
or sensation imparted on the prosthesis.

Vibrotactile feedback is a particularly popular form of feedback. Vibrotactile meth-
ods attempt to use vibration motors mounted on the subjects arm to simulate varying
forms of touch. As vibration motors are well established, researchers have investigated
a wide array of various sensors that may provide larger or smaller spatial feedback or
upper range frequencies depending on the design of the device. Vibrotactile is per-
haps one of the more common approaches as shown in table.2.2. When considering
the viability of vibrotactile, [115] found that when attempting to recognize the area
of stimulation, subjects were able to recognize the location of vibration in 93.9% of
cases during bicep tests and 92.1% with forearm tests. When considering force related
to grasping exercises with a virtual hand subjects were able to recognize the correct
gesture in 85% of cases during bicep stimulation and 82.1% of attempts with forearm
stimulation. The researchers believe that the decrease in accuracy from spatial recog-
nition to grasping pattern recognition is due to the grasping exercise utilizing multiple

motors which while phase shifted also may appear as a similar profile to a different
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grasp profile. The gap between individual and multiple motor recognition appears to
support this. During robotic teleoperation exercises in [116], subjects demonstrated a
110% increase in manipulating an object through a cluttered environment when vibro-
tactile feedback is afforded as opposed to a non-feedback scenario. Towards consider-
ing the forms of activation and intended usage [117] found that LRA based activation
provided good responses when binary activation and low power consumption are desir-
able whereas ERMs proved more suitable to scenarios where the intended application
requires more information and for encoding complex signals. Further investigation
into spatial encoding with various levels of feedback was explored by [118] where
the five subjects were capable of interpreting the sensory information provided by the
ERM vibrators relating to three levels of force per actuator on each finger. When mov-
ing towards potential implementation in a prosthesis [119] were able to demonstrate
through a modified rubber hand illusion experiment that a sense of embodiment could
be achieved through the provision of vibrotactile feedback, supporting the findings of
prior researchers. Furthermore, with promise towards viable usage in a prosthesis,
[120] found that a vibrotactile system was capable of increasing a prosthetic hands
ability to manipulate and recognize various objects across even when visual contact
could not be confirmed.

In an attempt to provide a more immersive form of feedback than vibrotactile meth-
ods, researchers have since shifted to methods that attempt to directly manipulate the
patients skin to evoke sensation. Pressure feedback is one such method that typically
attempts to provide tactile feedback through placing pressure or vertical deformation
of the skin. The hardware design for this method typically involves a servomotor
driven lever that applies pressure through a small button, frequently measuring 12mm
in literature, however some systems also utilize air pressure from direct air pressure
or balloon actuators. Several systems used in pressure feedback are described in ta-
ble.2.3. Antfolk et al. [121] explored the provision of feedback from an artificial hand
to a subjects forearm, it was recognized that the proposed system could provide some
improvement to a prosthesis device. This work was later expanded upon in 2013 [122]
where it was found that both the 5 amputee and 5 healthy participants were able to
accurately discern the location, level of pressure, and combination of grips simulated

through an on screen virtual hand from the pressure feedback. The effect of pres-
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Table 2.2: Summary of research with Vibrotactile feedback

Author Subjects Stimulator

Fontana et al. [115] 30 Three 10mm circular Vibration motors on
the subjects forearm and bicep

Bimbo et al. [116] 12 Four 9mm Vibration motors

Huang et al. [117] 15 Nine linear resonant actuators (LRAs) and
nine Eccentric Rotating Masses (ERM) in
two silicone plates

Nabeel et al. [120] 10mm Vibration motors

D’Alonzo et al. [119]

O N

Two distinct miniature vibrators (310-101
series, Precision Microdrives)
Lietal. [118] 5 Five ERM Vibrators in a glove with one

motor on each finger

sure feedback was investigated by [123] where the implemented device demonstrated
improved grip strength during a two finger grip lifting task.

In order to provide a sense of haptic sensation through touch, the concept of skin
stretch feedback has been proposed. This method attempts to utilise a gripping device
that may rock, move linearly, or rotate according to the anticipated feedback condition.
Due to the stretching behaviors experienced in the skin, it is very possible for this
method to produce fairly distinctive patterns of feedback that are less susceptible to
reduced sensation. One caveat of this feedback method, however, is that usage of this
feedback approach is recommended to only be performed for a period of a couple
of hours in some cases being limited at two hours of usage. A summary of present
skin stretch approaches is formed in table.2.4. Bark et al [124, 125] demonstrated
that skin stretch feedback can assist in the recovery of sensation when implemented
into a prosthesis, however, the researchers highlighted that several hours of training
with the device were necessary to achieve good results. A device posed by [126] was
able to assist in performing blind movements to a higher degree than with no feedback.

Subsequently the device was found to have promise towards assisting in proprioceptive

37



2.4 Hand Rehabilitation and Application

Table 2.3: Summary of research with Pressure feedback

Author Subjects Stimulator

Antfolk et al. [121] 2 Five digital servomotors controlling 15mm
plastic levers that had 12mm diameter
buttons against the skin on the subjects
forearm

Antfolk et al. [122] 10 Single digital servomotor controlling a
15mm plastic lever with 12mm diameter
plastic button

Kim et al. [123] 2 Wearable haptic device that imparts 9N of
maximum pressing force to the subjects

fingertip

feedback, however, the researchers warned that the device should not be used for more
than 2 hours due to negative slipping of the device. The potential for skin stretch
feedback in teleoperation was explored by Chinello et al. [127]. The haptic feedback
approach posed by Chinello et al. was a viable solution for navigation feedback in both
a human guidance and robotic telemanipulation exercise. However, it was recognized
that the performance was less natural to follow than visual stimuli. The researchers
suggested that a combination of utilizing this feedback system to augment visual que
stimuli.

Through provision of squeeze feedback, an elasticated band is moved laterally
along the feedback site providing the sensation of a squeeze or caress. While the
implemented hardware used in literature may deemed this modality as unwieldy in a
prosthesis, there it has been demonstrated that squeeze feedback can provide the sense
of grasping objects of differing weight. An auxiliary element of this feedback method
is that of research into emotional states that may be relayed through the squeezing
sensation, potentially making this viable as a further form of feedback to compliment
other direct control related feedback approaches. The state of the art squeeze feedback
devices are described in table 2.5. Cassini et al. [128] proposed a feedback design

of a workable and wearable haptic device that could provide both pressure and skin
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Table 2.4: Summary of Skin Stretch Feedback research

Author Subjects Stimulator

Bark et al. [124, 125] 10 Two 14mm circular end effectors driven
by ultrasound piezoelectric

Wheeler et al. [126] 15 Two 14mm circular end effectors driven
by ultrasound piezoelectric

Chinello et al. [127] 10 Four independent servomotor driven
cylindrical end effectors

stretch. Grasping information from a robotic hand was shown to be easily understood
and healthy participants and one amputee participant. Through exploring more sen-
sitive touch parameters by [129], a wearable squeeze haptic device could elicit the
sensation of a caress like haptic stimuli in both detection of the stimuli alongside force
and velocity of the stimuli. Damian et al. [130] explored the comparison in squeeze
feedback between regular force feedback against slip feedback. The proposed device
was capable of displaying both normal forces from grasping alongside slip forces in
a fast and silent manner. The participants observed that the normal force feedback
provided a higher quality result than the slip speed feedback.

A fairly novel form of feedback in prosthesis is that of thermal feedback. Typical
hardware designs for this methodology is with peltier elements that may range from
15¢ to 40c in most literature. Unlike other methods of haptic feedback in this review,
the implementation of thermal feedback is seldom used to provide primary senses of
feedback, instead thermal feedback is typically used to provide auxiliary feedback to
interactions with the surrounding environment. The reason for this may likely come
from feedback methods requiring a seemingly instantaneous response time, however,
peltier elements requires a longer period of time to reliably heat or cool to fit the
desired setting. While there exists implementations that attempt to alleviate this issue,
the usage of thermal feedback does not presently appear reliable enough as a unimodal
feedback method yet is included for completeness in table.2.6. Ueda et al. [131],
explored subjects controlling a prosthetic hand through EMG, which upon touching
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Table 2.5: Summary of Squeeze Feedback research

Author Subjects Stimulator

Cassini etal. [128] 7 Clenching upper limb force Feedback
(CUFF)

Bianchi et al. [129] 6 A single piece of rectangular fabric

(60mmx160mm) driven by two rollers
along the forearm, each roller powered by
a HITEC DC Motor.

Damian et al. [130] 10 Single actuator haptic device around the
forearm using a slip belt and force belt

respectively to indicate grasping

an object would trigger thermal feedback from the peltier element. Subjects could
interpret the five sets of applied temperatures with a success rate of 88%, demonstrating
good feedback from interaction however the control scheme used open loop feedback
to provide sensation as opposed to assisting control.

Gallo et al [132] proposed an interestingly novel multimodal implementation of
thermal and pressure feedback. During recognition tests for simulated materials against
physical materials, subjects were able to recognize simulated glass, wood, plastic, and
metal at a similar rate as the physical object. A particularly notable aspect is the
shift from preheated peltier elements to dynamically changing elements. The pres-
sure feedback could be considered an important factor towards ensuring that heat gra-
dients would be more noticeable by the subjects. Nakatani [133] further expanded
on multimodal thermal feedback through the fusion of vibrotactile and thermal feed-
back, subjects claimed to experience a realistic tactile experience of water being poured
onto their finger. An alternative multimodal thermo feedback method was proposed by
[134] through the combined platform of thermal feedback and a haptic thimble demon-
strated good promise for accurate and consistent interaction with virtual surfaces on the
human fingertip.

Often utilizing similar electrodes to that in SEMG based sensing, electrotactile

feedback is a promising modality of providing haptic feedback through the usage of
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Table 2.6: Summary of Research with Thermal Feedback

Author Subjects Stimulator

Ueda et al. [131] 10 Peltier Element

Nakatani et al. [133] 5 able Four Peltier Elements with integrated
bodied vibrotactile unit

Gallo et al [132] 5 able Novel thermotactile display
bodied

Gabardi et al [134]. 3 Two Peltier Cells and integrated haptic

thimble

low-level electrical current impulses on a subjects skin to impart sensations. Unlike
other listed approaches, electrotactile feedback has a major benefit of no mechanical
component warm-up therefore enabling a faster degree of feedback in active use there-
fore being better suited to situations where instantaneous feedback is important, such
as during dynamic grasping commands. Electrotactile feedback has shown promise in
simulating textured surfaces alongside providing a sense of weight and shape to ob-
jects. There does exist caveats to the electrotactile feedback modality such as compli-
cation in present electrotactile implementations is that the system may cause excessive
noise if used with sSEMG systems. Moreover the varying skin impedance’s between
subjects requiring better calibration before use and more importantly that incorrectly
or excessively enabled electrotactile feedback may provide discomfort. However, with
correct calibration the benefits of instantaneous feedback conditions enable a degree
of real time adaptive control that may not be as effective in other feedback conditions.
A series of electrotactile implementations in the state of the art are described in ta-
ble.2.7. In a study conducted by Strbac et al. [135], spatial coding of electrotactile
feedback was was investigated on amputee subjects. All amputee subjects were ca-
pable of accurately recognizing the active electrode pad during stimulation through
each stimulation approach. Franceschi et al. [136] further expanded on spatial coding,
where all subjects of the study were capable of recognizing different patterns drawn
through through electrotactile stimulation, particularly with simple patterns and move-

ment direction. Further studies conducted by Strbac et al. [137] found that amputee
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subjects were capable of exploiting electrotactile feedback to adjust their muscle con-
traction levels to fit a desired level. Feedback assisted learning although became less
important as subjects gradually developed a stable model of prosthesis function. This
could imply that the feedback itself may prove a useful guide for improving training as
a temporary aid. During force grasping tasks, [ 138] found that subjects were capable of
actively exploiting electrotile feedback. However, performances displayed increased
uncertainty when compared to visual feedback due to a limited feedback resolution.
When considering the concept of phantom limbs, [139] found electrotactile feedback
able to evoke phantom finger perception within the subjects of the study suggesting that
targeted electrotactile stimulation can provide sensations of individual finger touch as
feedback from a prosthesis. Through controlling multiple stimulation parameters such
as intensity, frequency, and pulse width, [140] demonstrate it was possible to evoke
distinguishable sensations across the palms of the subjects hands in a relatively real
time manner. The above aspects of electrotactile stimulation to provide a real time
feedback response through both spatial and mixed coding are particularly promising
towards the application of haptic feedback to a prosthesis user.

Cipriani et al. [141] experimented with a vibrotactile feedback scheme that utilized
a single vibrating motor which modulated at different frequencies. Although the effect
of the vibrotractile motor utilized by Cipriani did not appear to provide a noticeable
impact on grasp success rate, user responses to the feedback suggested that the sensa-
tion provided was important. Moreover, the form of feedback provided was recognized
to potentially hold a negative impact on subjects if the implemented control scheme is
either too interactive or complex as too much effort would be required for normal us-
age of the prosthesis therefore suggesting that a control scheme should be distinct yet
simple to reduce cognitive burden.

When considering forming a sense of self,, it has been recognized that users of a tool
or prosthesis may often overestimate the length of their limb or residual limb [142].
Within this, Casper et al. [143] demonstrated that congruent actions with a robotic
hand could promote a sense of self while incongruent actions decreased the sense of
self although also that a form of feedback, even if not anticipated, still provided a sense
of self.

Further to that the sense of self from this closed loop feedback is an important

factor when performing tasks and maintaining a sense of agency [144, 145, 146]. A
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Table 2.7: Summary of Electrotactile Feedback research

Author Subjects

Simulator

Strbac et al. [135] 10

MaxSense with 16 channels using spatial

coding laterally around the forearm

Franceschi et al. [136] 8

MaxSense stimulator using E-skin
electrodes forming a 32 channel system
with spatial coding along forearm in a 4 x

8 matrix

Strbac et al. [137] 9

MaxSense with 16 channels using spatial

coding laterally around the forearm

Dosen et al. [138] 10

MaxSense with 16 channels using spatial
coding laterally around the forearm, only
15 channels used due to the circumference

of some subjects arms being too short.

Chai et al. [139] 2

Transcutaneous Electrical Nerve
Stimulation (TENS) using single
stimulating electrode and reference

electrode on forearm

Germany et al. [140] 5

Single channel electrotactile stimulation

large matter concerning this closed loop feedback is that of congruent sense of action

and feedback where the visual stimuli must be in some form visibly linked in short

proximity to the direct feedback. In literature, the manifestation of sense of self can be

described as the sense of agency. Typically sense of agency alone refers to a persons

sense of control over their body and its actions within the world. This concept of

sense of agency is further separated into that of body agency and external agency.

Body agency typically defining a persons cognitive recognition of initiating and being

in control of their bodies voluntary movements. External agency, typically refers to

that of how the world outside of that persons body interacts with their body. This

relationship between a persons own sense of agency against that of its impact externally

could be considered a foundation of control [147].
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Wen [148] described the behavior of body agency as opposed to external agency
as two separate states of our cognitive sense of agency towards action and sensation.
Within the sense of body agency it could be considered as the function of feeling a
natural sense of connectivity to the action and the feedback on themselves whereas
external agency may be considered as the function of performing an activity and expe-
riencing an external event forming a reaction to that activity. The relationship between
action and reaction in temporal terms saw a highly detrimental relationship during
long-delayed sensory feedback in body agency whereas external agency was seen to
be far more flexible to delayed feedback.

Interestingly, Huynh et al. [149] demonstrated that a sense of self and control over
a prosthesis could be experienced in a situation where there was a significant delay
between effort being exerted and any action or feedback provided that both the me-
chanical actions of the prosthesis and the tactile sensory feedback were synchronised.
Although, the results demonstrated may be incongruent with dynamic prosthesis con-
trol due to the anticipated motor action delay in larger motions decreasing a sense of
agency and self. Placing the findings of Huynh in context of that of Wen then there
does support a notion towards the relationship formed from control and feedback stim-
uli. Wen considered that the susceptibility to temporal delay on body agency may be
directly linked to a dominant comparison mechanism that expects seemingly immedi-
ate results whereas external agency may be open to the body to interpret the delay and
adapt accordingly. Keetles et al. [150] similarly saw the adaption to external agency
during a finger tapping agency with video delay potentially indicating that such delay
may be adaptable. However, as discussed in relation to shortly delayed feedback, albeit
visually, there does exist a situation where the bridge between body agency and exter-
nal agency which may form an uncanny valley of agency that only serves to decrease
sense of agency and subsequently sense of self [151, 152]. The approach in providing
feedback to prosthesis should consider the aspect of whether the feedback is to affect
body agency where it must be below the typical 300ms window or towards targeting
external agency where there must be a distinct relationship between human activity
and feedback.

When considering feedback in terms of usability, the present literature would sug-

gest that an ideal feedback scheme would have to be easily discernible, a simplistic
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implementation, and feedback that has either minimal delay or a reliably delayed re-
sponse. While the methods listed for vibrotactile feedback in table 2.2 can provide a
simple implementation and may hold minimal delay, there exists issues as to how eas-
ily a user may distinguish the signals in both single site and spatial encoding schemes.
Thermal feedback methods described in table 2.6 were shown to be effective at impart-
ing detailed information to a user. Unfortunately, thermal feedback implementations
tend to experience bulky implementations that make wearable devices difficult and
have difficulty in providing dynamic feedback without non-uniform delays in feedback
provision. Pressure based feedback approaches descried in table 2.3 were promising
with regards to ease of implementation, minimal delay, and can assist in providing dis-
cernible feedback. Although pressure based feedback approaches typically provided
good feedback for multiple gestures, the feedback patterns were typically only used to
impart a sense of light or strong force reliably. While pressure based approaches may
hold promise in a direct control prosthesis, there may exist issues in providing reliable
feedback in a proportional control based prosthesis. An alternative to pressure feed-
back was that of skin stretch, which appealed to providing a good sense of proportional
control while in a similar form factor and with a reasonable response time. It is to be
considered, however, that skin stretch methods may not be currently viable for clinical
or long term use as much of the research discussed in table 2.4 warned against contin-
uous usage for more than two hours. A promising methodology for provision of low
latency feedback in a discernible fashion is that of squeeze feedback, covered in table
2.5. Squeeze feedback promises variable feedback to a user in a single location, al-
though the effectiveness with spatial coding is something that appears less observed in
literature. A further aspect of squeeze feedback is that present implementations share a
similar challenge to other mechanical feedback approaches where the system used may
prove to be unwieldy during daily use outside of laboratory environments. A method
that does demonstrate a reasonable compromise in terms of implementation, usability,
and latency is that of electrotactile feedback as described in table 2.7. The main as-
pects of consideration with electrotactile feedback is that of the methods viability with
mixed and spatial encoding during dynamic contractions. The profile of electrotac-
tile devices also indicate that they may be easily used without proving cumbersome or

uncomfortable during daily or long term use.
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Therefore an ideal prosthesis, in theory, should be expected to provide full closed-
loop sensory feedback to the user which targets a clear boundary of body agency with
instantaneous feedback for natural sensation or delayed focus external agency where
sensory feeling may be slowly adjusted relating to the feedback provided.

It was highlighted that while classification results with different sensing modal-
ities may be promising, the metrics used may be limiting. To improve on this, the
status of online performance should intend to focus on task based performances that
mirror real life use. This may be performed through manipulation of objects, such
as in the SHAP. Virtual environments enable observation of tasks and recording task
performances. Through a virtual environment it is possible to relay clear instructions,
alongside demonstrate extra information to the patient. The motion Test enables the
ability to simulate prosthesis control prior to any fitting although only provides sim-
ple feedback. The TAC test provides a good representation of precision actions that
can be performed by a patient with regards to proportional control of hand motions or
finger movements. Larger movement or general hand motions can be represented well
in a virtual environment through modified forms of the Fittz Law Test, where direct
feedback based on a multidimensional form of object or pointer can represent a direct
relationship to either force or predicted hand motion activity.

Although virtual environments can present visible feedback to users in a variety of
novel manners, both virtual environments and physical environments are still unable
to provide direct closed-loop feedback to patients as many commercial prosthesis only
sense. The subsequent issue with open-loop control schemes is that patient reassur-
ance to their actions under proportional control or hand gesture performance is only
provided by visual stimuli which may only form under undesirable conditions. As it is
further highlighted that prosthesis rejection can be affiliated to a lack of feedback from
prosthesis, it should be investigated as to how closing this loop through physical feed-
back may improve the rehabilitative process. While vibrotactile feedback is a popular
method, other methods such as electrotactile feedback are growing in popularity. The
issue of feedback separability and subsequently the range of potential feedback can
be expanded effectively through implementing spatial and mixed coding schemes for

closed loop control.

46



2.5 Challenges & Directions

2.5 Challenges & Directions

A recurring trend among numerous publications is that there exists an increasing gap
between academic research and clinical use. This gap at present only continues to
widen while prosthesis rejection remains a pressing issue. Frequently prosthesis users
may choose an aesthetically pleasing prosthesis over functionality or in the cases when
functionality is desirable then simple direct control systems may be chosen. Ideally a
prosthesis should enable intuitive and natural control, which is robust to long term and
dynamic use, providing real time performance for low computational complexity and
low user burden during use. Other traits that would be desirable would be a reduced
complexity of implemented hardware design while still detecting a good degree of
muscle activity, easier user training, and closed loop feedback that could better facil-
itate the rehabilitative training process and to better inform the user when interacting
with their environment.

Although numerous efforts have been undertaken as to implement these ideal prop-
erties in recent years, there still remains numerous challenges and limitations along the

road to developing an ideal prosthesis implementation.

2.5.1 Inherent Sensing Challenges Posed During Long Term Use

Although many researchers have demonstrated the capability of SEMG based sensing
to produce high quality results during offline performances and within short labora-
tory sessions, these performances still experience challenges when extending to longer
period use and inter day use. Typical pattern recognition approaches tend to focus on
the assumption that the produced SEMG signals will remain either consistent during
use. However, clinical and daily implementations of prosthesis typically differ greatly
in the range of physiological variables experienced and environmental variables which
produce inconsistent signals which are difficult to predict within a laboratory environ-
ment. As a consequence of this inherent instability and variation across daily use of
a prosthesis many pattern recognition based approaches would require retraining or
re-calibration that imposes heavy burden upon the user. Although it may be possi-

ble to prepare for individual variables, such as electrode shift, typically inter day use
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of a powered prosthesis would encounter a combination of impeding factors that fre-
quently will be worsened by aspects that introduce muscle produced crosstalk which

poses increased randomness in a given system.

2.5.2 Limitations of Single Modality Sensing

The current state of the art shows SEMG based sensing to be very promising in terms
of accuracy within laboratory environments and adequate for simple prosthesis con-
trol. However, within clinical environments there exists challenges towards interpret-
ing muscle activity over long periods of time due to factors such as fatigue producing
crosstalk from neighboring muscle groups. As SEMG based sensing attempts to sense
the manifestation of electrical energy as it transmits across the upper layers of fibres
within the human body there exists the inherent bias of SEMG based sensing towards
surface level muscle activity. While it is very possible to accurately infer motion intent
from surface level EMG signals there exists numerous dexterous finger movements
that are closer related to deep muscle activity. As a result of this bias towards surface
level muscle activity the ability to recognize dexterous hand motions may become lim-
ited, especially during long term use where physiological changes within the signal
may contribute to unstable SEMG based detection whereas physical muscle activity

may appear more constant for other methodologies.

2.5.3 Haptics - Closing the Loop

As discussed, an ideal prosthesis can enable not just intuitive control and interaction
within an environment but to further enable an accurate sense of self with the pros-
thesis and during interaction. Through poor control schemes and lack of adequate
feedback during use the issue of prosthesis rejection becomes more prominent. Unfor-
tunately, although there exists multiple viable methodologies for provision of haptic
feedback these methodologies are seldom implemented within active prosthesis con-
trol schemes. While novel haptic feedback approaches such as thermal or stretch based
feedback can inspire realistic sensations of touch they still maintain caveats such as
limited safe usage during long term use and more importantly present implementa-
tions of these feedback methods are bulky and cumbersome therefore limiting their

viability within a upper limb prosthesis. Furthermore, it has been recognized that a
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feedback approach must be capable of seemingly providing instantaneous feedback
whether based on prosthesis activation of whether from sensed interaction via force
sensors. Vibrotactile feedback proposes promising compact solutions for implemen-
tation within a prosthesis yet the ramp up time of this methodology may cause false
positives or confusing feedback during dynamic use. Electrotactile feedback appears
as a promising route of feedback due to instantaneous response with no ramp up time
and present implementations can be made in a non bulky, wearable, manner. To date,
while many promising haptic feedback solutions to enable better prosthesis control

have been proposed there still exists limited research into clinical use.

2.5.4 Burden of Rehabilitation and User Training

The concept of adequate rehabilitative results are distinctly varied based on the in-
tended outcomes. However, there exists the complication of defining a general ap-
proach to an ideal outcome. While exhaustive rehabilitation and training may provide
desirable results the degree of repetitive and cumbersome processes involved make
such exhaustive practices undesirable to users especially given the potential burden
imparted on them. It is within this challenge of recognizing that user training can
promote the formation of consistent SEMG patterns in users while also balancing the
extent and implementation of user training. Many laboratory environment implemen-
tations of SEMG based sensing focus on training the user for consistent single strength
SEMG patterns whereas this challenge is further complicated when considering that

daily needs of a user may require dynamic contraction strengths.

2.6 Summary

This chapter systematically reviewed aspects of sensing modalities towards prosthesis
control in terms of variations in muscle activity and hand motion recognition. Fur-
thermore this chapter attempts to provide an in depth review of the state of the art and
existing challenges in hand rehabilitation with regards to provision of user training,
enabling sense of self, and haptic feedback.

Firstly, the current state of the art in non invasive modalities for muscle activity

sensing are introduced alongside relative aspects of their implementation in terms of
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hardware and processing. It is highlighted that SEMG based sensing exists as the
commercially and clinically accepted form of active control in prosthesis and mus-
cle activity detection in rehabilitative environments. Although the implementation of
sEMG based sensing is widely popular and frequently accepted in academia, several
caveats of SEMG based control towards long term use in current implementations are
highlighted. A typical challenge within SEMG that is recognized is the limitation of
detecting deep muscle activity reliably especially during long term use. Alternative
methodologies towards sensing such as ultrasound, NIRS, and FSR are explored and
evaluated for their unimodal qualities. Considering the unimodal qualities of each
sensing modality a further review is made into fused sensing modalities.

Secondly, The integration of alternative modalities to SEMG in sensing is shown to
provide great promise in exploiting the widely recognized success of SEMG sensing
in sensing surface activity while further enhancing the quality of hand motion recog-
nition through implementing modalities such as those described for their unimodal
implementations and further modalities such as accelerometers, force sensors, and
datagloves. Fused sensing modalities are found to provide many novel expansions on
typical unimodal approaches, particularly in cases where each implemented modality
is particularly adept at observing aspects of muscle activity which are noted as being
lacking in the paired sensing modality.

Thirdly, a thorough review of haptic feedback to enable closed loop feedback and
a sense of touch are explored. the importance of enabling haptic feedback to a user
is highly stressed in aspects of quality of life and the value of enabling a sense of self
from a prosthesis is discussed. Current trends of haptic feedback systems are explored
in depth for their relative merits. It is shown that there exists novel forms of tactile
feedback such as stretch, thermal, and pressure feedback that can provide seemingly
realistic sense of touch for their individual application yet are limited from aspects of
speed of response within thermal feedback, the complications of potential injury, dis-
comfort, and skin damage from stretch based feedback, and hardware limitations that
exist with regards to implementation within an upper limb powered prosthesis. Both
vibrotactile and electrotactile feedback approaches are found to provide great promise
enabling seemingly accurate senses of touch and in proportional control schemes. It
is further explored as to how each feedback form may be adequately utilized in such a

way as to provide a relative sense of agency to a user.
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Finally, The current methodologies utilized in rehabilitation are highlighted and
their respective qualities towards achieving desirable rehabilitative outcomes and the
burden of training involved are compared. The process involved with each rehabilita-
tive structure can be seen as complementary or within stages of each other such that
certain rehabilitative methodologies such as the SHAP test are better suited to later
rehabilitation sessions. The issue of physical rehabilitative exercises is explored and
the feasibility of virtual systems to assist the rehabilitative process is examined.

Based on the reviewed progress and limitations, potential future research directions
in sensing modalities and their place within rehabilitation are as follows. Current ap-
proaches towards SEMG based sensing provide highly promising results within labora-
tory environments yet are limited when placed within clinical environments and during
long term use. It can be assumed that SEMG based hand motion recognition accuracy
degrades as a function of time due to numerous physiological changes within the signal
which could appear random due to their causes being potentially due to arm position,
physiological changes, and environmental changes. Therefore it is important to gain
a deeper understanding into the changing state of the SEMG signal in an attempt to
better define whether there is a predictable element of these changes and furthermore
if there exists a method to better exploit any expected form of change in the signal.
Furthermore, it is important to question if the current limitations of SEMG sensing
may have reached a form of bottleneck due to the limitations of current SEMG sensing
experiencing bias towards surface level muscle groups and whether the addition of non
invasive methods that can better view deep muscle activity could assist in overcom-
ing this challenge. Finally, it is recognized that current prosthesis control schemes are
limited due to a lack of feedback and while there exists numerous potential feedback
approaches the extent of implementation is frequently limited to laboratory environ-
ment experiments to verify sense of touch. Furthermore, the rehabilitative process is
found to be one that must be simplified and further enhanced as to ease the process
of learning and reduce burden on the patient. Therefore it should be investigated as
to the quality of providing haptic feedback within fine control prosthesis challenges
and furthermore if the addition of haptic feedback can improve the quality of existing
rehabilitative approaches.

It can can therefore be considered that existing pattern recognition methods, while

successful within a laboratory environment, are lacking in providing robust long term
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use for prosthesis users. A first aspect is that typical experiments for long term sEMG
based sensing only incorporate one to two sets from each day [96, 4]. A deeper in-
vestigation into the influence of sSEMG data from collection time in a day would be
required to verify any influence on interday classification accuracy.

Next, the bottleneck challenge of SEMG based sensing on prosthesis control and
subsequent research into fused modality approaches would suggest that a mixed modal-
ity approach may be most viable for long term use. Ultrasound based approaches cur-
rently enjoy high degrees of classification accuracy against both SEMG and other ap-
proaches for simple hand gestures and proportional control, making ultrasound a viable
additional modality. A challenge with ultrasound, however, is that of seldom research
into feature extraction of A-mode ultrasound signal. Therefore a pilot investigation
would be required to determine which features would be most robust for A-mode ul-
trasound and subsequently an investigation to A-mode ultrasound with SEMG sensing
for larger arm gestures than previously used in literature.

Thirdly, the lack of feedback in prosthesis control is considered an issue during
active daily living for a prosthesis user. Furthermore, the present lack of feedback and
rehabilitative processes can be considered an aspect towards lost patient motivation
and subsequently prosthesis rejection. Electrotactile feedback, as shown in the above
review, promises to be adaptive and viable for daily use. Secondly, virtual environ-
ments have shown themselves to be adaptive and engaging during the rehabilitative
process. Through combination of a virtual environment and electrotactile feedback, it
may be possible to establish an environment that could give a user precise control over
voluntary contractions with lower error and in a shorter training period than without
virtual or haptic feedback.

In this thesis, inherent sensing challenges posed during long term use of SEMG
based sensing is explored and training strategies to exploit the temporal changes within
sEMG signals are explored respectively in chapter 3. Due to a perceived bottleneck
within the current state of clinical implementation of SEMG sensing, and to overcome
the limitations of single modality sensing, a multimodal sensor fusion approach is ex-
plored in Chapter 4. Firstly the viability of ultrasound based sensing for hand motion
recognition with regards to utilizing SEMG styled feature extraction and subsequently
the robustness of ultrasound sensing to probe shift is examined. Subsequently, a ul-

trasound and SEMG sensor fusion approach is proposed for hand motion recognition

52



2.6 Summary

during large movements. Finally, the challenge of closing the loop in feedback and
overcoming the burden of rehabilitation and user training recognizing is posed in chap-
ter 5. Through identifying that rehabilitative approaches and prosthesis control expe-
rience challenges due to cognitive burden on the user and lack of adequate feedback,
Chapter 5 introduces a Virtual reality rehabilitative system that utilizes both virtual
and electrotactile feedback within a clinical styled environment that uses fine control
grasping exercises of a virtual object. The proposed system is explored for potential to

both better guide the user and decrease the burden of the rehabilitative process.
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Chapter 3

Training Strategies for Long-term
SsEMG Based Hand Motion
Recognition

Although feature selection is considered pivotal in providing desirable accuracy with
even naive classifiers, transient changes in the signal itself can often render a pattern
recognition system unusable. One of the more interesting transient changes in SEMG
signal is that of the effect of time passing. While it is possible to directly observe the
immediate effects of transient changes such as electrode shift, fatigue, changes in skin
impedance, etc. The impact these changes across time on a persons SEMG signals is
one that is harder to observe and subsequently one that is still not fully understood [4].
In some manners, the impact of time could be considered as the summation of transient
changes across any given period.

Therefore, this chapter explores the changing nature of SEMG signals during intra-
day use and attempt to isolate elements of any potential changes in the SEMG signal
to promote training strategies to improve long term inter day use. Firstly this chapter
shall cover a brief background on the challenge of SEMG sensing during long term use
followed by the experimental setup and design. The methods of data representation
to infer an understanding of changing SEMG signals during intraday use will be de-
scribed. The results of the intraday SEMG inspection will then be devised into training
strategies that may be applied during interday SEMG hand motion recognition. The

results of interday hand motion recognition will be described. Finally, the conclusions
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of the findings of this chapter will be presented alongside the contributions to sSEMG

sensing for long term use.

3.1 Introduction

Surface Electromyography (sSEMG) is the method of analysing the electrical impulses
from various muscles within the human body. Through pattern recognition, a machine
may be trained to both understand and predict motions from muscle activations. Al-
though, in a laboratory setting, results are promising, clinical success of pattern recog-
nition based prosthesis is still limited. In academia, there exists increasingly promis-
ing methods for recognition of motion intent, with motion recognition accuracy rates
commonly reaching above 90%. However, much of the academic research focuses on
training with offline datasets, whilst online classification results are not as satisfac-
tory. There are several potential causes for poor accuracy during online classification
such as: skin-electrode impedance [153], electrode displacement and shift [154], and
fatigue [87]. Although each of the potential causes can be tackled individually, this
chapter will attempt to explore a training strategies to mitigate the cumulative impact

of these during daily use and subsequently through activities of daily living.

3.2 Background of sEMG in Long Term Hand Reha-
bilitation

Across a given period of time, classification error can be expected to increase. Unfor-
tunately, as stated by Amsuss [4], there still needs to be a better understanding of how
this change manifests and the long-term dependence on classification accuracy. This
challenge has pushed researchers to attempt to quantify the shift in SEMG data and
classification error across time [155]. Kaufmann [96] compared how classification ac-
curacy deteriorated when training a classifier with early data sets, recent datasets, and
gradually updated datasets. It was suggested that there exist some variable components
within SEMG signals, based on the deteriorating accuracy. If it can be assumed that

there exists variable components of the SEMG signal, there exists potential to construct
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a dataset that can reasonably predict this change, whilst remaining computationally ef-
ficient. Research into long term use typically focuses on sequential day degradation
[96] or sessions with a period of time between [97]. it can be considered from this that
the current academic focus for long term use may exist within that of a two weeks to a
month.

All of these traits are natural during daily use of a prosthesis, and therefore likely
to cause classification failures during long periods of usage. Through recalibration, the
effective usage of a prosthesis can be extended. The main methods for recalibration is
through supervised means and unsupervised means. Supervised recalibration requires
the prosthesis user to manually decide if the prosthesis is not performing optimally,
and to collect a new training dataset for the device. The new set of training data will
either be appended to the existing data or shall replace the previous training data. This
retraining has often been done through screen guided training [156] through the usage
of on screen text / image prompts or through virtual prosthesis controlled by either the
system or the subject. A prosthesis guided training method was proposed by Chicone
et al [157], upon recalibration, the prosthesis would perform a series of gestures for
the user to mimic. It was found that the prosthesis guided approach can both provide
better training samples and reduced the need for any additional devices to the pros-
thesis. Unsupervised methods, however, require no conscious input on the prosthesis
users behalf. Adaptive algorithms are used to regularly update the existing training
data based on different adaptive strategies. There is much research on the adaptive
techniques such as [158, 159, 160]. For example, Sensinger et al [161], noted that un-
supervised methods that rely on high confidence of classification could provide usable
rates of recognition accuracy, yet could suffer over-training over long periods of time.
It was further found that adaptive methods based on low confidence of classification
could decrease over training but were not reliable when unsupervised.

Although Adaptive methods are can improve the overall time between conscious
calibration, and may subsequently provide higher degrees of long term motion recog-
nition accuracy, the data selection schemes are not fully applicable for clinical use.
There are two general problems must be addressed with selecting a training scheme.
Firstly, in schemes that directly modify the training set for retraining, the overall size
of the training dataset should be minimal as to avoid over-training and to reduce the

computation time during training. Secondly, that concept drift within SEMG signals is
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3.2 Background of SEMG in Long Term Hand Rehabilitation

not fully understand and therefore difficult to adequately model the change over time,
or to capture a training data set that is representative of the range of gestures. Generally
the selection of original data could be more important for initial use, largely due to the
variable nature of SEMG signals throughout a day.

The major factors and manifestations of changing sEMG signal over time can be

considered under the following categories.

3.2.1 Fatigue

During non fatigued contractions a targeted muscle should be capable of providing
necessary activation to perform a grasp based on the localized MU’s. As the muscle
experiences increasing degrees of fatigue, the capability of local MU’s will gradually
decrease and it will need to be supplemented by neighboring MU’s. The shift to neigh-
boring MU’s and muscles to assist in facilitating muscle activation will therefore create
MUAP chains that causes minor temporal delay following transmission through the
muscle fibres alongside decreased amplitude and potentially different signal patterns
to those originally anticipated.

In pattern recognition based systems, small changes to the sensed signals can lead
to complete loss of detection particularly in models that are trained with a large volume
of relatively similar motions and moreover as the spatial changes in muscle activity
may reduce the visibility of the detected signal in the target sensor location alongside

noise in non target sensor locations for that particular gesture.

3.2.2 Electrode Shift

Electrode shift is a prominent issue when considering long term use, and may even
manifest during short term use when aspects such as large arm movements or clothing
interferes with the sensor location[162]. Typically, electrode shift manifests with dry
electrodes whereas wet electrodes typically lose sensing. Some adaptive systems may
be capable of recognising gradual shift, as with fatigue, the noise or loss of targeted
muscle detection may cause a trained recognition model to no longer be usable. Al-
though electrode shift may be problematic, it is largely to be expected during long term
dry electrode use. Hardware aspects of sensor arrangement may assist in decreasing

the risk of electrode shift such as how the sensors within a prosthesis are fitted or if an
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3.2 Background of SEMG in Long Term Hand Rehabilitation

armband based electrode setup is used then elasticated bands that provide a degree of
corrective flex may improve long term robustness to shift [163].

3.2.3 Concept Drift

While fatigue and electrode shift manifest as physical sensing problems caused by
physiological and hardware based changes in the signal and sensing equipment, there
also exists the psychological aspects of concept drift such as mental fatigue [164].
Concept drift can be defined as the gradual mental shift from how a particular motion
was originally performed in terms of which specific muscle groupings were activated
and the degree of effort exerted during a particular motion. While it has been identified
that the exact recruitment potential of a person may not decrease, their imparted effort
and attempts to perform an action would be modified [165, 166]. Ideally the rehabil-
itative approach would train a user to be able to produce consistent SEMG patterns
throughout daily use yet it is anticipated that a degree of change will manifest whether
through distraction or through mental fatigue instead of physical fatigue. As the factors
related to this form of concept drift are harder to predict than physical fatigue or elec-
trode shift then producing algorithms to anticipate this form of random shift of SEMG
signal becomes more complex [167].

Therefore, considering the above described traits of SEMG signals that may man-
ifest during daily use, it is important to consider that there exists multiple sources of
randomness in SEMG signals during daily use. When considering the change in SEMG
signal there may not exist a single approach to adapt to each form of transient changes.
However, there may be potential to exploit the invariant traits of the produced sSEMG
signals, which manifest alongside the variable aspects.

In this study, an investigation into methods of data selection to improve the long
term inter-day stability of a trained dataset shall be conducted. The following sections
shall cover data collection in section 3.3.2 , data selection in section 3.4.6, and pro-
cessing in section 3.4.1 , before a discussion on the findings of this research, ending in

a conclusion and suggestions towards future work.
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3.3 System and Experiments

3.3.1 System for Long Term Data Capture

To collect SEMG data, an 16 channel Elonxi SEMG acquisition device (Elonxi Ltd,
UK) was used with 12 bits ADC resolution and 1Khz sampling frequency. The range
for collected SEMG data was 10Hz to 500 Hz through a band pass filter in the hard-
ware, S0Hz powerline noise was removed with a notch filter in the hardware and a
comb filter in the software. The sSEMG data was transferred from the device via USB,
and processed on a Windows based PC. More details may be found in the previous
works[168, 169] .

The devices structure is that of a sleeve with 18 embedded electrodes, consisting
of 16 channels and two reference electrodes. The exact configuration of electrodes
within the sleeve are arranged as to improve the signal repeatability [170]. A second
elasticated sleeve was worn over the main electrode sleeve to ensure a tight fit on all
electrodes. The sleeve was worn on the subjects dominant arm, or preferred arm in
cases of Cross-dominance. To ensure each day saw the same fitting, a marker was
used to denote the location of both bias electrodes on the subjects arm, in-line with the
top and bottom of the sleeve, as shown in Fig.3.1. The degree of shift experienced on
the sleeve was updated by new markings before each instance of data collection. The
benefit of the dual sleeve arrangement in this device is that it maintains both pressure
and contact upon a larger section of the arm. Through the increased surface contact, the
device is subsequently less likely to shift through and dramatic degree during wearing.
During the course of this study it was found that once the sleeve had begun to imprint
upon the skin, that any shift would gradually re-align with the original rotation on the
arm. The flexible design of the elasticated fabric further meant that relative positions
of the electrodes to the arm are very stable.

Issues such as sweating may be a factor in warm climates, or if the wearer is per-
forming much physical activity, however, neither of these issues were encountered
during the data collection. In a situation where the device was exposed to cold cli-
mates the wearer would allow the device to return to the ambient room temperature
before data collection. The potential reasoning for this is that colder climates lead to a

drier skin surface and subsequently high skin-electrode impedance.
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For this research, a single male participant was used. While additional participants
were considered, the high frequency nature of data collection across the study period
made it less feasible to expand the subject pool. Furthermore, it was considered that
the lower quantity of participants would be offset due by the quantity of data collected
offsetting the potential for outlier datasets. Experiments were conducted in accordance
with local ethics guidelines, ethics reference number: TECH2019-PB-03.

3.3.2 Dataset Representation

Data collection began at 10:00 for each day and ended at 18:00, for a period of 5 days
over 3 weeks. A 30 minute window was granted between data collection providing
a total of 16 sessions per day. the 30 minute window is designed to keep constant
records of SEMG data without placing unnatural fatigue on the subject. SEMG capture
was performed by the subject sitting in front of a computer monitor, with elbows in
a fixed position. Thirteen separate hand gestures, as shown in Fig.3.2, were shown
to the subject with 5 seconds to transfer between gestures and 5 seconds of holding a
gesture. The series of gestures were presented to the subject in a pseudo-random order,
as to prevent the subject learning the order of gestures and transferring to a new gesture
too early. For this research, the 13 gestures selected were chosen due to the majority
being common hand gestures within research and daily life. The addition of complex
gestures was done in order to extend the focus of this research on gestures that are to

be anticipated during daily life.

3.4 Methodology

3.4.1 Signal Pre-processing

Signal collection was performed through custom software, and processed in Matlab.
As stated in the data collection section, the custom software would strip any remaining
powerline noise and output the SEMG signal with minimal interference. Once the raw
signal had been stripped of any interference and prepared for processing, the output

sEMG signal data was stripped of the transient signal between gestures. This is to say,
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Figure 3.1: Elonxi SEMG acquisition device (Elonxi Ltd, UK) with muscle mapping
depicted in 2d space
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Figure 3.2: Training Gestures
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the 5 second window of transition between each gesture was removed as to ensure each

set of data is fully representative of the class.

3.4.2 Selected Features

The feature extraction was performed in a 250ms window, with a 50ms sliding window.
The window size was chosen at 250ms in order to be under the 300ms delay needed
to provide seemingly instantaneous feedback during use. The chosen features for this
study were a combination of Auto-Regressive (AR) to the fourth order and root Mean
Square (RMS), as the combination of these features had previously been shown to be
both strong features and robust for long term classification [171, 172]. The relations
of sSEMG features to that of classifiers was explored by Adewuyi et al [173], where
it was considered that the features themselves are equally influential under any given

classifier, with the muscle grouping for the chosen features holding stronger influence.

3.4.3 Algorithms Used

For classification, Linear Discriminant Analysis (LDA) was used with a bayes-optimal
classifier. Although Support Vector Machines (SVM) and Multi-Layer Perceptrons
(MLP) are good algorithms for classification, LDA has previously been shown to be
more robust during long term classification, although having lower intra session recog-
nition accuracy. Both MLP and SVM performed well during intra session recognition
yet decayed rapidly during inter session motion recognition [96]. It is due to this ro-
bustness that LDA was considered a viable method to evaluate the proposed training

strategies in this study to verify the training strategies.

3.4.4 Defining SEMG Signal Freshness

The concept of data freshness is that of finding the minimum amount of time for a
single given dataset to no longer be considered reliable for adequate operation of a
pattern recognition based control scheme and subsequently the rate of decay.

As stated in the previous sections, the choice of features and classifiers to be

used to define data freshness are not focused in to classification accuracy, but in the
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largest set of time points such that the classification accuracy can be considered us-
able. This model may provide varying performance with different features or classifier
approaches yet will indicate a generalised period of time to provide guidance in how

far to space out data collection, whether for similar data or time decayed data.

3.4.5 Anticipated Life of a Trained Model

In this research, the defined lifespan of a given trained model is when the hand motion
recognition provided against a test dataset falls below 70%.

Through repeated training of a classifier with single datasets during a day and test-
ing against individual datasets from the rest of the day we are able to map the shift in
motion classification accuracy across a given period and subsequently acquire a form

of median accuracy loss during daily use.

3.4.6 Training Strategies

To compare the relative performance of each method of selecting data, several data
selection strategies were evaluated using a single day as training data and alternative
days as testing days. These strategies were firstly applied without any testing day data
and secondly with one of the first recorded sessions from the testing day. To compare
the efficiency of the selection strategies, two control tests shall be used. It was found
by Jain et al [174] that the performance of a single trained classifier can degrade to a
recognition accuracy of 78.4% with a standard deviation of 2.33%, therefore the first
control case shall be the performance a classifier trained from one of the first 3 sessions
of the testing day. The second control case shall be a classifier trained with one of the
first sessions of a non-test day, to monitor the decay of using minimal prior data.

The selection strategies used are as follows:

1. The first session of a non-test day
2. The first 2 sessions of a non-test day
3. The first 3 sessions of a non-test day

4. The first 4 sessions of a non-test day
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3.4 Methodology

5. All 16 sessions of a non-test day
6. 3 sessions, randomly selected from 3 points of a non-test day
7. 4 sessions, randomly selected from 4 space points of a non-test day

8. A single session of a test day

The first 3 selection strategies are to observe the impact of adding sequential ses-
sions into the training dataset. The second and third case also provide a direct com-
parison of sequential data selection, as opposed to representative data selection. The
usage of an entire day (16 sessions) is to observe the effect of using a larger dataset to
represent an entire day of SEMG signals.

The final non control cases are both within the proposed method of representative
data selection. In this method, a given day is separated into descriptive periods such as:
morning, middle day, and evening. The intention of this method is to provide a good
representation of the shifts in the SEMG signal during any given day whilst using a
minimal quantity of recording points in aforementioned day. An example of selection

of random data points for training data is demonstrated in Fig.3.3.

3.4.6.1 Evaluation

As this study focuses on the general performance of the data selection strategies, the
temporal change that causes a reduction in classification accuracy along consecutive
days has not been recorded. Therefore, each day in the dataset is considered as a
unique training day against all other days which are considered as testing days, without
considering for their appearance in sequence. Leave-p-out validation was then applied
where p is the remaining datasets in each test day, dependant on whether an initial
testing day data was also used in training set. This process was then reapplied to each
non training days data exhaustively. The decision for this exhaustive testing scheme
over alternative cross-validation approaches was taken to best mirror previous research

into long term stability of SEMG control schemes [4, 96].
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100

Accuracy (%)

1 2 3 4 5 o6 7 8
Test Case:

Figure 3.4: Recognition accuracy of strategies trained with non test day data only.
1: First session only 2: First 2 sessions, 3: First 3 sessions, 4: First 4 sessions. 5:
Entire Day (16 Sessions), 6: 3 Spread out sessions, 7: 4 Spread out sessions, 8: Single

Session from testing day only

3.5 Results

Both Fig.3.4 and Fig.3.5 show that the averaged interday performance of the four data
selection methods, all are shown with and without a testing day session whereas Ta-
ble.3.1 shows the complete list of accuracy and the standard deviation of each method.
An immediately apparent state of both charts is that apparent state where increasing the
initial dataset will provide a relative boost in accuracy, as recognized by [96]. A fur-
ther aspect is that of the spaced training strategies achieving a comparative recognition
accuracy without using testing day data in fig.3.4 and providing the highest recogni-
tion accuracy when testing day data is included in fig. 3.5. As demonstrated by other
authors [175], the interday accuracy of a single training set is very poor at 61.9%, al-
though this level of accuracy is very similar to that of the intraday accuracy, as an early
morning session alone is unable to fully represent transient changes within the SEMG

signal.
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Figure 3.5: Recognition accuracy of strategies trained with test day data. 1: First
session only 2: First 2 sessions, 3: First 3 sessions, 4: First 4 sessions. 5: Entire Day
(16 Sessions), 6: 3 Spread out sessions, 7: 4 Spread out sessions, 8: Single Session

from testing day only

Table 3.1: Results of using sessions from non-test day and first session of testing day

as training data against the entirety of the testing day

Classification Results Without Testing Day Data  With Testing Day Data

Training Day Data: Accuracy(%) Accuracy(%):
Testing Day data only - 77.8£8.6
Session 1 61.9+8.0 81.2+7.6
Session 1-2 68.3+7.9 83.3£7.3
Sessions 1-3 71.7+£7.8 84.2+6.7
Sessions 1-4 75.0+7.8 84.8+6.5
Entire day of 16 sessions 81.24+7.0 86.0+£5.7
3 Spaced Sessions 76.0£7.6 86.9+5.7
4 Spaced sessions 76.9+7.4 87.0£5.5
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The other selection methods managed to achieve constantly acceptable accuracy
rates of 85% with 2% standard deviation accuracy on interday testing sets. Showing
that a single days worth of data is capable of providing a good representation of a
persons SEMG signals. The highest result was found with using the proposed methods
of the selecting defining periods of each training day with a single early session of
the testing day with an accuracy of 86.9% and 87.0%, for both the 3 and 4 session
strategies. When the training set has prior knowledge of the testing day, the result
reduces to 76.0% and 76.9% which is very similar to using the first session alone of
any given day (77.8%). The results of the entire day could be considered to be the
effect of gathering a large enough dataset to accurately represent the gradual change
of the signal during an average day. Using 4 morning sessions managed achieve a
reasonable amount of accuracy, although the deviation implies that it may not be fully
acceptable for daily usage, the recognition accuracy also saw a large decrease when
not using a testing day dataset. The reduction from removing testing day data can
be assumed to stem from minor changes in the devices fitting on each day due to
less controllable environmental and physiological aspects such as ambient temperature
[176] and fatigue. Finally, using 3 spaced datasets and 1 testing day set as training data
resulted in similar accuracy to the entire day training set.

As shown in the confusions matrix in Fig.3.5 , the proposed method achieved a
high degree of accuracy on the majority of simple gestures, where the average inter-
day accuracy was 90%, which poses itself as a very strong method for reliable long
term SEMG prosthesis control. Generally, the majority of simple classes were easily
classified. The classes which routinely scored most poorly were the two complex ges-
tures numbered 12 and 13 in Fig.3.2, where accuracy was rarely above 70% in any test

case.

3.6 Discussion

In this study, the effect of different training dataset selection strategies was inves-
tigated. The results demonstrated a stronger classifier, for inter-day sSEMG gesture
recognition, can be built by using data that is representative of the SEMG signal changes
within a day. The novel contribution of this study is firstly relating to providing an

in depth exploration of larger volumes inter session SEMG datasets than previously
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Figure 3.6: Confusion Matrix for Proposed Method of 3 Spaced Data Points
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Figure 3.7: Confusion Matrix for Entire Day of Data
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Figure 3.8: Confusion Matrix for Single Testing Day Session
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collected. Secondly, through exploiting the traits of this higher density dataset, it
was possible to demonstrate an initially comparative result as those shown by [97] on
the CSL-HDEMG and CapgMyo DB-b datasets, with the proposed training strategies
demonstrating a similar or higher recognition accuracy.

The single sessions accuracy and reduction in accuracy when excluding a testing
day dataset demonstrates the previous conclusion by Amsuss et al [4] that classification
accuracy decreases as a function of time. The accuracy of using 4 morning sessions
is directly inline with those displayed by Kaufmann [96] when using LDA, where
the error rate they had found was 21.27%, whilst this study found an error rate of
25% when using their first 5 sessions. Unfortunately, Kaufmann had not noted which
periods of each day saw data collection, only that 5 datasets represented an entire day
of data, whereas this study focused on the impact of when the data is collected within a
day. However, when given any set of 4 consecutive hours provided similar performance
on inter-day trials, suggesting that any 4 consecutive sessions will provide a seemingly
reliable description of the SEMG signal. It can further be agreed that using larger
quantities of data, such as an entire day of data, would provide higher classification
accuracy, however, the increase in accuracy is not statistically significant enough to
justify the increase in computation and burden on the user.

Although the proposed method, with no prior knowledge of the testing day, achieves
a similar degree of accuracy to training the algorithm in the morning of the testing day,
the removal of the requirement to train the device immediately and achieve a reason-
able degree of accuracy is very promising. Through the addition of the testing day data,
the proposed method provided a very good inter-day accuracy without any modifica-
tion to the training dataset. The extent of the inter-day accuracy is one where it could
be expected to achieve high accuracy on future datasets, regardless of time difference
between the original training day and present day.

As shown in the confusion matrices in Fig.3.8, the simple gestures routinely were
easy to classify from each test case, or at least represented the final accuracy best. The
two complex gestures routinely scored very low, often being misclassified as one an-
other. Due to this drop in accuracy being so localized, it could be suggested that using
this method without those two classes could be more beneficial for the prosthesis user.

The researcher is, however, of the opinion that it is important to promote a prosthesis

73



3.7 Summary

control scheme which is both natural and intuitive for the amputee. Regarding the ac-
tual outputted results, differing methods would either provide higher accuracy on one
complex gesture at the cost of reduced accuracy on the other gesture. Although the
performance of the proposed algorithm for complex gestures is still not fully adequate
for control, it displays a promising removal of the bias for either gesture.

While LDA was the only chosen classifier in this work, the results display promise
towards future work with other classifiers such as MLP’s or SVM. Particularly to in-
vestigate if the proposed training strategies may demonstrate similar or increased ro-
bustness to inter session usage.

It should be noted that although the performance of this method is good for the
majority of presented data, it has not been tested against fatigued data or data where the
presence of shift exists. Subsequently, the robustness of this method has not yet been
shown to be resilient to transient changes other than those which naturally throughout

a day or across a period of time.

3.7 Summary

In this chapter, the relationship between the periods of a day and the SEMG signal was
investigated. The motivation of this investigation is to verify if there exists components
within active daily life that may be contributory to long term sEMG based sensing as
opposed to the arbitrary addition of data to a dataset, or if the decay in hand motion
classification accuracy is only a function of transient changes, such as electrode shift
or fatigue.

From the results of this preliminary study, there lies two main conclusions. Firstly,
that selection of a data that can represent the change in the SEMG signal throughout a
standard day is capable of achieving an acceptable degree of accuracy in the long term.
Further to this point, it can be assumed that such data must be fully representative of
the day itself, at the risk of losing stability.

Secondly, the selection strategies in this chapter suggest that usage of this studies
16 session entire days data provides minimal increase in classification accuracy when
compared to less human intensive, more simplistic, and more computationally efficient

methods.
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The intent of this research was to investigate the changes in the SEMG signal during
a day, its impact on classification accuracy over a series of days, and to find a method
that was suited to promoting a robust training set for inter-day classification throughout
each day.

It is suggested that future directions to expand upon this research is to look at ways
of optimising or otherwise processing the original training dataset to better describe the
shift in the SEMG signal, either through promoting expansion or promoting clustering.
Further cases of study may also investigate the relative change in performance with
days that experience high degrees of fatigue or other transient changes during a single

day, where external changes may impact the quality of the SEMG signal.
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Chapter 4

A-mode Ultrasound Led Sensor
Fusion for Hand Gesture Recognition

In chapter 3, a training strategy to promote long term use of SEMG based sensing
was proposed. This methodology contributed in expanding our understanding of the
influence and relationship of time on SEMG based sensing.

This chapter attempts to approach the current limitations of SEMG based sensing
through exploring the promising performance of ultrasound based sensing for hand
motion recognition. It was previously highlighted in section 2.2.5 that aspects such as
shift, dynamic actions, and long term use may pose issues in many forms of unimodal
sensing yet also that several sensing modalities demonstrated robustness to certain
transient aspects of bio-signals.

This chapter is structured as follows. Firstly, a brief introduction is given towards
the challenge of SEMG sensing and the need to explore alternative modalities. Sec-
ondly, the modality of A-mode ultrasound is highlighted for its novel potential to
sense deep muscle activity yet may also manifest some weaknesses in comparison
to sSEMG sensing. Subsequently an investigation into A-mode ultrasound prove shift
is performed with an exhaustive search of applying traditional SEMG features into this
domain in section. 4.2.3. The findings from this investigation are then Incorporated
into a multimodal ultrasound led approach towards hand motion recognition during
larger arm movements where the implemented method is compared to unimodal ultra-
sound and SEMG in section.4.3. Finally, a conclusion and suggestions towards future

works with A-mode ultrasound is presented.

76



4.1 Introduction

4.1 Introduction

Bio-Signal controlled prosthesis are highly important to enabling amputees to be capa-
ble of mitigating the impact on their quality of life that comes with a lost limb [106].
Whereas early prosthesis had either limited or just no functionality, modern prosthesis
have seen promising growth in providing a more intuitive control system for amputees.
Generally speaking, a bio-signal controlled prosthesis attempts to relate a given set of
bio-input to a set of anticipated motions. The exact forms of bio-signal controlled up-
per limb prosthesis can be divided into two categories, conventional bio-signal prosthe-
sis or pattern recognition based bio-Signal control strategies [177]. The most common
form of these bio-signal controlled devices comes in the form of Electromyography
(EMG) based bio-signal control devices. Traditionally conventional EMG controlled
prosthesis followed an “on-off” switched control system, however newer conventional
devices provide a more diverse series of control routines and inputs [178]. The ben-
efit of these conventional approaches are that they are simple to implement, provide
a desirable degree of robustness to transient changes in the bio-signal, and can satisfy
the basic needs of an amputee for daily use. Conversely, conventional bio-signal con-
trolled prosthesis hold limitations in several areas, such as having limited degrees of
functionality and most importantly that their control scheme is unnatural in compar-
ison to how a person would naturally move their original limb prior to amputation.
Pattern Recognition based approaches, however, follow in the concept that an amputee
may be able to voluntarily produce repeatable bio-signals that can be directly mapped
to gestures that are best fitting to that bio-signal. Therefore, pattern recognition based
approaches have seen considerable growth of interest in academia in recent years as
they promise control schemes which are seemingly more natural to an amputee, whilst
also providing a potentially larger pool of gestures that an amputee can perform there-
fore allowing a larger increase in quality of life, and finally this natural control scheme
may aid in reducing the cognitive burden involved in the rehabilitative procedure of

training the amputee with their new prosthesis.
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4.2 Ultrasound Feature Extraction and Selection

4.2.1 Transient Changes

As with Conventional approaches, Pattern Recognition devices that utilize EMG have
seen much popularity within academia, presently demonstrating highly promising re-
sults within laboratory environments. Unfortunately, EMG based pattern recognition
approaches experience varying issues in their viability once applied to a clinical sce-
nario. As for how such a dichotomy may occur a specific set of transient changes
within Pattern Recognition based control systems have been cited in literature, these
issues being electrode shift [179], crosstalk, fatigue [180], changes to skin conductiv-
ity, time[4, 181, 182], and concept drift.

4.2.1.1 Ultrasound

In an attempt to explore robust alternatives to SEMG motion recognition, researchers
have in recent years began investigating the applicability of ultrasound sensors for the
purpose of motion recognition [183] [184]. With good promise being displayed in the
topics of rehabilitative Human Machine Interaction [185]. Researchers have noted that
the higher resolution of Ultrasound Signal and ability to observe deeper tissue than
SEMG sensors as factors that could provide more robust control schemes [186]. The
usage Ultrasound (US) imaging has long been used as a non invasive method for visu-
alizing the inside of a body. The method of action for US Imaging, in its most simple
form, is by projecting a beam of high frequency sound waves from a piezoelectric
transducer, where the subsequent echoes of this sound wave can then be monitored for
intensity and amount of time it took for the echo to return. This common usage of ul-
trasound for imaging in the medical field can be tied to the capability of the ultrasonic
sound waves to penetrate soft tissues without harming them, a trait long previously
recognised by [187]. Methods of ultrasound data collection can utilize either Bright-
ness Modulation (B-Mode) or Amplitude Modulation (A-mode). A-mode ultrasound
uses a single ultrasound transducer and can be represented as an X and Y axis chart,
where the X axis indicates depth and the Y axis indicates amplitude. B-Mode ultra-
sound, can be considered an array of A-mode transducers, generating an image that

shows each transducers X axis to indicate depth whilst varying the brightness of each
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pixel to represent amplitude. Typically, Ultrasound methods used for hand motion
recognition will either be the more traditional B-Mode Ultrasound, or the somewhat

more compact but low resolution A-mode Ultrasound.

4.2.1.2 Area of focus - Electrode / Diode shift

As with sSEMG based hand motion recognition, ultrasound diode shift may drastically
impact the quality of long term hand motion recognition. Frequently with sSEMG de-
vices, a small degree of electrode shift may have an insignificant impact on the clas-
sifiers performance. The likely reasoning for this being due to area of detection of
sEMG electrodes to be shallow but across a larger area, frequently meaning that the
main impact of electrode shift comes in the form of reduced amplitude of the targeted
muscle and increased crosstalk form neighbouring muscles. It had also been observed
that shift may impact SEMG signals dependent upon if the shift is perpendicular or
parallel to the original location [188].

With A-mode ultrasound, the issue of shift manifests itself in a much more no-
ticeable fashion. It could best be considered to be from the area targeted by A-mode
ultrasound diodes to be deeper than sSEMG electrodes but also much more concen-
trated, effectively removing much of the crosstalk but providing very different signals
dependant upon the sensors location.

Although it is an easy argument to make that the quality of A-mode ultrasound
will be affected heavily by ultrasound shift, it is important that we quantify just what
degree of performance impact can be expected from such shift such that we may make

progress towards counteracting shift.

4.2.2 System and Experiments
4.2.2.1 Ultrasound System and Data representation

The ultrasound data was collected through a 2 channel A-mode Ultrasound device that
collected 100 data points (or time dots) at a rate of 10MHZ. The device was placed
on the muscle grouping above and below the wrist of the candidate. Transmission was

performed via Ethernet.
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4.2 Ultrasound Feature Extraction and Selection

While the hardware is capable of handling 4 channels of A-mode Ultrasound, the
two channels chosen are for purposes of representation and predictability of shift. As
both the top and bottom of the arm hold flat areas that hold large variations in bone and
muscle formations, it is possible to map out the selected degrees of shift and reliably
collected data from each location. While the sides of the arm could be used for a further
two channels in this study, the full mapping and accurate movement of shift would be
difficult to fit within the reliable time window of data freshness as full recording for two
channels would take an average of two hours. As shown in Chapter.3 and as referenced
in 3.2, classification accuracy decay can be considered as a function of time such that
a much longer delay between the start and end of data collection may degrade gesture
recognition accuracy for reasons other than diode shift conditions. In the absence
of research into the changes in long term ultrasound based hand motion recognition,
it was chosen to use the optimum number of channels that could be collected while
minimizing potentials factors other than sensor shift.

For this study, a single able bodied male participant was used as a pilot to investi-
gate the potential of applying EMG feature extraction methods to A-mode ultrasound
and subsequently to evaluate if these methods could be robust to diode shift. This study
was approved by the local ethics committee, ethics reference number: TECH2019-PB-
03

In order to correctly model the degree of shift across the targeted muscle area, a 7
by 7 grid of 49 individual locations was marked on the top and bottom of the subjects
forearm. Every location in the grid was spaced by 4mm, half of the width of the
ultrasound probe. This set location of space was chosen to simulate both the potential
shift from extended daily use, and the expected shift from donning and doffing the
ultrasound device.

The grid was physically marked by placing a template sheet of flexible material
on the arm and using pre-defined holes in the sheet to mark a pen onto the subjects
arm. Mapping of the ultrasound diode to the shift location was done through aligning
markers on the front and sides of the ultrasound diode with matching pen markers on

the participants arm.
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Figure 4.1: Ultrasound collection hardware, on left is the combination sEMG and A-

mode ultrasound diode. The picture to the tight shows the physical hardware device.
used in this study.
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4.2.2.2 Motions

For this preliminary study, a single able bodied participant was used. The participant
had prior experience with SEMG motion recognition. for each set of data collected,
the participant would be advised to follow a set of hand motion gestures in sequence
through on-screen guidance. After every set of motions was completed, both the upper
and lower Ultrasound diode would be moved to a new location with ultrasound gel
reapplied as necessary.

The motion collection scheme consisted of 6 gestures that involved either move-
ment of the wrist or hand. The selected gestures were hand at rest, hand open, hand
closed, wrist flexion, wrist extension, fine pinch. Each gesture was performed sequen-
tially, for a period of 10 seconds per gesture before shifting to the next gesture. A
period of 5 minutes was provided between locational shifts as to prevent fatigue. The
chosen gesture pool was decided as to include typical gestures seen in SEMG and ul-
trasound based research to provide a reasonable metric of accuracy.

The motion collection scheme consisted of several minor and major movements
involving the hand or entire arm referred to as a primitive. For every collected dataset,
a particular motion and its opposite would be performed sequentially, before a period
of resting time. The allocated time per gesture was 5 seconds each, with a 10 second
resting period. As each set of primitives were repeated 5 times, the resulting dataset

would feature 110 seconds of data with 50 seconds of motion activity.

4.2.3 Methodology
4.2.3.1 Ultrasound Feature Extraction

A-mode Ultrasound manifests itself as a linear set of time points and amplitudes that
describe the echo intensity from the Ultrasound diode, as seen in figure. 4.2. These
signals enable traditional SEMG feature extraction methods to be utilized as to describe
the signal as each channel of A-mode ultrasound signal can behave like a single chan-
nel SEMG channel. Previously, researchers had applied Mean Square Deviation (MSD)
features to A-mode Ultrasound based hand motion recognition [189]. However, there
exists a gap in literature relating to feature extraction for A-mode ultrasound hand mo-

tion recognition. In this study, MSD feature extraction will be utilized alongside other
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typical SEMG based feature extraction techniques. The purpose of this is to compare
a currently utilized feature extraction technique and to investigate the applicability of

sEMG based feature extraction techniques to A-mode ultrasound signal.

4.2.3.2 Data Pre-Processing

All data processing was completed using Matlab r2017b. The pre processing for the
ultrasound data firstly saw 6 seconds of stable motion data from each 10 second gesture
performed, by removing 2 seconds from the beginning and end of each gesture. The
intention of trimming using only the stable motion data is to the starting and ending 20
time points of each frame of data as the information carried here was not considered
meaningful. A hilbert transform was subsequently applied onto the trimmed data and
the envelope was extracted when viable for the chosen feature as shown in figure. 4.2.

As the A-mode ultrasound data consists of a single frame every 100ms containing
960 time points, these time points indicating the muscle activity at a given depth from
the US Diode. Presently, as there exists little comparative US feature selection strate-
gies or comparisons. Therefore, traditional feature extraction methods for EMG data
were to be modified to better exploit the generalisable traits of the data. The approach
to feature extraction was to operate directly on the time points within each frame, as

opposed to across multiple frames, using a 120ms window and a 30ms sliding window.

4.2.3.3 Data Processing

As mentioned in the pre-processing stage, few feature selection methods for A-mode
Ultrasound have been evaluated in literature. Therefore this paper shall explore the
applicability of of several TD-AR methods in both the no shift and the shift conditions.

To evaluate the quality of the feature sets, several simple features shall be selected,
these being Root Mean Square (RMS), Auto Regressive Coefficients (AR), Waveform
Transform (WL), Slope Sign Change(SSC), Mean + Standard Deviation (MSD), Zero
Crossing (ZC), and Mean Absolute Value (MAV), all of these being traditional EMG
feature extraction methods that had been implemented frequently in literature. Re-
searchers have recognized that combinations of feature extraction methods may pro-
vide more robust gesture recognition than individual features in SEMG sensing. There-

fore several combinations of simple features will be evaluated alongside the individual
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Figure 4.2: Example of feature extraction with A-mode ultrasound into a Waveform
Length Feature with hilbert transform
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Figure 4.3: Relative Cross Validation results on the hand motion recognition Accuracy
from each individual feature method

features to observe if singular features or feature sets may be better suited for A-mode
based ultrasound hand motion recognition.

For classification, LDA, was used, due to this being suggested as a method that is
robust to changes in the input signal [190], alongside performing well during Ultra-

sound Hand Motion Recognition compared to methods such as Decision trees [88].

4.2.4 Results

In fig.4.3, the results of cross validation applied for each set of single Feature case then
presented as an average of all 49 locational datasets. Generally, the performance of
each method provides very good responses for when there is no shift in the Ultrasound
sensor. The scores under no shift frequently matching those shown in other research
[39, 35, 42]. However, once shift is applied, then the rate of accuracy for all cases begin
to drop at a considerable rate, as shown in fig4.4. As A-mode ultrasound projects only
a single beam into the body, it is expected that larger movements across an area such
as the forearm may witness larger changes than other parts of the body.

One noticeable change between the two charts is where Zero Crossing and Slope
Sign change perform the worst under no shift, however, once shift is applied then both
methods achieve not only a higher base accuracy, but also degrade at a similar but

reduced rate in comparison to other methods. One possibility for this result is that zero
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Figure 4.4: Change in Accuracy under Ultrasound Sensor Shift conditions with single
features, showing the decrease in recognition accuracy the further the electrode gets
from the nominal location
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crossing and slope sign change features are only influenced by changes in the signal
over the amplitude of the signal.

In Table 4.1, the spatial performance of all single features are displayed, alongside
the top five of each increasingly large feature set upto size for features =5, then the top
two sets of six feature featuresets, and finally the featureset of all features together. The
most visible trait of this table is that each subsequent set of combined features perform
worse than the prior best performing features, such as SSC-ZC out performing the
WL-SSC-ZC combination.

4.2.5 Discussion

In this study, several feature extraction methods were analysed to observe their robust-
ness to Ultrasound Sensor Shift. The results of this study demonstrated that, while
ultrasound based methods achieve good accuracy when kept on the nominal location,
there is a significant impact on performance from shift, especially when larger than
4mm shift. this would appear to be very much in-line with the findings of other re-
searchers when experiencing transducer shift [37, 184], alongside similar reports being
found in SEMG signal pattern recognition[191]. One likely factor into the heavier de-
grade in accuracy seen in this study is due to the nature of A-mode Ultrasound having a
deeper but much more concentrated section of the arm to observe, in a sense it could be
considered that the resilience to crosstalk also makes Ultrasound methods less resilient
to shift. Other factors that could potentially negatively impact the performance of a
Ultrasound based method is that of the subject unconsciously moving their wrist, or
fingers wither when performing a movement or by not fully returning to a rest state, as
noted by Li [192]. Further to this, the grip strength used in a grasp may also deteriorate
a classifier, as noted by Ortenzi et al [88]. However, the most likely major factor here
is directly due to the manifestation of shift itself and therefore the focus is on what
feature sets may be robust to this issue.

One notable trait of the results displayed here is that the multiple feature datasets
all gradually performed worse as more features were added. This could imply a degree
of over training is occurring from the single nominal location datasets. In all cases,
Zero Crossing, Slope sign change, and Waveform Length, constituted the three main

features in any strong dataset. Therefore, it could be described that these 3 features are
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Table 4.1: Comparison of Feature Extraction techniques and Feature sets under sensor

Shift
Accuracy
Feature
4mm 8mm 12mm

Root Mean Square (RMS) 41.3502 29.4994 24.2456
AutoRegressive (AR) 38.4634 28.8036 24.2031
Waveform Length (WL) 45.5218 32.3189 26.5053
Slopesign Change (SSC) 49.5948 38.0151 30.9701
Mean + Standard Deviation (MSD) 38.2035 29.3982 25.1040
Zero Crossing (ZC) 49.6582 37.2260 30.2115
Mean Absolute Value (MAV) 43.9495 31.8411 27.7215
SSC-ZC 49.2386 37.2020 30.6760
WL-ZC 45.7314 32.4774 26.5321
WL-SSC 44.8713 32.3658 26.2964
ZC-MAV 44.1881 32.0853 26.0027
WL-MAV 43.9709 31.5118 28.9517
WL-SSC-ZC 44.8788 31.6372 25.9495
SSC-ZC-MAV 43.7783 31.6879 25.7942
WL-ZC-MAV 43.5127 31.1777 25.6881
WL-SSC-MAV 43.1884 31.3576 26.1230
WL-MSD-ZC 43.1755 31.5351 25.9677
SSC-MSD-ZC-MAV 42.2245 30.0888 25.3892
WL-MSD-ZC-MAV 42.0067 30.1947 24.7848
WL-SSC-MSD-ZC 41.9771 30.5604 25.4144
WL-SSC-MSD-MAV 41.9579 30.5913 25.0622
WL-SSC-ZC-MAV 41.4526 30.4854 25.6745
AUTO-REGRESSIVE-WL-SSC-ZC-MAV 42.6839 30.8301 25.3570
AUTO-REGRESSIVE-WL-SSC-MSD-ZC 42.3035 31.3956 25.6678
RMS-AUTO-REGRESSIVE-SSC-ZC-MAV 41.9753 30.3633 25.1596
AUTO-REGRESSIVE-SSC-MSD-ZC-MAV 41.9150 30.0390 24.9601
RMS-AUTO-REGRESSIVE-WL-SSC-ZC 41.8352 31.0312 25.4697
AUTO-REGRESSIVE-WL-SSC-MSD-ZC-MAV 43.7954 32.0128 26.3671
RMS-AUTO-REGRESSIVE-WL-SSC-MSD-ZC-MAV 43.7206 32.5627 26.7492
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4.3 Ultrasound Led Hand Motion Recognition

far more robust to the occurrence of Sensor shift in Ultrasound hand motion recogni-
tion. This could suggest that these methods are stronger at defining the spikes within
the ultrasound signal, while other approaches are likely to smooth the signal and bring
forward minor changes in signal that don’t relate directly to expected signal. Moving
forward, there could be great promise in combining these existing features with meth-
ods that promote retraining, or the construction of robust datasets that anticipate the
impact of shift or other transient changes in signal [63, 193].

As described in section 4.2.3, A-mode ultrasound based hand motion recognition
can be extremely accurate for deep muscle activity, however, certain implementations
may be more susceptible to shift although correct selection of features may provide a
more robust interface. Considering that the degree of shift applied also extends beyond
that which can be anticipated during use then it shows good promise to the viability of
a mode ultrasound sensing for hand motion recognition. This novel investigation into
A-mode ultrasound shift can provide good guidance to future researchers.

A further consideration is that the results displayed here are on a two channel sys-
tem, whilst prior studies used a 4 channel device. It is likely that a 4 channel device

could only serve to further improve the accuracy demonstrated in this study.

4.3 Ultrasound Led Hand Motion Recognition

Previously researchers have attempted to resolve limitations in SEMG sensing through
the combination of SEMG based unimodal sensing through the addition of additive
sensing modalities which were investigated in section 2.2.5 and have shown good
promise in fusion modality sensing. Expanding on the promising directions shown
for fusion modality sensing, this section shall attempt to explore improving the qual-
ity of SEMG based hand motion recognition through utilizing A-mode ultrasound led
sensing.

A common challenge found in SEMG based is that of large arm movements and in
situations where the location of an arm is not in the comfortable position frequently
seen within laboratory experiments. It can be considered that a factor which inhibits the
capability of SEMG based sensing with pattern recognition is that of crosstalk. As the
arm moves into dynamic poses there exists a degree of shift and co-activation of muscle

groupings surrounding the targeted muscles which subsequently impact recognition
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accuracy. The issue is further amplified when considering larger muscle groups in the
biceps.

As ultrasound based sensing is capable of detection only the activity of the targeted
muscle boundaries then this degree of crosstalk may be possible to be avoided or at
least minimized through introducing ultrasound as the dominant sensing medium for
hand motion recognition with SEMG based sensing to provide context to larger arm

muscle activation.

4.3.1 Hypothesis

The Hypothesis of this study is therefore that the addition of A-mode ultrasound based
sensing to SEMG based sensing can provide a meaningful increase to hand motion

recognition with larger arm movements.

4.3.2 Experimental Setup

As with the prior work, an A-mode ultrasound capturing device was used to retrieve
the subjects bio-signals. However, an additional two channels were implemented as
to gain a deeper insight into the muscle activity across the subjects forearm bringing
the total quantity of ultrasound channels to 4. To maintain a secure fitting for the US
sensors, an elastic skin tape was used to secure the sensors in their correct location
along the subjects arm. Hypoallergenic Ultrasound gel, Anagel ultrasound gel, was
applied prior to each set of data collection as to ensure improve the transmission quality
of the ultrasound signals and to reduce interference from air gaps.

The sEMG hardware described in section 3.3.1 was used however, the SEMG 16
channel elasticated armband was replaced for 6 pairs of wet electrodes. As this study
focuses on A-mode ultrasound led hand motion recognition, the 6 pairs of bi polar
electrodes were instead distributed on the major muscle sites of the arm as to provide
muscle activation information during larger arm movements. The chosen electrode
locations are the lateral deltoid, biceps bracchii shorthead, supinator, and pronator teres
and ticeps bacchii. The fitting of the wet electrodes and A-mode ultrasound hardware
can be seen in figure 4.5. Two able bodied participants aged between 26 and 32 were
used in this study. The experiments carried out were confirmed by the local ethics
committee, reference number: TECH2019-PB-03.
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T 50

Figure 4.5: Multimodal Ultrasound and sSEMG experimental setup
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4.3.2.1 Data capture

The data capture was divided into 5 trials with ten gestures performed per trial. In
order to acquire a dynamic range of motion activity across the whole arm five motion
primitives were selected and performed in their open pose and inverse totalling in ten
hand and arm motions. The chosen primitives were as follows in order Hand Open
(HO), Hand Closed (HC), Forearm Pronation (FP), Forearm Supination (FS), Rotation
In (RI), Rotation Out (RO), Humerus Forward (HF), Humerus Backward (HB), Wrist
Flexion (WF), Wrist Extension (WE). Each individual motion was performed for five
seconds before shifting to its inverse motion and then a rest period of ten seconds
between motion primitive. Each trial lasted for a total of 110 seconds including the
initial rest period with a total of 50 seconds of motion activity. There was no change
of the electrode or ultrasound sensor placement between trials as to introduce a degree
of the natural shift that may form with daily use of this combined sensing modality.
No shift conditions were applied during this condition, as this section focuses on
the capability of recognizing large arm movements where shift may naturally exist due
to larger arm changes that may be experienced during daily use, whilst the previous
study focused on gesture shift within hand movements alone inline with typical SEMG

gesture recognition schemes.

4.3.3 Data Processing

The approach to processing the collected ultrasound signals was very much similar to
that in section 4.2.3.2 while synchronising the SEMG signal and ultrasound signal was
performed through manual recognition of the first muscle activation. sSEMG signals
were filtered and processed much in accordance to the manner used in section 3.4.1.
Using the information displayed in the Table 4.1, the waveform length feature was se-
lected to represent the ultrasound signals due to the strong performance shown under
both no shift and shift scenarios. sSEMG signals were represented by the RMS fea-
ture. The fusion scheme consisted of appending the SEMG signal data to the A-mode
ultrasound data after feature extraction. The rationale behind this decision is that the
while ultrasound data may provide accurate recognition of the hand gesture, the sup-
plemental information from the SEMG signal will provide information about the larger

arm motion. All classification was performed using LDA with naive bayes due to the
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classifiers robustness. Classifier training was performed using a single trial that was

evaluated with cross validation against the other 4 trials.

4.3.4 Results and discussion

To verify the performance of the ultrasound led method, each set of 5 trials were eval-
uated on the basis of SEMG alone, A-mode ultrasound alone, and finally the A-mode
ultrasound led approach.

As seen in Fig.4.6, the sSEMG unimodal approach demonstrated the poorest per-
formance overall, achieving an accuracy of 74.51%. The strongest modality for per-
formance was the ultrasound unimodal approach with an accuracy of 82.91% which
was closely followed by the multimodal ultrasound led approach at 78.65%. It can
be inferred from this result that SEMG unimodal sensing is more susceptible to re-
duced classification accuracy during larger arm motions where crosstalk and interfer-
ence from cabling may be more apparent. An interesting result is that of the perfor-
mance from the unimodal ultrasound approach, which although only focused on the
forearm area had managed to achieve reasonable accuracy during larger arm motions.
The cause of this performance increase may likely come from smaller muscle changes
that occur due to physiological changes of the arm as opposed to active MU activity.
The potential for ultrasound to better recognize subtle changes in muscle boundaries is
promising for future usage of A-mode ultrasound.

Subsequently, the capability of A-mode ultrasound to provide robust sensing to
larger arm movements, the capabilities of SEMG based sensing was improved, albeit to
a lesser degree than unimodal ultrasound. When placed in context of the investigation
into ultrasound diode shift in section 4.2.4 and present research into SEMG sensor shift
[194], there exists an argument that the ultrasound based approach provides robustness
to larger arm movements, whereas SEMG based sensing may improve the robustness
to sensor shift during daily use.

Future work in this in this direction would seek to exploring ultrasound based sens-
ing in active dynamic tasks as to explore it’s robustness to aspects of muscle crosstalk
and dynamic muscle contractions which are challenges in SEMG based sensing. More-
over further exploration should be conducted towards long term use of multimodal

A-mode ultrasound led sensing with sSEMG such as in inter day use.
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Multi Modal Ultrasound and sEMG sEMG Ultrasound

Figure 4.6: Multimodal hand motion recognition results

4.4 Summary

In this section, the robustness of traditional SEMG feature extraction techniques were
explored when applied to Ultrasound Sensor based Hand motion recognition.From
the results of this study, there are two major conclusions. Firstly: the main feature
Extraction methods demonstrated that the quality of Ultrasound based hand motion
recognition is extremely high under no shift conditions. However, it can be recognised
that Ultrasound sensor shift can significantly affect the quality of the classification
result, especially at larger ranges.

Secondly, the results that are demonstrated in this section indicate that combined
feature sets seemingly do not perform as well as individual features. This could sug-
gest that the matter comes to being related specifically to the representation of the
ultrasound data , or potentially as a consequence of over training in the cases of com-
bined feature sets.

Thirdly, a multi modal A-mode ultrasound led sensing platform was implemented
and demonstrated to be feasible during larger arm motions particularly in comparison
to unimodal SEMG and furthermore was shown to contribute to improving the quality
of sSEMG based sensing in this area.

It is suggested that future directions in Ultrasound hand motion recognition is to

94



4.4 Summary

investigate whether the inclusion of more channels when considering sensor shift may
further improve the classification accuracy alongside the impact of larger arm motions.
To expand the features tested here on other traditional feature selection methods. Fur-
ther to this, to investigate training strategies that may improve the robustness to sensor
shift in Ultrasound. Furthermore, it is suggested to further investigate the relative com-
parison of Ultrasound based hand Motion Recognition, in comparison to EMG when
considering Long Term Use. Finally, it is suggested to explore the capability of ul-
trasound led hand and arm motion recognition during more dynamic tasks as a multi
modal approach with sSEMG sensing.

The intent of this research was firstly to explore the relative robustness of different
Ultrasound feature extractions methods under the situation of sensor shift and to find a
feature or set of features that can provide a meaningful representation of the Ultrasound
Signal for hand motion recognition. The second contribution of this research was to
investigate the capability of ultrasound led sensing during larger arm motions, where
the implemented ultrasound method was shown to outperform sEMG and to provide

important muscle activation activity when fused with sSEMG sensing.
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Chapter 5

Virtual Environment Assisted
Rehabilitation System for Precise
sEMG Control and Repeatability

In Chapter 3 a novel methodology to examine the changing state of SEMG signals over
time and during inter day use was explored where a subsequent training strategy that
exploited the variable traits of SEMG signal in order to better define the invariant state
of SEMG signal was proposed. Within chapter 4 the nature of ultrasound based hand
motion recognition was explored in terms of robustness to shift and finally was used
in a multimodal approach with SEMG based signal as a supporting signal trait. The
unison of ultrasound for deep muscle activity and SEMG for wider area surface level
sensing was demonstrated.

While the previous research works have their own novelty and demonstrate benefit
towards sensing, they mainly focus on the sensing and adaptive state where obser-
vation of the user is performed with ideally minimal input from the user. Although
these methods work well for their proposed purposes the scope of adaptability extends
beyond that of just sensing and algorithm based hand motion recognition specifically
towards that of rehabilitation.

During rehabilitation and long term use, a sensing modality and related recognition
algorithms may only be capable of performing with a level of quality related to the
data provided to them which in this case would be bio signals whether ultrasound or

sEMG in the research conducted. For an amputee, the capability to reliably produce
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bio signals to a consistent degree is one of the early challenges for the rehabilitative
process. Provided a user can produce consistent and repeatable signals then the quality
of the sensing hardware and recognition algorithms outside of transient changes in
signal can be assured.

Therefore, this chapter describes the development, implementation, and validation
of a Virtual environment assisted rehabilitation system to enable precise SEMG control
and reliability. The proposed system investigates the impact on the rehabilitative pro-
cess towards learning fine grasping and being able to accurately grasp a virtual object
without dropping or breaking the object. Most importantly, the proposed rehabilitative
system attempts to close the loop of grasping control through the provision of feed-
back through virtual feedback and also through electrotactile feedback. The following
chapter is structured as follows. The proposed rehabilitative system is then described
in terms of the virtual environment, hardware utilized, and the interactions between
each component. The methodology of the experiments and the evaluation criteria as
to validate the rehabilitative system are described. Finally the results of the conducted
experiments are discussed regarding their comparative performance metrics based on
the criteria used to quantify the change to the training period and to the success in
the testing period. Finally, the overall conclusions to the works in this chapter are
described.

5.1 Introduction

5.1.1 Hypothesis

The hypothesis of this experiment is to find if Virtual and Electrotactile feedback can
improve the repeatability of a grasping exercise when performed by a patient during
rehabilitation. Specifically when the patient is required to maintain a specific quantity

of voluntary contraction for a short period of time in order to grasp a virtual object.
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5.2 System & Data Representation

5.2.1 Functional Modules

This study implemented a combination of 3 modules, Firstly an SEMG capture module,
a Virtual Hand environment which includes fingertip deformation, and an electrotactile

feedback module.

5.2.1.1 sEMG Capture Module

The sEMG signals were captured using a multi channel SEMG acquisition system, that
enables up to 16 channels of SEMG signal capture, previously described in Chapter.3.
This particular research only utilized two bi polar sSEMG electrodes with one pair of
electrodes for signal extraction and a secondary pair as a reference signal to remove
noise. The minimal electrode setup was chosen as the targeted muscle activation is
limited to that of an individual grasping exercise to support fine SEMG control in a
single gesture as opposed to a pattern recognition approach. Moreover the focus of
this study is on training to achieve specific grasping forces. Were this study to focus
on a larger array of gestures beyond simple open / close grasping then 16 channels may
be preferential. However, this work is focused specifically on verifying the feedback
platform in a basic scenario.

The sampling rate used remained at 1KHz and sensing of this system utilized a
standard powerline noise filter. A change with the hardware used in this study was
for the sensing hardware to use bluetooth for data transfer whereas the device used in
chapter 3 used a wired connection. The change in transmission medium had minimal
impact on the captured signals for real time use. Processing of the captured signal used
a simple median signal amplitude across a designated window of 150ms as the feature
for recognition of grasping force. The reduced window compared to chapter 3 is due
to the focus of this study utilizing direct SEMG activation as opposed to any pattern

recognition, where a larger window may provide a more robust classification.

5.2.1.2 Electrotactile Stimulation Module

As previously discussed in chapter 2 there exists many forms of feedback methods

to enable haptic responses to a prosthesis user that may utilize moving components
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to enact a sense of touch such as stretch, squeeze, or vibrotactile alongside feedback
methods that use non moving components such as thermal or electrotactile. Based
on the findings within the state of the art it can be concluded that electrotactile has
numerous advantages such as low power consumption, lightweight, minimal noise,
can have an almost instantaneous response, have a small form factor, and moreover
can assist in recovering a natural sense of touch [195] .

The specific form of electrotactile simulator (ETS) used in this research was pre-
viously proposed in [196] towards the implementation of force feedback in a rehabil-
itative platform. The full range of the simulator used in this research can facilitate up
to 16 channels of output with adjustable outputs including amplitude (0-100mA), fre-
quency (1-200Hz), and pulse width (0-500 us). Although the simulator is capable of
various wave-forms as feedback, symmetric biphasic square pulses are chosen as the
output signal. The selection of biphasic waves are due to the negative pulses produced
being able to neutralize the charge accumulation on the users skin, the polarization
effect on skin caused by positive pulses and prevents tissue damage [197]. While there
exists research that uses many electrotactile feedback channels and the hardware used
can support up to 16 channels, the usage of the electrotactile feedback system in this
work only utilizes three channels with three levels of feedback per channel totalling at

9 feedback levels to represent force intensity.

5.2.1.3 Real Time Virtual Control System

In order to provide a Virtual system that can simulate human interaction in a realistic
manner a physics based Virtual hand grasping task was developed within the Unity
Engine. While there exists several platforms built specifically for medical simulation,
the Unity engine was chosen for purposes of development, experiment modification,
and finally for potential deployment outside of this study. For developmental reasons
Unity provided ease of integration with the various hardware devices in use for this
study and may be easily modified to accommodate alternative sensor devices due to
interaction being handled in a C# back-end. The experiment based considerations for
Unity were due to speed of changing experimental designs and experimental parame-
ters. Other experiment based aspects for choosing unity were so that the various data

collection needs and outputs could be modified easily through unities editor menu. The
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deployment related aspects behind selecting the unity engine is that the Unity based
system can be deployed on desktop, mobile, and potentially VR applications. The
freedom in deployment method can subsequently reduce the cost of a final system in
terms of hardware requirements or potentially provide an enhanced rehabilitative ex-
perience through Virtual Reality. Furthermore, it was considered that the Unity engine
having an easily customized user interface that can be either opened or reduced based
on the experiments conditions would allow precise yet simple control of a virtual hand
and therefore training for people who would administer experiments using the sys-
tem. Although the Unity engine does not provide perfect physics based biomedical
simulation, for the purposes of providing easily controlled realistic interaction within
a virtual environment that does provide various degrees of modelled visual feedback
then the Unity engine is relatively fit for purpose. The developed platform as shown
in fig.5.1 is integrated with the SEMG sensing module and ETS feedback module to
provide control and feedback in realtime. The hand itself holds the same 27 degrees
of freedom as the typical human hand while the virtual implementation avoids the dif-
ficult challenge of creating a natural sense of movement from traditional mechanical
actuators therefore allowing users to feel a natural and intuitive sense of fluid motion
when controlling the virtual hand. To further simulate physical grasping, each fingertip
of the virtual hand is deformable using the Gaussian distribution based haptic model
for fingertip deformation described [198].

To model the relationship of SEMG amplitude to simulated force intensity, a linear
relationship was formed. As described by Yang et al. [199], force measurements can
be linearly scaled to the scope of the SEMG signal. As this study attempts to map
an unknown scale of sSEMG signal to a known scope of force, an inverse measure
was taken. By calculating the participants sustained Maximum Voluntary Contraction
(sMVC) to the maximum simulated force output of the virtual prosthesis through linear
mapping it was possible to provide an intuitive measure of the participants imparted
effort to the virtual prosthesis. This linear mapping, as also stated by Yang [199]
further reduces computational complexity for the platform alongside ensuring that the
platform is adequately scaled to the participants needs.

Within this virtual environment the grasping force of the virtual hand is directly
controlled by the detected sSEMG signals while the fingertip deformation is directly

corresponding to the virtual force imparted on the object within the environment. As
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the grasping force increased the degree of fingertip deformation would increase ac-
cordingly within a range of 0-Smm. Much like human skin, the degree of fingertip
deformation has a maximum value when a certain quantity of force is exerted upon
the object it grasping regardless of any further grasping force exerted. It is through
this combined virtual force feedback and visual fingertip deformation that a two tiered
hierarchical feedback system is developed that realizes an enhanced feedback strategy
over previous single structured visual feedback strategies.

The simulated virtual object in this grasping exercise was that of a ball which would
have adjustable weight and rigidity according to the desired force control parameters.
The visible state of the virtual object in this research was kept identical as to ensure
that only the knowledge of the desired force input and whichever feedback method
selected would be guiding the users force input. For the visual on screen feedback a
force bar would display the present level of detected SEMG signal amplitude. A de-
formation bar would also exist as to infer the degree of finger deformation currently
experienced alongside a numerical listing of the SEMG input and deformation expe-
rienced by the finger tips, in this case being the thumb. While the trial continues the
quantity of successful or failed grasping attempts are shown in the top left alongside
the time per trial and control buttons for the investigator. Upon completion of each
set of trials, a document would be created that details several statistics related to the
feedback methodology, object weightings per each trial, time of each trial, the trial
outcomes, and information related to the SEMG signals detected during the trials. The
implementation and structure of the Virtual environment is shown in fig.5.3.

It is through the above described aspects of the virtual environment that this fo-
cused on implementing a platform that can provide the three experimental feedback
approaches of a hand grasping without feedback, a hand grasping with electrotactile
feedback, and finally a hand grasping with virtually displayed feedback such visual
representations of the SEMG’s intensity and translated force to the object using the
force model described in [198]. Every aspect of the experiment could be modified di-
rectly through the unity engines editor panel or through provided utility tools within
the virtual environment. Such changes could include modifying the objects shape, size,
and simulated properties of weight or strength. As mentioned previously, output data
could be selected through tick boxes in the editor panel to modify the output to the

researchers preferred data description, such as XML or csv. Ultility tools within the
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Figure 5.1: Virtual grasping rehabilitation environment during an example grab task.
The top left of the screen displays that trials time per trial, successful grasps, and failed
grasps. In the right of the screen, the deformation model is represented by the pink bar
to indicate mm’s of thumb deformation. The green bar represents the current amplitude
of the sEMG signal with indicators for the level of imparted effort by the participant to
make contact with the object, lift the object, and to break the object. On the top right
is a Statistic chart to show the input amplitude, the predicted force imparted degree of
thumb deformation, and the electrotactile feedback mode.

virtual environment for functions such as setting an individual participants electrotac-
tile feedback parameters could be directly modified through a simple GUI and output
user specific XML files for the researcher to select prior to the experiment.

To summarise, the proposed virtual rehabilitation platform combines a biologi-
cal signal acquisition platform through sSEMG sensing, an electrotactile stimulation
module, and interactive interface within a realistic virtual simulation environment that
attempts to combined biological engineering and virtual reality within a platform for

upper limb rehabilitation, specifically for hand rehabilitation in this research.

102



5.2 System & Data Representation

uedronred oy 03 YorqpPa9) 9[1ORI0NIJQ Jo ssad01d ayy smoys yred wonoq oy, “yuedronred oYy Aq waIsAs [eniia
AU} uryIm paArddrad oq ued yorym s1oadse Surdueyd ayy sajedrpur Jaed doy oy, 110350 parredwir a19y) Jo uonejuasaidar [eniaia

juanbasqns pue o9 syuedronted oy Jo jey st yied 2100 ‘wopierd uoneiiqeyal puey Ayj JO WeISLIP INBWAYDS :7°C NS

v_ SINPOA UonEINWNAS 3]139810.193|3 W sas|nd uolje|nwils |ed14323|3

deqpasy
a|11o0e104109|3

yoBqPa3) ON 0 /A W Suidseus |enyip

103

4

? 3210j palisaQ

1afans

3|NPO UoIsINboY OIN3S

uonjewiue uidses Ayisuaiul 9INTS sjeusis oN3s mey

diusduly a|jgewdoyaq

J2eqpa3y [ensiA

Jeq uolljew.ol=Qq

Jdeq 92104

sjuly [ensip




"193[qO0 TeNIIA Y} YIIM UOIIORISIUI SPURY Y} WOy pajtedwll UONBULIOJIp JO 92139p 9y} pue 110JJ9 sjuedronred
oY) WOIJ 9210) PaAIadIad ay) djedIpul Jey) sieq JuISUBYD OM) [OPOW UONBWIOJOP PIje[NWIS Ay} YIIM puey [enidiA y) ojul

Asuayur HINFS pareduwr syuedronted ay) woiy uonelaidiojur o) SUNBNSUOWIP ONRWAYDS JUWUOIIAUD [BNMIA :¢°G INT1]

uollewiue guidseis [enuiIA

o
P

’ -——=

— — — — — — — — — — — — — I\I — — — — — — —
}oeqpaay [ensin /

I
| palqo g

I pueH [BNMIA

\
|
1
I
I
I
I
1
]
//
”

5.2 System & Data Representation
-

-_— e -

Jeq 22404 Jeq uollewJoladg

»
»

h

dipaduly [enyip
3y3 Jo uoljewlojag

—

/
I
I

[enMIA

|[9pow uonewloaq

Suidseas

JenuIA

uoljewJojsuess
92104

- m o o o o s e
— e o o o o o o o o o

|
|
|
|
| 921404 Suidses3
|
|
\

32e3}Ul |BNSIA

”
”
~

~

/
/
/
I
|
|
v
\

Aisuaqul oINS

104



5.2 System & Data Representation

quedronied ay) 0) papraoid ST Yorqpo9) JeYy) JOUUBUI Y} PUE ‘YIIM PIOBIIUT JUSUWIUOT

-IAUQ [eNIIIA 9Y) JO s}oadse oy ‘yuawradxa SIy) Ul pazZI[in 9[npow yord Junensuowdp ‘dmes [eyuawradxo ayJ, 4°S 2In31

Buipooua aoeonIa|g sjnpow uone|nNWRs a|3oeIoNoIs|]

JUSWIUOIIAUS
Buidseib jenyup
a|npow uonisinboe 93s

k J

DT MEY

Aysusjul oIS

(80 eod uoneuwuojaqg

E ) By — 4\
oS Bippeala P ﬁ uonewnssy

i

82104

uoissaibay ainyxip ueissnes) 8240} Buidseus

(L) uidap uoaeEisapu|

105



5.3 Experimental setup

5.3 Experimental setup

Within the experiments defined below the aim is as stated in the hypothesis to evaluate
the feasibility of the constructed virtual rehabilitate system and the impact of closed
loop feedback on the rehabilitative process. Firstly the participant recruitment process
is described, secondly the metrics of grasping success or failure are defined. Thirdly
the process of feedback in the open loop, virtual feedback, and electrotactile feedback
are detailed in their methodology. Finally this section concludes with the description
of how the experimental protocol is performed under each feedback condition and the

evaluation criteria used to analyze grasping performances are described.

5.3.1 Subjects

The subjects used in this experiment were 6 able bodied participants who ranged be-
tween 24-29 years old. Participants included 2 females and 4 males and all participants
were able bodied. All participants were recruited within the University. The study was
approved by the local ethics committee, ethics reference number: TECH2019-PB-03.
Prior to each experiment, the participant was informed of the experimental process,
reminded that they could stop the study at any time to rest or withdraw, and that they
could withdraw at any point during the study and within a period of 3 months after the
study, with destruction of any collected data at the participants request. Following this
the participant signed the study consent forms and reminded of their right to withdraw

as per ethics policy.

5.3.2 Measure of Task Success or Failure

In order to support the above hypothesis the following conditions were implemented
into the study. Firstly the object that is to be grasped was divided into 3 separate
weight classes, the weight classes being “’light”, "medium”, and "heavy”. Each ob-
ject subsequently had 3 thresholds: "Hand Activation”, ”Object Lifting”, and ”Object
Breaking” that would vary between object weighting. Therefore requiring a finite de-
gree of force for each object. A further aspect of the weighting is that the ball was

considered “’Lifted” once the participant maintained a lifting force for more than 1 s.
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A successful grasp was considered to be when the participant was able to maintain
a grasp between the ”Object Lifting” and ”Object Breaking” thresholds for a period of

2 s minimum, otherwise the trial was considered failed. Other fail conditions included:

* If the Grasping Force is below the minimum lifting force for 5 s.
* If the Grasping Force exceeds the ”Object Breaking” threshold for 300ms.

* If the object is considered “Lifted” and the Grasping Force either exceeds or

drops below the safe region for a period of 300ms.

5.3.3 Virtual Feedback Setup

The Visual feedback in the study was provided by the environment previously intro-
duced in section []. Each trial begun with the Virtual Hand in an open hand pose. When
the minimum required Grasping Force intensity was reached then the hand would be-
gin to grasp around the virtual ball. As the Grasping Force increased, the Virtual Hands
fingertip would deform as per a function of deformation described by [198]. Accord-
ingly the ball would provide Visual feedback in the situation of the grasp success or
failure, by changing colour or visually ’breaking” if the grasping force is exceeded for
the required period.

While the deformation implemented in this study does behave inline with real
world expectation, it is realized that fingertip deformation may not be immediately
observable to participants. Therefore deformation information was provided by the
deformation bar.

During the virtual feedback condition, the participant was allowed to practice and
perform as many successful grasps as possible prior to beginning of the formal exper-
iment to mirror the learning process. Virtual Feedback in this condition was provided
by the Virtual Grasping force bar that would directly reflect the raw SEMG input of the
participant. The participant would also be able to monitor the deformation bar during
this condition. Each trial under this condition ended by returning the environment to

its initial state and requesting the participant to relax their arm.
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5.3.4 Electrotactile Feedback Setup

In the Electrotactile feedback condition, distinct modes of electrical stimulation were
applied in a multi channel setup. The logic behind this decision is that two to fifteen
outputs of feedback were used in previous studies. While it is believed that fifteen
outputs could be provided with a single channel, it was considered that the cognitive
accuracy and perceptive burden of the participant would be negatively impacted by the
potential lack of clear variation between impulses. To reconcile the possible issue of
indistinguishable outputs and burden on the participant, only nine stimulation outputs
were utilized the better represent the real-time intensity of SEMG signals / grasping
force from light to hard. In order to ensure the nine outputs are easily distinguishable
and recognisable, a combination of mixed and spatial coding were applied. This is to
say that 3 sites from the bicep to forearm were employed, with each site providing a
modulating combination of parameters consisting of amplitude, frequency, and pulse
width. The modulation parameters for the electrotactile feedback was firstly based on
the known stable feedback rates with spatial encoding from the methods using 15 levels
referenced in 2.7. The further modulation parameters were modeled off those previ-
ously used in literature for single location electrotactile feedback modulation [200].
Each locations upper bound would be based on known comfortable levels, such as
those used by Dosen et al [138]. The lower levels of modulation were found by finding
the minimal recognizable signal and the middle level was placed as a mid point be-
tween the upper and lower bound with light changes performed to ensure that the three
levels were easily identified by the participant. The subsequent feedback pattern would
be that three electrodes would be utilized with each electrode providing three levels of
electrical stimulation from low intensity to high intensity. The decision for three levels
of feedback per each of three the electrodes was based on the review in 2.7 on mixed
and spaced encoding. It was found that a single arm band of electrodes could provide
over 15 levels of electrotactile feedback during a grasping exercise [135, 137, 138],
alongside distribution along the arm [136]. While much of the research for 15 levels
focused on five locations with three levels, this study reduced the electrode quantity to
three while maintaining the three levels. The decision to utilize only three locations
was based on an attempt to simplify the feedback scheme and subsequently training

speed. Although the simulated environment could provide a simple on/off control to
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the imparted sSEMG intensity being within the grasping range, the intention of this
work is to simulate a potential feedback application for daily use. That is to say, the
training setup is for the participant to be familiar with each of the nine feedback levels
to represent a different quantity of force imparted by a real or virtual prosthesis. Al-
though out of this studies scope, these 9 levels of feedback could subsequently be used
with intermediate weights between the current weighted objects.

As individual responses to the electrotactile feedback would vary vastly across the
participant population, each set of stimulation parameters were modulated specifically
to the participants requirements as to maintain both comfort and distinguishable be-
tween the stimulation conditions. during the experiment, the participant would be able
to modify their grasping force according to the feedback at each stimulation level.

The finalized experimental setup used during this study can be seen in fig.5.4 for

the complete system.

5.3.5 Experimental Protocol

The experiment itself consisted of three independent stages: preparation, training, and
testing. The study itself was approved by the University ethics committee. To be
in compliance with ethical conduction of the study, participants were informed of the
experiment, experimental procedure and aim of the study before any experiments could
be conducted. Upon the participants willingness to continue and signing of the consent
forms, the study could begin.

For each subject, the study continued in the follow states:

1. Preparation: Before the study could begin, the subject needed to be acquainted
with the rehabilitation system. This required familiarising the subject with EMG
input, assigning the parameters of electrotactile feedback, and finally linking
these together with the virtual environment. The initial stage is for the subject
to be seated in a comfortable manner, such that they would not feel discomfort
during the experiment. SEMG signals were gathered through placement of two
pairs of wet SEMG electrodes on the subjects left arm. The electrotactile stimu-
lation electrodes were placed on the subjects right arm. The purpose behind this
is to minimize the potential for electrical interference between the SEMG elec-

trodes and electrotactile stimulation electrodes as to enable synchronized capture
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and stimulation. It was considered to filter out the incoming electrotactile sig-
nals. However, filtering the electrotactile feedback was deemed too costly and
inconsistent of a method due to the varying nature of the electrotactile feedback
in the study and the inter subject variability with regards to the propagation of

electrical signals through their bodies.

Once the electrodes were in place, the SEMG parameters would be the first pa-
rameter to set. The subject was asked to contract their left forearm muscles as
much as possible three times for a single second each time. The raw intensity
of the three contractions was averaged and then sixty percent of the averaged
intensity was considered the upper limit of the subjects SEMG signal. The logic
behind this decision is to observe the subjects maximum contraction and to then
use a reduced intensity that the subject can hold for a prolonged period of time,

even when experience a degree of fatigue.

Secondly, the electrotactile stimulation parameters were to be established. Ini-
tially an acceptable set of parameters were used, these parameters were dictated
by literature and the researchers own experience. The general ruling in past ex-
perience was to acquire the average of several responses for each electrotactile
feedback setting from two of the researchers involved. As to avoid discomfort,
the testing for feedback parameters would begin from the lowest setting to the
highest setting on each channel. Provided the participant can experience sensa-
tion from the lowest setting then the intensity shall be reduced until they can only
just distinguish it while the intensity will be gradually increased if the participant
experiences no sensation. Each feedback level would be tested under the same
approach, as to minimize the feedback settings whilst being discernible from
the setting below. This process was repeated until the highest setting for each
channel, then verified both once the highest channel is set and once all channel
feedback levels had been set. This process is modelled around minimizing dis-
comfort in the participant. This process may also be repeated during the study, as
it had been found that prolonged sessions may reduce sensitivity to the feedback,

which may pose issues with the minimal feedback approach.

Finally, the participant was provided one minute to experience the environment

with both the visual feedback and electrotactile feedback settings. This process
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is used to both provide a first connection between the participants physical effort
in grasping and the feedback they would receive from the environment. After
this period the participant would only experience individual feedback methods

or no feedback.

. Training and Testing: The training and testing process were conducted under
three feedback conditions, which included a) feed-forward control with no feed-
back (NF); b) closed-loop control with Visual Feedback (VF); c) closed-loop

control with electrotactile feedback (EF) shown in the schematic in fig.5.2.

¢ Feed-Forward with No Feedback (NF)

The process for the No-Feedback scenario in both testing and training was
to advise the participant to close their eyes. They would then be advised
of the object type and when tp begin their grasp attempt. This process
attempts to exclude any potential feedback from the scenario beyond verbal
feedback after each grasp of the grasping result, such that the participant

can tune their grasping strength.

* Closed-loop Control with Visual Feedback (VF)

The procedure for the visual Feedback scenario follows a similar trend as
the No Feedback Scenario. The participant would be advised of the object
to grasp, the start of the grasping attempt, and the result of each grasp.
The main difference being a visual identifier on the screen in the form of a
force bar and the actual Virtual Scenario. The Force Bar would, in theory,
provide the participant real-time feedback of their virtual grasping attempt,
such that they can fine tune their grasp during the exercise. The participant

would also be able to view each attempt result for themselves.

* Closed-loop Control with Electrotactile Feedback (EF)

Due to the nature of electrotactile feedback, this third scenario requires
some preparation before proceeding into the training or testing phase. This
preparation stage largely focused on testing the electrotactile stimulation
parameters, using the settings form the participants prior response and fine
tuning them to participants needs. The intent of this process is to ensure that

the participant has not adjusted to the prior settings or that no change in skin
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/ electrode connection has occurred. The participant would be put through
the calibration process to adjust any parameters if necessary. Following the
participants happiness to proceed, the researcher provided stimulation of
different feedback levels and requested the participant to respond on which
feedback level they experienced. This process was repeated, with any extra
fine tuning, until such a time that the participant could provide accurate re-
sponse for each feedback level in a row. Following this preparation stage,
the remaining experiment would proceed akin to the No feedback condi-
tion. That is to say, the participant was requested to close their eyes, as to
allow any grasping force and fine adjustments to their grasping force to be
dictated by the electrotactile feedback provided to them. the only external
cues would be from the researcher informing the participant of the grasping

attempt beginning and the grasping result.

Through the above control and feedback approaches, it is anticipated that the
first approach will reflect the current implementation of prosthesis control where
the voluntary contraction is the only factor utilized in controlling the prosthesis.
The two feedback approaches aim to provide a sense of closed loop control such
that the voluntary contraction performed by the participant can be better guided

based on the feedback provided to them during a grasp exercise.

During the training process, the participant would provided objects of 3 differ-
ent weightings and breaking point, for virtual grasping. The weightings of the
objects had a threshold of raw EMG input that would be considered high enough
to activate the virtual hand, pick up the object, and then to break the object. The
weightings would stagger from object 1 - a light object, object 2 - a medium
weighted object, object 3 - a heavy weighted objects. The breaking point for
each object was modeled to climb at the same rate as the lifting point. The par-
ticipants were provided one minute prior to any training period for each object
to acclimatize themselves to the objects parameters, this process would be fa-
cilitated with the ability to see the force bar within the visual interface, as to
provide initial relations of their input force before proceeding. Following each

attempt, the participant would be informed of the result of their grasp, dependant
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upon the states available. This would provide a form of guidance as the the sub-
jects input effort, such that it can be adjusted in the next attempt, whether they
need to increase their force, improve maintaining their force, or to reduce their
inputted grasping force. Visual Feedback of the grasp result is also available
in the VF and EF scenarios in the form of the ball colouring red from either a
failed grasp or dropped ball, the ball would appear cracked if it was broken, and
would be coloured green if the grasp was successful. Through this process the
participant could adjust their grasp intensity and learn the required amount of
force required to pick up the object successfully. Upon the subject being able to
grasp the object two times in a row, another object would be shown to the par-
ticipant, scaling from lightest to heaviest. Each attempt performed during this
training phase would be recorded. Once two consecutive successful grasps are
performed then the participant moves to the testing phase.

The testing phase proceeded by the participant having 10 opportunities to grasp
each object. As to ensure the training was a success, the objects would not be
presented in order, but instead in a random order. This therefore should ensure
that the participants response to each presented object will come from recalling
the force required to grasp the object, as opposed to learning the sequence of

objects.

For each participant, the entire experiment would last an average period of two
hours. It was anticipated that this extended period of grasping could impart
muscle fatigue upon the participant, alongside the potentially fatigue from the
electrotactile feedback. Subsequently, the participant was afforded every oppor-
tunity to rest during the study, as to prevent fatigue or discomfort. Throughout
the training and the testing phase several metrics were recorded, these include
the attempt result (success or failure), grasping force, and the time taken during
each grasping exercise. These metrics were considered satisfactory for ample

evaluation of performance across the multiple object and feedback types.

5.3.6 Data Analysis Criteria

As highlighted in the experimental protocol, several metrics were taken during both the

training and testing periods as to evaluate the rehabilitative performance in terms of the
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Figure 5.5: Example flow chart

of training process prior to testing. Each stage of

process would continue until two consecutive successful grasps of each object was

achieved
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speed of training and the effectiveness of the training. These criteria are as follows:

1. Number of Attempts (NoA): The number of attempts indicates the total number
of grasping attempts performed by the participant until they were able to suc-
cessfully grasp the object twice in a row. Therefore this value contains the total
number of grasping attempts performed during the training period. Through
this criteria it is possible to evaluate the impact of each feedback condition on
the participants ability to learn the required amount of fine control force and to

demonstrate repeatable control.

2. Duration of Training (DoT): The value represented by the duration of training is
used as a complimentary value to the number of attempts. This value represents
the sum of every grasping attempts time. Therefore this value will be able to
inform on the total quantity of time required in the training process to demon-
strate any potential relationship between the number of attempts and total time

required in each feedback condition.

3. Duration of Attempt (DoA): Akin to the duration of training criteria, this criteria
represents the average amount of time used across every attempted grasp per-
formed by the participant in the testing phase. Therefore this criteria can be used
to evaluate the participants relative speed to grasping the virtual object in each

feedback condition.

4. Success Rate (SR): The success rate represents every successful grasp during
testing phase without the object breaking or slipping. Through the success rate,
the effectiveness of each feedback conditions rehabilitative performance when

grasping each of the weighted objects can be evaluated.

5.3.7 Results
5.3.7.1 Setting Of Parameters

With relation to the EMG intensity observed during the study across each participant,
a transient upper limit between 400 and 600 was observed. As the participant would

be required to maintain a muscle contraction repeatedly throughout the course of the
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experiments it would be unlikely that such an upper limit could be realistically main-
tained throughout. Subsequently the long-lasting upper limits of all participant were
tested from extended grasps. Across all participants there was little visible difference
in the long-lasting upper limited where an average of 210 was observed.

The electrotactile stimulation parameters, however, observed a very noticeable
amount of variation across the participant population. Individual responses to the elec-
trotactile stimulation varied between sensitivity to the stimulation on the upper and
lower ends, alongside varying ability to discern the stimulation. The two typical cod-
ing schemes used in the experiment can be seen in 5.1. The values on the left indicate
the parameters used by a participant who demonstrated high sensitivity to the electro-
tactile stimulation at lower intensities. In contrast, the values on the right demonstrate
the electrotactile stimulation parameters that were used with a participant who was able
to experience the electrotactile stimulation at a higher intensity. Across the participant
population, the preparation and testing of suitable parameters took a period of on aver-
age 30-40 minutes. Within this period of time it could be verified that the stimulation
parameters are comfortable for the participant and that the participant can demonstrate

effortless recognition of the 9 stimulation parameters.

5.3.8 Number of Attempts (NoA)

The average number of attempts (NoA) per object in different conditions are shown in
Figure. 5.6. When grasping the lightest object, the subjects’ learning performance in
different feedback conditions is similar. Across the objects, subjects spent comparable
NoA in VF and EF conditions. However, it took approximately twice NoA to grasp a
heavier object (medium, heavy) in NF condition comparing with the NoAs of the other
two conditions. The overall average NoAs across conditions as shown in Figure. 5.7
also indicate the same information that the VF and EF help to save about half NoA

comparing with the training in NF condition.

5.3.9 Duration of Training (DoT) and Duration of an Attempt (DoaA)

The average duration of training (DoT) as shown in Fig. 5.8 presents a similar trend

with the NoA in Fig. 5.6. It is reasonable that the DoT is positively correlated with the
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Figure 5.6: Average number of attempts (NoA) of each object in different feedback
conditions to complete the experiment. Each object value represents the objects sim-
ulated weight: 1- "Light”, 2 - "Medium”, and 3 - "Heavy”. It can be seen how the
number of attempts required to complete the experiment with the Medium and Heavy
objects is highest in the no feedback condition. The two feedback conditions provided
similar performance, although the electrotactile feedback condition performed better
with a medium object while the visual feedback condition performed better with the

heavy object.
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Figure 5.7: Average number of attempts (NoA) of all objects in different feedback
conditions. It can be seen above that the no feedback condition not only required the
highest number of attempts but also had the largest deviation in performance across
all object settings. The two feedback conditions performed within a similar bounds,
although visual feedback performed slightly better than electrotactile.
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Table 5.1: Coding scheme of electrotactile feedback. Within this table, the ranges for
each level on every channel is displayed in terms of the lowest observed stimulation

parameters to the highest stimulation parameters.

Stimulation . .
Amplitude (mA) Frequency (Hz) Pulse width (us)
Parameter
Level 1 3/3 10/ 10 50/180
Channel 1 Level 2 2/2 30/ 61 50/50
Level 3 2/2 45762 70/ 50
Level 4 2/3 10/ 10 40/ 180
Channel 2 Level 5 2/2 25760 40/ 50
Level 6 3/2 35/61 60/45
Level 7 1/3 10/ 10 20/ 160
Channel 3 Level 8 1/2 20/ 56 20/60
Level 9 1/2 35/58 20/ 100

NoA. The training periods in EF and VF condition are less than half of the NF training
period, although training with EF took a little longer than training in VF condition.

Fig. 5.9 presents the average duration of an attempt (DoaA) in different feedback
conditions during the testing process. The conditions with feedback (VF and EF) took
a longer duration to accomplish one attempt than the condition of NF. The condition
with EF shows the longest DoaA and the largest standard deviation, while the condition
with NF shows the least.

5.3.10 Success Rate (SR)

The average success rate (SR) across different objects and feedback conditions are
shown in Fig. 5.3.10. It can be seen that the SR of both EF and VF outperforms
that of NE. The SR in EF condition is comparable with that in VF condition when
grasping object 1 (light) and object 2 (medium) and is even observably higher than
the SR in the condition of VF when grasping object 3 (heavy). Fig. 5.10 presents the
overall average SR of each condition. Grasping with EF shows the highest SR, and the

standard deviations in different feedback conditions are comparable. It indicates that
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Figure 5.8: Average duration of training (DoT) of each object in different feedback
conditions. The above figure displays the total period of time required for the partici-
pant to be able to successfully grasp the object repeatedly prior to the main experiment
under each object scenario. It is clear that the no feedback condition had little issue
with the lighter object but would then require almost double the training time of the two
feedback conditions before the pre-experiment training could be considered complete.
As with the number of attempts figure 5.6, the visual feedback condition performed

better under the heavy object condition
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Figure 5.9: Average duration of an attempt (DoaA) in different feedback conditions.
Each bar of the above figure represents the average duration across each object class. It
is noticeable that the no feedback condition in this figure would appear to outperform
the two feedback conditions. However, this faster performance would be counter-
intuitive given the considerably lower success rate of the no feedback condition. The
slower average duration of the feedback conditions would seem to indicate the partici-

pant acting slower to utilize the feedback conditions
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Figure 5.10: Average success rate (SR) during testing process across each object class.
As with the success rate during the experiment, the no feedback condition performed
worst, while the two feedback conditions obtained a reasonable success rate given for

training alone

the percentage of standard deviation out of the average SR in EF condition is lower
than those of VF and NF.

5.4 Discussion

As demonstrated in the above results section, the experiments conducted on 6 partic-
ipants demonstrate that both the visual feedback and electrotactile feedback methods
contributed to an improve training efficiency in terms of time and number of attempts.

Further to this, the closed loop feedback conditions also demonstrated better fine grasp

122



5.4 Discussion

120%

__100%

80%

60%

Success Rate (SR) (%

40%

20%

0.98
0.92

-=-#%--- No feedback
—O— Vijsual feedback
Electrotactile feedback

.........
--------
........
e

2 3
Object

Figure 5.11: Average success rate (SR) of per object in different feedback conditions

during experiment. As before, the objects are represented by their simulated weight:
1- "Light”, 2 - "Medium”, and 3 - "Heavy”. A noticeable element of this figure is
the high success rate with the light object for both feedback conditions, while the
non feedback condition is at best achieves 66% accuracy and only decreases. While
the two feedback conditions decrease with heavier objects, it is also apparent that the
electrotactile feedback condition improves with the heavy object.
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control. given the comparative performance of each testing condition, it could be in-
ferred that the incorporated feedback modules manage to provide a reference signal for
the participant to actively learn and adjust their voluntary grasping effort in a closed
loop manner when compared to the open-loop control with no feedback. Within the
virtual environment the closed loop feedback methods displayed an improved rehabil-
itation approach for fine hand grasp control against the evaluation criteria of number
of attempts, duration of training, and the success rate of the testing. When observing
the training period, the number of attempts can be used as a reasonable measure of
how quickly the participant could relate their grasping effort to the amount of force
required within the virtual environment such that they could successfully grasp an ob-
ject twice sequentially. With object 1, all grasping methods were largely comparable
in their number of attempts. The similar performance in the object 1 condition can be
explained as having a form of innate closed loop feedback in each condition for this
object, as the object 1 parameters are within a small range directly from the partici-
pants minimal grasping effort, allowing the participant to gently amplify their grasp
until a success condition is met. this may subsequently describe why there is a longer
training period for a similar number of attempts. The impact from lack of any feedback
is seen very clearly when increasing the complexity of the task through higher weight
thresholds. During lifting exercises with heavier weighted virtual objects it was visi-
ble that the number of attempts required by the participant was almost double that of
either feedback condition. In other words, both the visual and electrotactile feedback
conditions reduced the quantity of training required and the duration of these train-
ing periods by half when compared to open loop control. This change in the burden
imposed during the rehabilitative process is vital for enabling improved rehabilitative
results. Within the 2 hour period used for the experiments in this research it could be
stated that a large volume of that time was focused on the open loop feedback training
scenario.

While it is notable that the overall duration of attempt between each feedback con-
dition was largely similar, the overall number of attempts required in order to provide
adequate results in the training period was considerably higher. However, a notable
aspect in the duration of each attempt is that of the closed loop feedback conditions
taking almost a second longer to complete an attempt. It can be inferred that the phe-

nomenon of increased time to perform an attempt and the relatively reduced training
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period describes the state of the user dynamically adjusting their force in accordance
to the feedback received whereas open loop feedback could be considered to display
relatively little adjustment. Furthermore the relative changed in attempt duration can
be considered to align with the cognitive interpretation of the feedback form such that
open loop feedback experiences minimal delay yet this delay may manifest largely in
failed attempts where the object could be considered broken or dropped. The visual
feedback condition sat between the open loop feedback and electrotactile feedback in
attempt duration while experiencing a low degree of training burden inline with that
of the electrotactile feedback approach. It could therefore be conceived that the visual
feedback approaches faster duration of attempt and perhaps adaption rate is from an
inherently faster interpretation of the on screen force bar to the imparted effort by the
participant due to familiarity with the concept of visual bars to represent input whereas
many participants had minimal previous experience with electrotactile feedback of any
nature. Although it is typically assumed that touch stimuli has a faster reaction time
than visual stimuli, aspects of the delay may decrease were the study to be conducted
across a longer period of time as to allow the participant to grow familiar with inter-
preting the electrotactile feedback condition.

When looking towards the relative success rate of each method there existed a simi-
lar display of improved results during closed feedback conditions such that the relative
success rate across the three objects saw an increase of 15% and 17% of the closed loop
feedback conditions compared to the open loop feedback condition. A subsequent re-
sult of the improvement to grasping weighted objects as displayed in this research is
that of how the proposed closed loop feedback approaches may support bridging the
gap between initiating rehabilitation to being capable of reliably performing grasping
actions during real life use of a prosthesis. Therefore the conducted research here
can be summarized as demonstrating the feasibility and applicability of closed loop
feedback enabling a stable and successful control scheme during hand rehabilitation
for finite SEMG based grasps in a virtual environment. The inherent challenges of in-
terpreting SEMG imparted by a participant to force in the prosthesis can therefore be
resolved to enable better formed decision making and adaption by a prosthesis user.

When considering the application of this virtual environment,the purpose is to train
a relationship between the users voluntary contraction and the force imparted by the

prosthesis. As described in section 5.2.1.3, the system maps the users sMVC to the
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scope of potential force that can be deployed by either a virtual or real prosthesis. It
is therefore possible to train a user to enact precise control of their imparted sSEMG
signal. Provided the scope of force imparted by the virtual environment is modified to
match the desired scope of force imparted by end prosthesis prior to training.

Through the above mapping of sSEMG amplitude to potential force from a prosthe-
sis, it may be possible to further simplify switching between prosthesis provided the
degree of force the amputee is trained with is within the scope of the new prosthesis.
The beneficial aspect of electrotactile feedback during user training on a participants
prior perception was highlighted by Strbac et al. [137] as something that may further
benefit rehabilitation, even if not used in a final prosthesis.

Although the proposed feedback conditions demonstrate promising results towards
improving the rehabilitative process through closed loop feedback guided adaption
there still exists some limitations and challenges. Although the visual feedback sce-
narios displayed faster response and adaption times than the electrotactile feedback
condition there does exist the argument that visual feedback as used in this scenario
is largely limited to a laboratory scenario. While it may be possible to impart visual
feedback through prosthesis mounted interfaces or through a form of augmented re-
ality based system such methodologies are not presently implemented in commercial
prosthesis and research into such systems is scarce. In the absence of a prosthesis
based implementation of the SEMG bar used in this study, this approach to training
for precise SEMG based control can still be useful in improving the rehabilitative pro-
cess. Specifically by better relating the imparted force to a visible stimuli other than a
binary hand open/closed actions. While further studies may be necessary to quantify
the degree of impact, it is believed that the demonstrated visual feedback results are
promising for their contribution to rehabilitation.

Therefore it can be concluded that currently electrotactile feedback may be the
more promising method if the feedback condition is considered to be utilized for daily
use outside of the rehabilitative process. Electrotactile feedback based approach’s can
readily be implemented into prosthesis hardware although such systems may inter-
fere with sSEMG based sensing therefore feedback may mirror that of this study where
feedback was provided to the non grasping arm. Potentially ultrasound or NIRS based
sensing may provide a pathway to achieve same arm sensing and feedback for prosthe-

sis control. Furthermore, increased exposure to the electrotactile feedback condition
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and a same arm fitting of feedback and sensing may further contribute to decreasing
the duration of attempts seen in this study to be inline with that of the visual feedback
condition.

While this study focused on investigating the training for repeatability in finite
SEMG based control of a virtual prosthesis, a potential limitation is that to ensuring
long term repeatability. The training section of this study focused on the participants
grasping the virtual objects until they could repeatedly achieve the goal, before moving
forward to the validation phase. The results demonstrated that the feedback conditions
were useful in reducing this training phase and more importantly demonstrating that
this training could be adequately utilized in the testing phase of the study. It is through
this short term improvement in both repeatability and reduction in training time that
a longer term study would be capable of demonstrating both an improvement in the
participants success rate and a reduction in overall repeated trial time. However, it is
recognized that, while the short term results are promising, a longer term study would
be required to validate this platform as a long term rehabilitation tool.

In summary, the proposed methodology of a virtual rehabilitation system that uti-
lizes closed loop feedback displayed that not only does the average performance dur-
ing testing exercises improve through the provision of closed loop feedback but also
that a substantial increase in the relative speed of training and reduction in amount
of attempts required during the training stage can be achieved through closed loop
feedback. While it can be assumed that the simple feedback of grasping for a light
object may be a simple task, it is with heavier objects where the most notable change
from being capable of successfully grasping an object is seen. The visual feedback
condition demonstrated a faster response time and relatively improved grasping for
medium weighted objects yet the electrotactile feedback method displayed higher suc-
cess during grasping of a heavier object. It could be considered that the active physical
sensation of the electrotactile feedback may be assist in evoking the necessary sense of

agency required for this task.

5.5 Summary

Within this chapter a novel Virtual environment enhanced hand rehabilitation system

was proposed which utilized both Virtual and Electrotactile feedback. The perfor-
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mance of this proposed platform was demonstrated in comparison to an open loop form
of control during a grasping exercise of 3 separate weighted virtual objects. The con-
tribution of this chapter is specifically the virtual rehabilitation environment proposed,
which can provide closed loop feedback to the user through virtual and electrotactile
feedback. The specific benefits from this platform is through the ease of customisation
and adaptability to the patients rehabilitation requirements, the benefits of the closed
feedback methods, and importantly in the ease of implementation prior to fitting with
a prosthesis.

This contribution is further reinforced by the results which show how the virtual
environment with closed loop feedback can be helpful in reducing the time required
to train a user to perform precision control of a prosthesis and showed improvement
in successfully grasping an object displaying good promise for future integration in a

clinical scenario.

128



Chapter 6

Conclusions

6.1 Overview

The focus of this thesis is on the research of upper limb based bio-signal sensing
modalities and their application into the rehabilitative process to promote long term
use of prosthesis with a focus on challenges related to the robustness of SEMG sensing
during both intra and inter day usage. Specifically the human factor when relating to
sensing and adaption for long term use where challenges revolve around inherent bot-
tlenecks in present SEMG implementations and enabling long term robust control of a
prosthesis. This thesis highlighted three core components to enabling long term hand
rehabilitation. Firstly through training strategies for robust long term prosthesis con-
trol. Secondly, by providing better hand motion sensing through a multimodal A-mode
ultrasound led approach, and thirdly the rehabilitative challenge of closing the loop in

precise prosthesis control and rehabilitation through a virtual environment.

6.2 Contributions

6.2.1 Training Strategy for Improving Long Term Robust Usage

of Prosthesis

Firstly, training strategies that attempt to exploit temporal aspects of SEMG data are
developed to improve long term use. These methods initially performed a novel explo-

ration into the intraday time sensitivity and concept of SEMG freshness from a given
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period of a given day. The anticipated temporal decay of the sSEMG data is then uti-
lized in a training strategy based on an LDA with naive bayes classifier. The training
strategy 1s compared against a training strategy that requires data collection every 30
minutes and shown to provide similar results with heavily decreased training burden
through qualitative dataset collection as opposed to quantitative. The training strate-
gies are then shown to be improved through the addition of a single set of testing day
data as a form of calibration data. Finally, a strategy that utilizes increasing degrees of

intraday data with the initial training strategy is explored.

6.2.2 Multimodal A-mode Ultrasound led Hand Motion Recogni-
tion

As sEMG sensing is limited by lack of deep muscle activity, crosstalk from surround-
ing muscles, and finally electrical fluctuations in the SEMG signal from external fac-
tors, a multimodal Ultrasound led sensing approach is developed. The fusion of ultra-
sound and sEMG signals enables robustness against agitating factors such as crosstalk
and electrical interference with the addition of higher resolution understanding of deep
muscle activity. The complication of ultrasound probe shift is explored and highlighted
for existing unimodal robustness through handcrafted feature selection strategies. The
addition of SEMG signals further assists by providing detailed muscle activation to
provide robustness to potential probe shift and to guide in larger arm motions. This
contribution provides a novel ultrasound led control scheme and focused analysis on

the concept of ultrasound probe shift.

6.2.3 Virtual Environment Based Hand Rehabilitation Platform

Finally, in order to reduce the burden of the rehabilitative process and to combine this
with improving the quality of life for a prosthesis user, a Virtual Environment based re-
habilitation platform is proposed, that utilizes both virtual and electrotactile feedback.
As present open loop based control schemes in hand rehabilitation are not fully suf-
ficient in providing an accurate depiction of the relationship between interaction and
patient exerted effort a haptic based control scheme is proposed to close the loop in

proportional force control. This control scheme is achieved through introducing both
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visual feedback and electrotactile feedback in an environment where a subject is ex-
pected to provide a precise quantity of muscle contraction effort during three forms of
virtual grasping exercise. This contribution demonstrates that the inclusion of closed
loop feedback improves the speed of the rehabilitative process in proportional control
and also increases the success rate during grasping exercises when compared to open
loop control.

6.3 Further Work

In this concluding section, the limitations of the works performed in this thesis are
discussed and the potential directions of future research.

Temporal SEMG training strategies are a promising concept for enabling im-
proved long term prosthesis control. This thesis demonstrates the value of SEMG sig-
nal freshness, the decay of SEMG data in intraday scenarios, and how such information
may be exploited. However, there exists more work to be conducted towards verifying
the strategies proposed for clinical use. Firstly, although the work presented focused
on the temporal nature of signal decay and exploitation in a training strategy for long
term use, the work done is using laboratory scenarios where subject data collection is
performed in a comfortable position and dynamic transition data removed to provide
best example data of each motion although the density and length of data collection
did provide some real-world issues such as electrode shift, sweat, and fatigue. Future
work would look further to evaluating these strategies in dynamic contractions where
the residual limb may not always be in an ideal relaxed position. Secondly, while it is
demonstrated that there exists temporal qualities of SEMG data that may be exploited
it still is very much the case as with Amssus et al [155] that there still remains qualities
of SEMG signal across time that are not yet known. The proposed concept of signal
freshness indicates a quantifiable period of classification decay which could provide
guidance into methods to better analysing the impact of time on SEMG signals. Within
this there is a question on whether a focused subset of gestures may be capable of
providing reference signals to maintain the quality of a trained model. Therefore fu-

ture work towards understanding the temporal nature of SEMG data for long term use
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would explore reduced dataset calibration to propose strategies which require less di-
rect intervention on the subjects behalf and to furthermore form an anatomical model
to better describe the change in SEMG signal over time.

MultiModal Sensing based hand motion recognition through using both ultra-
sound and sEMG with ultrasound led control has been proposed in this thesis. Al-
though the aspect of ultrasound probe shift has been investigated and reasonably recti-
fied through the addition of SEMG, there still remains the issue in how best to resolve
probe and electrode shift in a dynamic or robust manner. Therefore it firstly should
be investigated as to the best integration and fitting sites of a combined ultrasound and
sEMG sensing platform and targeting as to provide high quality signal information that
is robust to shift and in the least disruptive manner possible to the user or whether there
exists training strategies to better prepare for probe shift.

Secondly, the work demonstrated in this thesis investigated the combined modali-
ties of ultrasound and sSEMG in only probe shift conditions or same session conditions.
Although present results are very promising for this combined modality, the long term
robustness of this combined modality should be investigated across interday use.

Virtual Environment assisted hand rehabilitation platform Although closed
loop feedback has been demonstrated as an effective tool within this thesis. However,
there exists several limitations and future directions to the contributions in this thesis.
Although it is clear that electrotactile feedback has many benefits in terms of speed
of response and in terms of being very wearable, the calibration stage of electrotactile
feedback is presently a slow process that would need investigation into methods that
can reduce the length of the calibration stage and furthermore to make it a process that
can be completed by a patient without practitioner intervention. Furthermore, many
haptic feedback approaches are yet to be perfected for usage over long duration’s,
where squeeze and stretch methods may incur damage or discomfort during prolonged
use and where vibrotactile and electrotactile methods experience reduced sensitivity
during prolonged use. Future directions could focus on strategies that enable adaptive
feedback based on patient specific responses over prolonged use.

Moreover, an inherent limitation of electrotactile feedback in this work is that of
using SEMG signals as input. As the nature of electrotactile feedback will produce
noise during SEMG data capture it is necessary for current systems to use one arm for

feedback and one arm for data capture. Although using a single arm for SEMG and one
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for feedback is shown to be viable for providing feedback, an ideal prosthesis would
embed the feedback and data capture on the same arm. A potential solution to this
problem would be that of implementing ultrasound based sensing. As ultrasound based
sensing observes the nature of muscle boundaries it would be very possible for near
site sensing and feedback. Therefore future work will seek to exploit the multimodal
sensing proposed above to implement a multimodal approach to prosthesis control land

haptic feedback through an ultrasound led hand motion recognition approach.
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