2,791 research outputs found

    randUTV: A blocked randomized algorithm for computing a rank-revealing UTV factorization

    Full text link
    This manuscript describes the randomized algorithm randUTV for computing a so called UTV factorization efficiently. Given a matrix AA, the algorithm computes a factorization A=UTVA = UTV^{*}, where UU and VV have orthonormal columns, and TT is triangular (either upper or lower, whichever is preferred). The algorithm randUTV is developed primarily to be a fast and easily parallelized alternative to algorithms for computing the Singular Value Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for problems such as low-rank approximation, solving ill-conditioned linear systems, determining bases for various subspaces associated with the matrix, etc. Moreover, randUTV produces highly accurate approximations to the singular values of AA. Unlike the SVD, the randomized algorithm proposed builds a UTV factorization in an incremental, single-stage, and non-iterative way, making it possible to halt the factorization process once a specified tolerance has been met. Numerical experiments comparing the accuracy and speed of randUTV to the SVD are presented. These experiments demonstrate that in comparison to column pivoted QR, which is another factorization that is often used as a relatively economic alternative to the SVD, randUTV compares favorably in terms of speed while providing far higher accuracy

    On the Hardness of SAT with Community Structure

    Full text link
    Recent attempts to explain the effectiveness of Boolean satisfiability (SAT) solvers based on conflict-driven clause learning (CDCL) on large industrial benchmarks have focused on the concept of community structure. Specifically, industrial benchmarks have been empirically found to have good community structure, and experiments seem to show a correlation between such structure and the efficiency of CDCL. However, in this paper we establish hardness results suggesting that community structure is not sufficient to explain the success of CDCL in practice. First, we formally characterize a property shared by a wide class of metrics capturing community structure, including "modularity". Next, we show that the SAT instances with good community structure according to any metric with this property are still NP-hard. Finally, we study a class of random instances generated from the "pseudo-industrial" community attachment model of Gir\'aldez-Cru and Levy. We prove that, with high probability, instances from this model that have relatively few communities but are still highly modular require exponentially long resolution proofs and so are hard for CDCL. We also present experimental evidence that our result continues to hold for instances with many more communities. This indicates that actual industrial instances easily solved by CDCL may have some other relevant structure not captured by the community attachment model.Comment: 23 pages. Full version of a SAT 2016 pape

    Proceedings of SAT Competition 2021 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Recognition and Exploitation of Gate Structure in SAT Solving

    Get PDF
    In der theoretischen Informatik ist das SAT-Problem der archetypische Vertreter der Klasse der NP-vollständigen Probleme, weshalb effizientes SAT-Solving im Allgemeinen als unmöglich angesehen wird. Dennoch erzielt man in der Praxis oft erstaunliche Resultate, wo einige Anwendungen Probleme mit Millionen von Variablen erzeugen, die von neueren SAT-Solvern in angemessener Zeit gelöst werden können. Der Erfolg von SAT-Solving in der Praxis ist auf aktuelle Implementierungen des Conflict Driven Clause-Learning (CDCL) Algorithmus zurückzuführen, dessen Leistungsfähigkeit weitgehend von den verwendeten Heuristiken abhängt, welche implizit die Struktur der in der industriellen Praxis erzeugten Instanzen ausnutzen. In dieser Arbeit stellen wir einen neuen generischen Algorithmus zur effizienten Erkennung der Gate-Struktur in CNF-Encodings von SAT Instanzen vor, und außerdem drei Ansätze, in denen wir diese Struktur explizit ausnutzen. Unsere Beiträge umfassen auch die Implementierung dieser Ansätze in unserem SAT-Solver Candy und die Entwicklung eines Werkzeugs für die verteilte Verwaltung von Benchmark-Instanzen und deren Attribute, der Global Benchmark Database (GBD)

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore