
Proceedings of

SAT COMPETITION 2021
Solver and Benchmark Descriptions

Tomás̆ Balyo, Nils Froleyks, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda
(editors)

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2021-1

Helsinki 2021

2

PREFACE

The area of Boolean satisfiability (SAT) solving keeps on making progress. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for the success story
of SAT solving. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and to
objectively compare the performance of their own solvers with that of other state-of-the-art solvers.

SAT Competition 2021 (SC 2021, https://satcompetition.github.io/2021/), a competitive
event for SAT solvers, was organized as a satellite event of the 24th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2021). SC 2021 stands in the tradition of the
previously organized main competitive events for SAT solvers: the SAT Competitions held 2002-
2005, biannually during 2007-2013, 2014, 2016–2018, and 2020; the SAT Races held in 2006, 2008,
2010, 2015, and 2019; and SAT Challenge 2012.

SC 2021 consisted of a total of four tracks: Main Track (with CaDiCaL Hack, Crypto and No
Limits sub-tracks), Incremental Library Track, Parallel Track, and Cloud Track. The crypto sub-
track represents a second instantiation of a more domain-specific track in the SAT competitions,
complementing the otherwise general tracks.

There were two ways of contributing to SC 2021: by submitting one or more solvers to participate in
the competition and by submitting interesting benchmark instances on which the submitted solvers
could be evaluated in the competition. The rules of SC 2021 required all contributors to submit
a short, 1-2 page long description as part of their contribution. This book contains these non-
peer-reviewed descriptions in a single volume, providing a way of consistently citing the individual
descriptions and finding out more details on the individual solvers and benchmarks.

Successfully running SC 2021 would not have been possible without active support from the com-
munity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for
the computing resources needed to run SC 2021. Many thanks go to Aaron Stump for his invalu-
able help in setting up StarExec to accommodate for the competition’s needs. Furthermore, we
thank Amazon for providing the resources and support to develop parallel and distributed solvers
on the AWS cloud and for executing the Cloud and Parallel tracks. Finally, we thank CAS Software
Karlsruhe for sponsoring the awards.

Finally, we would like to emphasize that a competition does not exist without participants: we
thank all those who contributed to SC 2021 by submitting either solvers or benchmarks and the
related description.

Tomás̆ Balyo, Nils Froleyks, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, & Martin Suda
SAT Competition 2021 Organizers

3

4

Contents

Preface . 3

Solver Descriptions

CaDiCaL, Kissat, Paracooba Entering the SAT Competition 2021
Armin Biere, Mathias Fleury, and Maximilian Heisinger 10

Four CDCL Solvers Based On Learnt Clause Management And Restarts
Shunyang Bi, Zhang Qu, Meihua Liu, Pengfei Li, Yang Zhang, and Hailong You 14

Kissat_MAB: Combining VSIDS and CHB through Multi-Armed Bandit
Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux 15

Four CDCL solvers based on expLRB, expVSIDS and Glue Bumping
Md Solimul Chowdhury, Martin Müller, and Jia-Huai You 17

Cadical_SCAVEL and its friends at the SAT Competition 2021
Zhihui Li, Guanfeng Wu, Yang Xu, and Huimin Fu 19

Maple_MBDR_Cent_PERM and Maple_MDBR_BJL in the 2021 SAT Solver Compe-
tition
Sima Jamali and David Mitchell . 21

Optsat, Abcdsat and Maple_simp: Speed up Solving Satisfiable Instances
Jingchao Chen . 23

CleanMaple
Benjamin Kaiser and Robert Clausecker . 24

CleanMaple_PriPro, CaDiCaL_PriPro and CaDiCaL_PriPro_no_bin
Benjamin Kaiser and Robert Clausecker . 25

hKis, hCaD, PaKis and PaInleSS_ExMapleLCMDistChronoBT in the SC21
Rodrigue Konan Tchinda and Clémentin Tayou Djamegni 26

CaDiCaL Modification – Watch Sat
Norbert Manthey . 28

MergeSAT 3.0
Norbert Manthey . 30

ParaFROST at the SAT Race 2021
Muhammad Osama and Anton Wijs . 32

MapleSSV SAT Solver for SAT Competition 2021
Saeed Nejati, Md Solimul Chowdhury, and Vijay Ganesh 35

SLIME SAT Solver
Oscar Riveros . 37

5

Mallob in the SAT Competition 2021
Dominik Schreiber . 38

New Concurrent and Distributed Painless solvers: P-MCOMSPS, P-MCOMSPS-COM,
P-MCOMSPS-MPI, and P-MCOMSPS-COM-MPI
Vincent Vallade, Ludovic Le Frioux, Razvan Oanea, Souheib Baarir, and Julien
Sopena . 40

Improving CDCL via Local Search
Xindi Zhang, Shaowei Cai, and Zhihan Chen . 42

Benchmark Descriptions

Benchmark Instance Selection
Markus Iser . 45

CNF Encodings of Complete Pairwise Combinatorial Testing of our SAT Solver Satch
Armin Biere . 46

SAT-Competition Benchmarks Spawning from Concurrency Theory
Pierre Bouvier and Hubert Garavel . 47

Verifying Optimums of (Partial) Max-SAT Formulas
Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux 49

Safe Population Growth with Rule 30
Md Solimul Chowdhury, Martin Müller, and Jia-Huai You 50

Bipartite Perfect Matching Benchmarks
Cayden R. Codel, Joseph E. Reeves, Marijn J. H. Heule, Randal E. Bryant . . 52

Hamiltonian Cycle Instances using the Chinese Remainder Encoding
Marijn J. H. Heule . 54

Database Repair for Multivalued Dependencies
Sima Jamali, Babak Salimi, and David Mitchell 55

SAT Encodings for Testing Prime and Quadratic Residue
Jingchao Chen . 56

Sliding Tile Puzzles
Robert Clausecker and Benjamin Kaiser . 57

Minimal Superpermutation SAT Benchmarks
Martin Mariusz Lester . 58

At Least Two Solutions
Norbert Manthey . 60

A Naive SAT-Encoding of Cluster Editing
Stefan Mengel . 62

Verifying String Safety Properties in AWS C99 Package with CBMC
Milan van Stiphout, Muhammad Osama, and Anton Wijs 64

PEQNP Python Library Benchmarks
Oscar Riveros . 65

Multiplier Input Decomposition Instances generated by ToughSAT
Shunyang Bi, Zhang Qu, Meihua Liu, Pengfei Li, Yang Zhang, and Hailong You 66

Computing Preferred Extensions for Abstract Argumentation
Xindi Zhang and Shaowei Cai . 67

Mycielski graphs and PR proofs
Emre Yolcu and Marijn J. H. Heule . 69

6

Solver Index . 71
Benchmark Index . 72
Author Index . 73

7

8

SOLVER DESCRIPTIONS

CADICAL, KISSAT, PARACOOBA
Entering the SAT Competition 2021

Armin Biere Mathias Fleury Maximilian Heisinger
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—This system description describes updates to our se-
quential SAT solvers CADICAL and KISSAT submitted to the
main track as well as updates to our distributed cube-and-
conquer solver PARACOOBA submitted to the cloud track.

CADICAL 1.4.0

The competition organizers decided to use CADICAL as
basis for a “hack track”. Version 1.4.0 of CADICAL used
in this track differs from the version submitted to the SAT
Competition 2020 [1] as follows.

First, our version of “reason side bumping” [2] not only
bumps literals in reason clauses of literals in the learned clause,
but, depending on a run-time recursion depth parameter, also
bumps reason literals of literals in reason clauses recursively.
By default the recursion depth limit was 1, which lead to the
same behaviour as [2]. Now, in “stable mode”, focusing on sat-
isfiable instances with few restarts and smoothed bumping [3],
we have increased this recursion depth limit to 2.

Second, to compute several statistics, CADICAL uses
exponential moving averages, particularly for controlling
restarts [4], [5]. Initializing these averages is non-trivial and
actually leads to biased estimates. For instance, without proper
initialization, the slow moving average of the LBD (glucose
levels) of learned clauses ramps up too slowly, trailing the fast
moving average, which in turn triggers unmotivated restarts
initially. We proposed a partial solution in [5] and imple-
mented another improvement based on over-approximating
the smoothing factor geometrically. With CADICAL 1.4.0 we
adopted the method for initializing exponential moving aver-
ages proposed in the ADAM approach [6], which maintains
and uses a correction factor to obtain an unbiased average.

Finally, and most importantly, the version of CADICAL
submitted to the SAT Competition 2020 unfortunately failed
to export the assignment found in local search minimizing the
number of falsified clauses back to the CDCL loop as saved
phases (due to a change in semantics of copy_phases),
which in essence rendered the local search component com-
pletely useless. And indeed, our post-competition experiments
showed, that this “heuristic bug” resulted in solving fewer
instances during the competition. In version 1.4.0 saved phases
are again explicitly overwritten at the end of local search with
the minimum assignment found during local search.

Supported by Austrian Science Fund (FWF) projects W1255-N23 and
S11408-N23, by the LIT AI and LIT Secure and Correct Systems Labs and the
LIT project LOGTECHEDU all three funded by the State of Upper Austria.

CADICAL SC2021

On top of version 1.4.0 of CADICAL, as used in the
“CADICAL hack track”, we have added a light version of
(what we call) “shrinking” by Feng & Bacchus presented
at SAT 2020. Like the original version [7], our version [8]
shortens learned clauses by calculating the unique implication
point (UIP) on every level of the conflict clause, restricted to
not adding literals on lower levels. Unlike Feng & Bacchus’s
version, our algorithm is efficient enough to be executed
unconditionally and minimizes the clause at the same time.
This technique is particularly effective when long clauses are
learned as in the planning track of the SAT Competition 2020.
For more details please refer to [8].

KISSAT SC2021

We have also implemented “shrinking” [8] in KISSAT,
which beside reducing the length of learned clauses yields
the same run-time improvements on instances from the plan-
ning track, without degrading performance on other instances,
even though the percentage of time spent in conflict analysis
(including clause minimization and shrinking) goes up.

The local search procedure either imports decision phases
from the CDCL solver or in an alternating fashion uses
previously best assignments computed by local search, similar
in spirit to the “cache” component in YALSAT [9]. This allows
the local search to continue where it left off with the best
assignments it found earlier. In addition of using a fixed CB
value of 2.0 we also allow to interpolate it based on average
clause length and further use three variants of fixed clause
weights. These “strategies” are changed at each call to the
local search procedure (as during “restarts” in YALSAT).

Beside using the new method described above to initialize
exponential moving averages the new version of KISSAT

• reduced the number of rephasing methods by removing
the random and the flipped rephasing,

• computes backbones on the binary implication graph,
• schedules variable elimination without a priority queue,
• bounds reason side variable bumping, and

uses its default non-compact memory configuration for the
competition in order to allow the solver to go beyond 24 GB
main memory (as the organizers now announced to use 128 GB
main memory during the competition).

Finally, we use a new method for semantic gate extraction in
bounded variable elimination of a fixed candidate variable x.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

10

Let F = Fx ∧ Fx̄ ∧ F ′, where F` is the CNF of clauses
of F which contain literal `, with ` ∈ {x, x̄}, and where
(Fx∧Fx̄) is called the environment of x. The remaining clauses
of F without x nor x̄ are collected in F ′. Given CNFs Hx,
Hx̄ where clauses in H` all contain `, we define the set of
resolvents

Hx ⊗Hx̄ = {(C ∨D) | (C ∨ x) ∈ Hx, (D ∨ x̄) ∈ Hx̄

and (C ∨D) not trivial}.
As usual we interpret a CNF also as a set of clauses. Our goal
is to eliminate x through resolution, that is replacing F by
(Fx ⊗ Fx̄) ∧ F ′.

Already in [10], which introduced the SATELITE preproces-
sor, it was proposed to extract subsets of “gate clauses” from
Fx and Fx̄ which encode “circuit gates” with output x, also
called definitions of x. Resolving these gate clauses against
each other results in tautological (trivial) resolvents, and, in
particular, this situation allows to ignore resolvents between
non-gate clauses (since those are implied).

Finding such gate clauses was originally based on syntactic
pattern matching, in essence inverting the Tseitin encoding.
For details and a semantic variant inspired by BDD algorithms
and implemented in Lingeling [11] see [12]. In KISSAT we
follow more recent semantic approaches with applications in
model counting [13] and QBF reasoning [14], which use a
SAT solver as oracle to find gate clauses.

Let x be a candidate variable, which is tried to be eliminated
without increasing the number of clauses much, and, for which
all necessary resolvents have to be generated. If syntactic
pattern matching for a Tseitin encoding of an AND, XOR
or IF-THEN-ELSE gate with x as output fails, then our new
version of KISSAT tries to extract gate clauses semantically
by checking satisfiability of (Fx|x̄)∧ (Fx̄|x), i.e., the formula
which is obtained by removing the occurrences of x in Fx and
of x̄ in Fx̄ and then conjoining the result. If this formula is
unsatisfiable we compute a clausal core which in turn can be
mapped back to original gate clauses Gx and Gx̄ in the envi-
ronment (by adding back x resp. x̄). Let H` be the remaining
clauses of F` with F` = G`∧H`. Then it turns out that Fx⊗Fx̄

can be reduced to (Gx⊗Gx̄)∧(Gx⊗Hx̄)∧(Gx̄⊗Hx) and thus
(Hx⊗Hx̄) can be omitted.1 The effect is that fewer resolvents
are generated and thus more variables can be eliminated.

To see that the last formula can be omitted assume that
A ∧B is unsatisfiable and thus Ā ∨ B̄ is valid. Therefore

(A∨C)∧(B∨D) ≡ (A∨C)∧(B∨D)∧(Ā∨B̄)⇒ (C∨D)

using in essence two resolution steps for the implication.
Setting (A,B,C,D) = (Gx, Gx̄, Hx̄, Hx) shows the rest.

KITTEN

In order to check satisfiability and compute clausal cores
of these co-factors of the environment of a variable we have
implemented a simple sub-solver KITTEN with in-memory
proof tracing and fast allocation and deallocation. If the con-
junction of the co-factors of the environment are unsatisfiable

1Resolvents among gate clauses are not necessarily tautological though.

we reduce through the API in KITTEN its formula to the
clausal core, shuffle clauses and run KITTEN a second time
which usually results in a smaller core and thus fewer gate
clauses (increasing chances that the variable is eliminated).

If only one co-factor contains core clauses, we derive a unit
clause instead. In this case the learned clauses in KITTEN are
traversed to produce a DRAT proof trace sequence for this
unit. This is one benefit of using a proof tracing sub-solver
in contrast to the BDD inspired approach in Lingeling [11],
which can not produce DRAT proofs easily. This KITTEN
feature of extracting proofs in memory is also essential to
produce proofs for “SAT sweeping” discussed next.

KISSAT SC2021 SWEEP

As in the SAT Competition 2020 we submitted the de-
fault configuration “KISSAT SC2021 DEFAULT” as well as
“KISSAT SC2021 SAT”. The latter uses target phases also dur-
ing focused mode [15] and usually works better for satisfiable
instances. Instead of submitting a configuration specialized
for unsatisfiable instances to the SAT Competition 2021, we
decided to submit some work in progress, which in principle
we expect to also work better on unsatisfiable instances.

Using KITTEN as sub-solver we perform semantically com-
plete “SAT sweeping” of small extended environments around
each variable, which works as follows. For each candidate
variable we allocate a fresh instance of KITTEN and traverse
in breadth first search (BFS) the variable incidence graph (in
which two variables share an edge if they occur in the same
clause) and copy all clauses up to a certain “depth” limit away
(the number of BFS generations) from the candidate variable.
We start with the default depth limit of 2 and also limit the
total number of copied clauses (1000) and variables (100).

After copying the environment clauses, we let KITTEN
compute a satisfiable assignment of the extended environment.
Note that an unsatisfiable environment actually results in the
whole formula to be unsatisfiable. From this satisfying assign-
ment we produce a candidate list of backbone variables and
a partition of equivalent literal candidates. The accumulated
time spent in KITTEN is further limited by “ticks” as in
KISSAT [15].

Then for each backbone candidate, we assume its negation
and call the sub-solver again. If the result is unsatisfiable we
learn the unit (and optionally extract a DRAT proof trace). Oth-
erwise we use the satisfying assignment provided by KITTEN
to refine both the backbone candidate list and the partition of
equivalent literal candidates. By randomizing and every third
call flipping the saved phases before calling the sub-solver the
number of necessary calls is reduced substantially.

In the last part we then try to prove for each pair of re-
maining equivalent literal pairs, whether they imply each other,
through two sub-solver calls with corresponding assumptions.
If both calls are unsatisfiable, the two literals are equivalent
and are merged in a global union-find data structures (and
again optionally a DRAT proof sequence is extracted). This
union-find data structure is consulted during the copy phase
to add additional clauses of equivalent literals (as well as the

11

equivalence). A failing satisfiable call refines the equivalent
literal candidate partition and the process continues until no
more equivalent literal candidates are left.

The advantage of this approach is that the effort is heavily
bounded, i.e., propagation over a large number of variables
is avoided and solving is completely decoupled from the
main solver. This version of KISSAT is still considered work
in progress and for instance lacks better (re)scheduling of
candidate variables. For more details and references on “SAT
sweeping” see [16], which tries to achieve the same effect,
but uses global blocked clause decomposition. A more sim-
ilar approach but without using a dedicated sub-solver was
implemented in our discontinued SAT solver SPLATZ [17].

PARACOOBA SC2021

A new version of our solver PARACOOBA [15], [18] has
been submitted to the cloud track. It is a distributed cube-
and-conquer solver. The input DIMACS is analyzed and split
once on the main node into multiple subproblem-branches.
Each branch produces a tree of subproblems (cubes) that
can be worked on independently. If branches of a cube-tree
finish early, the branch is converted into a clause, which
is distributed to all other solvers in the cluster. The first
cube-tree is always favored when deciding on what task to
work on next, so parallel cube trees do not starve the first
tree-instance of available executors. Problems are re-split in
case the CDCL-solver runs into a time-out depending on
other solving times. Re-splits are done using the lookahead
mechanism provided by CADICAL, which is also used as
incremental solver to work on all generated cubes. To guard
against problems that are faster to solve using a pure CDCL-
based solving approach, KISSAT is running in parallel to the
cube-and-conquer approach on the main node.

The architecture has been revised since last year, so that
no ticks or delays are required anymore before tasks can be
offloaded. Changes in a compute node’s state are analyzed,
compared to the last known received status of each known
peer and sent only when the information gain of the new status
is significant enough to warrant the transmission. This way,
scheduling is more dynamic, relying less on overcommitting
work (which lead to overfull queues) and instead offloading
only when other nodes are nearly out of work. Furthermore,
physical network connections no longer coincide with logi-
cal connections, which enables reconnects to work without
losing previously sent messages. Timeouts are specified per
peer and enforced with an improved keep-alive system that
sends small messages if a connection has been idle for too
long. This makes solving more resilient against network-based
issues, even on commodity hardware. The latter also enables
main nodes that only offload work and do not have workers
themselves, which is useful for low-powered devices that only
have wireless connections. Due to the low network bandwidth
requirements, the connected peers can also be in the cloud and
connected via SSH tunnels.

In order to test the improved offloading, the tracing tool
DISTRAC was developed. This tool generates compact binary

trace files that are concatenated after a run. A trace contains all
required metadata (names, descriptions, causal dependencies
between events) and can be analyzed using standard CLI tools,
either in binary form, or after printing it in a textual column-
based format. While analyzing the trace, events are sorted
in order of system-wide occurrence, keeping causal relations
intact. This enables easier debugging of network or solver
events compared to merging log files, as filtering and selecting
streams of data becomes easier.

One of the produced visualizations showing all offloads
between compute nodes while solving a small benchmark can
be seen below. Arrows are pointing from the compute node
that currently works on a task to the new compute node that the
task has been offloaded to. The Y-axis describes the compute
node id, the X-axis the timestamp of an event. Highly utilized
compute nodes offload their tasks to less utilized compute
nodes, resulting in small clusters of arrows pointing to the
same nodes, trying to maximize the active workers in the
system without centralized coordination.

1

2

3

4
co

m
pu

te
no

de
id

t

The solver has further been modularized into broker, com-
municator, solver, and runner components. These are either
loaded at runtime as shared objects or statically linked into
one binary. This mechanism enables using the PARACOOBA
infrastructure for other problems, e.g., by implementing a
custom solver module that uses the other mechanisms to
automatically distribute tasks, or by changing the already
provided solver to use different SAT-solvers. Automated unit-
and system-tests work with dynamically loaded shared objects
and can thus also be used to check third-party modules.

I. LICENSE

All our solvers are licensed under an MIT license and are
available at https://github.com/arminbiere/cadical, http://fmv.
jku.at/cadical for CADICAL, https://github.com/arminbiere/
kissat, http://fmv.jku.at/kissat for KISSAT, and https://github.
com/maximaximal/Paracooba for PARACOOBA.

REFERENCES

[1] A. Biere, “CaDiCaL at the SAT Race 2019,” in SAT Race 2019, ser.
Department of Computer Science Series of Publications B, M. Heule,
M. Järvisalo, and M. Suda, Eds., vol. B-2019-1. University of Helsinki,
2019, pp. 8–9.

[2] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate
based branching heuristic for SAT solvers,” in Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, ser. Lecture Notes in
Computer Science, N. Creignou and D. L. Berre, Eds., vol. 9710.
Springer, 2016, pp. 123–140.

12

[3] C. Oh, “Between SAT and UNSAT: the fundamental difference in
CDCL SAT,” in SAT 2015, ser. LNCS, M. Heule and S. A. Weaver,
Eds., vol. 9340. Springer, 2015, pp. 307–323. [Online]. Available:
https://doi.org/10.1007/978-3-319-24318-4 23

[4] G. Audemard and L. Simon, “Refining restarts strategies for SAT and
UNSAT,” in Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, ser. Lecture Notes in Computer Science,
M. Milano, Ed., vol. 7514. Springer, 2012, pp. 118–126.

[5] A. Biere and A. Fröhlich, “Evaluating CDCL restart schemes,” in
Proceedings of Pragmatics of SAT 2015, Austin, Texas, USA, September
23, 2015 / Pragmatics of SAT 2018, Oxford, UK, July 7, 2018, ser.
EPiC Series in Computing, D. L. Berre and M. Järvisalo, Eds., vol. 59.
EasyChair, 2018, pp. 1–17.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[7] N. Feng and F. Bacchus, “Clause size reduction with all-UIP learning,”
in Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
ser. Lecture Notes in Computer Science, L. Pulina and M. Seidl, Eds.,
vol. 12178. Springer, 2020, pp. 28–45.

[8] M. Fleury and A. Biere, “Efficient all-uip learned clause minimization,”
2021, submitted.

[9] A. Biere, “Yet another local search solver and Lingeling and friends
entering the SAT Competition 2014,” in Proc. of SAT Competition 2014
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, A. Balint, A. Belov, M. Heule, and
M. Järvisalo, Eds., vol. B-2014-2. University of Helsinki, 2014, pp.
39–40.

[10] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–
75.

[11] A. Biere, “Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010,” Johannes Kepler University Linz, Tech. Rep., 2010.

[12] A. Biere, M. Järvisalo, and B. Kiesl, “Preprocessing in SAT solving,”
in Handbook of Satisfiability, 2nd ed., ser. Frontiers in Artificial In-
telligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2021, vol. 336, pp. 391 – 435.

[13] J. Lagniez, E. Lonca, and P. Marquis, “Definability for model counting,”
Artif. Intell., vol. 281, p. 103229, 2020.

[14] F. Slivovsky, “Interpolation-based semantic gate extraction and its appli-
cations to QBF preprocessing,” in Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I, ser. Lecture Notes in Computer Science, S. K.
Lahiri and C. Wang, Eds., vol. 12224. Springer, 2020, pp. 508–528.

[15] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[16] M. Heule and A. Biere, “Blocked clause decomposition,” in Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19,
2013. Proceedings, ser. Lecture Notes in Computer Science, K. L.
McMillan, A. Middeldorp, and A. Voronkov, Eds., vol. 8312. Springer,
2013, pp. 423–438.

[17] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[18] M. Heisinger, M. Fleury, and A. Biere, “Distributed cube and conquer
with paracooba,” in Theory and Applications of Satisfiability Testing -
SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10,
2020, Proceedings, ser. Lecture Notes in Computer Science, L. Pulina
and M. Seidl, Eds., vol. 12178. Springer, 2020, pp. 114–122.

[19] N. Feng and F. Bacchus, “Clause size reduction with all-UIP learning,”
in SAT, ser. LNCS, vol. 12178. Springer, 2020, pp. 28–45.

[20] R. Hickey, N. Feng, and F. Bacchus, “Cadical-trail, Cadical-alluip,
Cadical-alluip-trail and Maple-LCM-Dist-alluip-trail at the SAT Com-
petition,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, p. 10.

[21] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatiorial design,”
IEEE Trans. Software Eng., vol. 23, no. 7, pp. 437–444, 1997. [Online].
Available: https://doi.org/10.1109/32.605761

[22] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E. Choi, “Greedy
combinatorial test case generation using unsatisfiable cores,” in
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp.
614–624. [Online]. Available: https://doi.org/10.1145/2970276.2970335

13

Four CDCL Solvers Based On Learnt Clause

Management And Restarts

 1st Shunyang Bi, 1st Zhang Qu, 5th

Hailong You

School of Microelectronics

XiDian University

Xi’an China

shybi@stu.xidian.edu.cn,

quzhang2019@stu.xidian.edu.cn,
hlyou@mail.xidian.edu.cn

 2nd Meihua Liu

School of Electronic and Computer

Engineering

Peking University Shenzhen Graduate

School

Shenzhen Guangdong China
liumh@pku.edu.cn

 3rd Pengfei Li, 4th Yang Zhang

EDA Group

SMIT Holdings Limited

Shenzhen Guangdong China

379401663@qq.com,
yanzhang@smit.com.cn

Abstract—this description introduce four CDCL solvers:

Relaxed_LCFTP, Relaxed_LCFTP_V2, Relaxed_LCFTP_V3

and Relaxed_LCMCBDL_BLB, which are entering to the SAT

Competition 2021.

I. INTRODUCTION

This description presents four improved solvers based on
Relaxed_LCMDCBDL_newTech (First SAT solver in SAT
Competition 2020). The main improvements we made are
involved the following two aspects: firstly, we changed the
bumping evaluation method of learnt clauses; secondly, we
adjusted the luby restart policy based on the variation
tendency of the backtrack level during the solving process.

II. TWO IMPROVEMENTS

A. Learnt clause feedback to propation

In 2015, Chanseok Oh added a mid-tier of learnt clause
database in COMiniSatPS, it quickly have become the
dominant clause management strategy in recent SAT Race.
The reason why this strategy so efficient is clearly clarified in
the paper [1]. However, we tried to figure out the inner reason
about it. And we found another decisive factor push this
strategy to its solving limits of performance. The factor we
observed that really matters in this principle is the feedback of
learnt clause, which connects the whole solver components
and guides the future search of algorithm. As such, the quality
of learnt clause is the cornerstone of the solver [2]. From this
respects, we guess the feedback of learnt clause have
something with its quality. And we traced the call of learnt
clause in the whole solver running except the conflict
analyzing, which was the dominant strategy in recent year.
Consequently, we found the important call of learnt clause in
Boolean constrain propagation. In this process, with the
assignment of literals, the algorithm search the related clauses
and literals [3]. It would be high quality if a learnt clause is
used repeatedly in propagation. Based on this , we tried to
change the method of bumping activities, which directly
represents the quality of learnt clauses.

Additionally, thanks to the professor Cai, and his excellent
solver, Relaxed_LCMDCBDL_newTech, our details of this
new strategy are implied in Relaxed_LCFTP. And the other
version, Relaxed_LCFTP_V2 and his friend
Relaxed_LCFTP_V3, are the parameter adjusting versions
with our personal experiment.

B. Backtracking level-based optimization method for

restarts

Relaxed_LCMDBDL_BLB used a restart policy based on
the variation tendency of the backtracking level. The original
intention of this improvement was whether there is a certain
attribute does not change during the solving process when
SAT solvers equipped with the same branch heuristics,
preprocessing, and learning clause management but with
different restart policies. We extracted the backtracking levels
of the solution process and observe their properties in different
restart policies, and found that the trend of the backtracking
levels in the same instance was broadly similar. On the other
hand, we configured the luby restart policy for Minisat to
observe the performance of the UNSAT and SAT instance
backtracking levels. We found an upward trend in the
backtracking levels in SAT instances, and the trend is made
more pronounced by gradually increasing the luby interval.
And it is shown by experiments that the strategy of gradually
increasing the luby interval is faster than the original version
for SAT instances. Therefore, we use the same method to
calculate the backtracking level as we used to calculate lbd,
using the backtracking level as another threshold parameter
for the restart.

REFERENCES

[1] C. Oh, “Between SAT and UNSAT: The fundamental difference in

CDCL SAT,” in SAT, 2015.

[2] G. Audemard and L. Simon, “On the glucose sat solver,” vol. 27, no.
01.

[3] M. Luo, C. Li, F. Xiao, F. Many`a, and Z. L¨u, “An effective learnt
clause minimization approach for CDCL SAT solvers,” in Proceedings
of IJCAI 2017, 2017, pp. 703–711.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

14

Kissat MAB: Combining VSIDS and CHB through
Multi-Armed Bandit

Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux
Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

{mohamed-sami.cherif, djamal.habet, cyril.terrioux}@univ-amu.fr

Abstract—This document describes the Kissat MAB solver
which is based on the solver Kissat, winner of 2020 SAT
competition. We augmented Kissat with a Multi-Armed Bandit
(MAB) framework which combines the Variable State Indepen-
dent Decaying Sum (VSIDS) and the Conflict-History Based
(CHB) branching heuristics by adaptively choosing a relevant
heuristic at each restart using the Upper Confidence Bound
(UCB) strategy.

Index Terms—SAT solver, Heuristics, Multi-Armed Bandit

I. INTRODUCTION

Conflict Driven Clause Learning (CDCL) [8] solvers are
known to be efficient on structured instances and manage
to solve ones with a large number of variables and clauses.
An important component in such solvers is the branching
heuristic which picks the next variable to branch on. The
Variable State Independent Decaying Sum (VSIDS) [9] has
been the dominant heuristic since its introduction two decades
ago. Recently, Liang and al. devised a new heuristic for SAT,
called Conflict History-Based (CHB) branching heuristic [6],
and showed that it is competitive with VSIDS. In the last years,
VSIDS and CHB have dominated the heuristics landscape
as practically all the CDCL solvers presented in recent SAT
competitions and races incorporate a variant of one of them.

Recent research has shown the interest of machine learning
in designing efficient search heuristics for SAT [5]–[7] as
well as for other decision problems [4], [10]–[12]. One of the
main challenges is defining a heuristic which can have high
performance on any considered instance. Indeed, a heuristic
can perform very well on a family of instances while failing
drastically on another. To this end, we use reinforcement
learning under the Multi-Armed Bandit (MAB) framework to
pick an adequate heuristic among CHB and VSIDS for each
instance. The MAB takes advantage of the restart mechanism
in modern CDCL algorithms to evaluate each heuristic and
choose the best one accordingly. The MAB uses the Upper
Confidence Bounds (UCB) [1] strategy to select an arm at
each restart.

II. COMBINING VSIDS AND CHB THROUGH MAB

Let A = {V SIDS,CHB} be the set of arms for the
MAB containing different candidate heuristics. The proposed
framework selects a heuristic a ∈ A at each restart of the
backtracking algorithm according to the Upper Confidence
Bound (UCB) [1] policy. To choose an arm, UCB relies on
a reward function calculated during each run to estimate the

performance of the chosen branching heuristic. We choose a
reward function that estimates the ability of a heuristic to reach
conflicts quickly and efficiently. If t denotes the current run,
the reward of arm a ∈ A is calculated as follows:

rt(a) =
log2(decisionst)

decidedV arst

decisionst and decidedV arst respectively denote the number
of decisions and the number of decision variables, i.e. variables
which were branched on at least once, in the run t. This
reward function is adapted from the explored sub-tree measure
introduced in [10].

The UCB1 algorithm [1] is used to select the next branching
heuristic within the set of candidate heuristics A. The follow-
ing parameters are maintained for each candidate arm a ∈ A:

• nt(a) is the number of times the arm a is selected during
the t runs,

• r̂t(a) is the empirical mean of the rewards of arm a over
the t runs.

UCB1 thus selects the arm a ∈ A that maximizes UCB(a)
which is defined as follows :

UCB(a) = r̂t(a) + c.

√
ln(t)

nt(a)

The left-side term of UCB(a) aims to put emphasis on
arms that received the highest rewards. Conversely, the right-
side term ensures the exploration of underused arms. The
parameter c can help to appropriately balance the interchange
between the exploitation and exploration phases in the MAB
framework.

III. IMPLEMENTATION

We implement this idea in Kissat [3] which won first place
in the main track of the SAT Competition 2020. Note that
this solver is a condensed and improved reimplementation
of the reference and competitive solver CaDiCaL [2], [3] in
C. We maintain the VSIDS variant already implemented in
Kissat which is similar to Chaff’s where all analyzed variables
are bumped after every conflict [9]. We also augment the
solver with the heuristic CHB as specified in [6] except that
we update the scores of the variables in the last decision
level after unit propagation. In addition, we set the parameter
c to 2. The rewards in UCB are initialized by launching
each heuristic once during the first restarts. It is important
to note that the only modified components of the solver are

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

15

the decision component and the restart component, i.e. all the
other components as well as the default parameters of the
solver are left untouched.

REFERENCES

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis
of the Multiarmed Bandit Problem. Mach. Learn., 47(2-3):235–256,
2002.

[2] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2017. In Tomáš Balyo, Marijn Heule,
and Matti Järvisalo, editors, Proc. of SAT Competition 2017 – Solver and
Benchmark Descriptions, volume B-2017-1 of Department of Computer
Science Series of Publications B, pages 14–15. University of Helsinki,
2017.

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian
Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020. In Tomas Balyo, Nils Froleyks,
Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions,
volume B-2020-1 of Department of Computer Science Report Series B,
pages 51–53. University of Helsinki, 2020.

[4] Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. On the
Refinement of Conflict History Search Through Multi-Armed Bandit.
In Miltos Alamaniotis and Shimei Pan, editors, Proceedings of 2020
IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), pages 264–271. IEEE, 2020.

[5] Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Im-
proving SAT Solver Heuristics with Graph Networks and Reinforcement
Learning. CoRR, 2019.

[6] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Exponential Recency Weighted Average Branching Heuristic for SAT
Solvers. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 3434–3440, 2016.

[7] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Learning rate based branching heuristic for SAT solvers. In Proceedings
of the International Conference on Theory and Applications of Satisfia-
bility Testing, pages 123–140, 2016.

[8] João P Marques-Silva and Karem A Sakallah. Grasp: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

[9] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In
Proceedings of the Design Automation Conference, pages 530–535,
2001.

[10] Anastasia Paparrizou and Hugues Wattez. Perturbing branching heuris-
tics in constraint solving. In Helmut Simonis, editor, Principles and
Practice of Constraint Programming, pages 496–513, Cham, 2020.
Springer International Publishing.

[11] Hugues Wattez, Frederic Koriche, Christophe Lecoutre, Anastasia Pa-
parrizou, and Sébastien Tabary. Learning Variable Ordering Heuristics
with Multi-Armed Bandits and Restarts. In Proceedings of the European
Conference on Artificial Intelligence, 2020.

[12] Wei Xia and Roland H. C. Yap. Learning Robust Search Strategies Using
a Bandit-Based Approach. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 6657–6665, 2018.

16

Four CDCL solvers based on expLRB, expVSIDS
and Glue Bumping

Md Solimul Chowdhury
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

mdsolimu@ualberta.ca

Martin Müller
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

mmueller@ualberta.ca

Jia-Huai You
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

jyou@ualberta.ca

Abstract—This document describes 4 CDCL SAT
solvers: kissat gb, kissat crvr gb, cms expV gbL and
CaDiCaL hack gb which are entering the SAT Competition-
2021. These solvers are based on three new ideas: 1) Guidance
of Learning Rate Based (LRB) and Variable State Independent
Decaying Sum (VSIDS) branching heuristics via random
exploration amid pathological phases of conflict depression
2) Activity score bumping of variables which appear in the
glue clauses, and 3) Common Reason decision Variable score
Reduction (CRVR).

I. GUIDANCE OF CDCL BRANCHING HEURISTICS VIA
RANDOM EXPLORATION DURING CONFLICT DEPRESSION

This approach is based on our observation that CDCL SAT
solving entails clear non-random patterns of bursts of conflicts
followed by longer phases of conflict depression (CD) [1].
During a CD phase a CDCL SAT solver is unable to generate
conflicts for a consecutive number of decisions. To correct
the course of such a search, we propose to use exploration to
combat conflict depression. We therefore design a new SAT
solver, called expSAT, which uses random walks in the context
of CDCL SAT solving. In a conflict depression phase, random
walks help identify more promising variables for branching.
As a contrast, while exploration explores future search states,
LRB and VSIDS relies on conflicts generated from the past
search states.

A. expSAT algorithm

Given a CNF SAT formula F , let vars(F), uV ars(F)
and assign(F) denote the set of variables in F , the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F , expSAT also accepts
four exploration parameters nW, lW, pexp and ω, where 1 ≤
nW, lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. These parameters
control the exploration aspects of expSAT . The details of these
parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as follows:
(I) Before each branching decision, if a substantially large
CD phase is detected then with probability pexp, expSAT
performs an exploration episode, consisting of a fixed number
nW of random walks. Each walk consists of a limited number
of random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity

heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number lW of random steps have been taken. Figure 1
illustrates an exploration episode amid a CD phase. (II) In an
exploration episode of nW walks of maximum length lW ,
the exploration score expScore of a decision variable v is the
average of the walk scores ws(v) of all those random walks
within the same episode in which v was one of the randomly
chosen decision variables. ws(v) is computed as follows: (a)
ws(v) = 0 if the walk ended without a conflict. (b) Otherwise,
ws(v) = ωd

lbd(c) , with decay factor 0 < ω ≤ 1, lbd(c) the
LBD score of the clause c learned for the current conflict,
and d ≥ 0 the decision distance between variable v and the
conflict which ended the current walk: If v was assigned at
some step j during the current walk, and the conflict occurred
after step j′ ≥ j, then d = j′ − j. We assign credit to all
the step variables in a walk that ends with a conflict and
give higher credit to variables closer to the conflict. (III)
The novel branching heuristic expVSIDS adds VSDIS score
and expScore of the variables that participated in the most
recent exploration episode. For expVSIDS, a variable v∗ with
maximum combined score is selected for branching. (IV) All
other components remain the same as in the underlying CDCL
SAT solver.

Fig. 1: The 20 adjacent cells denote 20 consecutive decisions
starting from the dth decision, with d > 0, where a green cell
denotes a decision with conflicts and a black cell denotes a
decision without conflicts. Say that amid a CD phase, just
before taking the (d + 9)th decision, expSAT performs an
exploration episode via 3 random walks each limited to 3 steps
. The second walk ends after 2 steps, due to a conflict. A triplet
(v, i, j) represents that the variable v is randomly chosen at
the jth step of the ith walk.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

17

II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB) [2], based on
the notion of glue centrality (gc) of glue variables. Given a
glue variable vg , glue centrality of vg dynamically measures
the fraction of the glue clauses in which vg appears, until the
current state of the search. Mathematically, the glue centrality
of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .

Increase Glue Level: Whenever Mgb learns a new glue clause
g, before making an assignment with the first UIP variable that
appears in g, it invokes this procedure. For each variable vg
in g, its glue level, gl(vg) is increased by 1.
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)

, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg . Finally, the activity
score of vg , activity(vg) is bumped as follows:

activity(vg)← activity(vg) + bf

III. COMMON REASON DECISION VARIABLE SCORE
REDUCTION (CRVR)

During a CDCL search, a single decision can generate more
than one conflicts, from which multiple clauses are learned.
We refer decisions with multiple conflicts as mc decisions. Let
a mc decisionM generates n conflicts, from which it learns a
sequence of clauses L = (L1 . . . Ln). For any clause Li ∈ L,
let Li = Ri∨¬f , where Ri be the reason clause and f be the
unique implication point for the conflict that generates Li.

We call the set of decision variables in R1∩. . .∩Ri∩. . .∩Rn

as Common Decision Variables (CRVs) for M. CRVs are the
common decision variables over the reason clauses in M.

The CRVR scheme decreases the activity scores of those
CRVs, which correspond to mc decisions with average LBD
score higher (i.e., have lower quality learned clauses) than the
recent search average.

IV. SOLVERS DESCRIPTION

We have submitted four CDCL SAT solvers to SAT
Competition-2021, which are based on four combinations of
the three approaches described in the previous sections. Our
solvers are implemented on top of the solver kissat sat (kissat
with sat configuration) [3], CaDiCaL1.4.0 (base solver for
the CaDiCaL hack track) [4], and CryptoMiniSAT5.8.0 [5].
In the following, we describe our solvers:

a) kissat gb: This solver implements the GB method on
top of kissat sat. kissat sat employs two branching heuristics:
VSIDS and VMTF. In kissat gb, the GB scheme is kept active
only when VSIDS is active.

b) kissat crvr gb: This solver implements the GB and
CRVR method on top of kissat sat. In kissat crvr gb, the GB
and CRVR schemes are kept active only when VSIDS is active.

c) cms expV gbL: The baseline CryptoMiniSAT5.8.0
employs a combination of three branching heuristics: LRB,
VSIDS and VMTF. This system extends this baseline by
implementing the GB method on top of LRB, and by replacing
VSIDS with expVSIDS.

d) CaDiCaL hack gb: This system implements the GB
method on the top of CaDiCal1.4.0, only when VSIDS is
active in the baseline system. CaDiCaL hack gb is submitted
to the CaDiCaL hack track of the SAT compeition-2021.

REFERENCES

[1] Md Solimul Chowdhury and Martin Müller and Jia You, Guiding CDCL
SAT Search via Random Exploration amid Conflict Depression, To
appear in Proceedings of AAAI-2020.

[2] Md. Solimul Chowdhury, Martin Müller, Jia-Huai You, Exploiting Glue
Clauses to Design Effective CDCL Branching Heuristics. In Proceedings
of CP 2019: 126-143.

[3] Armin Biere Katalin Fazekas Mathias Fleury Maximilian Heisinge.
CADICAL, KISSAT, PARACOOBA, PLINGELING and TREEN-
GELING Entering the SAT Competition 2020, In Proceedings of SAT
Competition 2020:50-52.

[4] CaDiCal 1.4, https://github.com/arminbiere/cadical/tree/rel-1.4.0, access
date: 02-April-2021.

[5] CryptoMiniSat 5.8.0, https://github.com/msoos/cryptominisat/releases,
access date: 02-April-2021.

2

18

 Cadical_SCAVEL and its friends at the SAT

Competition 2021
1st Zhihui Li, 2nd Guanfeng Wu, 3rd Yang Xu, 4th Huimin Fu

School of Mathematics

National-Local Joint Engineering Laboratory of System Credibility

Automatic Verification, Southwest Jiaotong University

Chengdu, China

lizhihui@swjtu.edu.cn, wgf1024@swjtu.edu.cn,

xuyang@swjtu.edu.cn, fhm6688@my.swjtu.edu.cn

Abstract— this document describes six solvers from Scavel:

Cadical_SCAVEL01/02, Relaxed_LCMDCBDL_SCAVE-

L01/02, and two parallel solvers abcd_para18_Scavel and P-

MCOMSPS-STR-32-SC at the SAT Competition 2021.

I. INTRODUCTION

The base solvers we used to implement our techniques
are cadical-alluip-trail and Relaxed_LCMDCBDL_newTech,
obtained from the SAT Competition 2020 [1]. Based on
these two very competitive solvers, some minor changes
mainly include the following technical solutions: active
backtrack, randomization of 2-watched scheme[2],Highlight
the role of the stochastic local search solver in the Inception
phase, and the adjustment of the program flow with the
previous centralized technology.

II. ALGORITHM AND IMPLEMENTATION DETAILS

A. Active Backtrack

When we look at the dynamic growth and backtracking
/restart shortening of propagation sequences of a global
perspective, we analyze the assignment queues propagated
according to BCP that these sequences are initiated by both
conflict-causing and non-conflict-causing decisions, at the
same time, they are also initiated by continuous conflict-
causing decisions and continuous non-conflict-causing
decisions.

Based on the empirical analysis, we obtained the
variation law of the general solution process of continuous
conflict decision and continuous non-conflict decision, and
carried out two improvements based on this representational
quantity. According to the continuous non-conflict decision
model, a new restart standard is determined, the concept of
Active Backtrack is proposed, and an Active Backtrack
module is added between conventional conflict backtracking
and general quick restart. This is different from the existing
Trail Saving [3].

B. Randomization of 2-watched Scheme

In a typical CDCL implementation, a data structure called
2-watched scheme is commonly used because the unit
Propagation needs to detect unit clauses as efficiently as
possible. In cases where more than a unit clause may be
examined at the same time, the 2-watched scheme usually
presents one of them in order. This order is formed by the
clause literals order or the construction of Elements of
watches by the previous propagation. Usually the order is
fixed unless it is randomized periodically.

C. Highlight the role of the stochastic local search solver

As famous example of combining CDCL with SLS,
CaDiCaL and Relaxed_LCMDCBDL use respectively the
two stochastic local search (SLS) solvers (probSAT and ccnr)
at a specific point in time to get the value of the argument
close to the solution space. Usually the SLS solver is fast and
efficient when solving hard small-scale problems. For a

smaller sample （the number of variables is less than 3000）,

We enhance the SLS solver solution time (the number of
flips) in an attempt to obtain the result directly in the initial
stage , rather than just providing the initial phase for all the
variables.

D. External Restart Frame

Quick restart technology is very important, especially
important to solving UNSAT incidents. As a major technical
module of the CDCL framework, restart is triggered multiple
times of the solver function. Before and after restart, the
values of the variables score of the decision branch are not
changed, and the 2-watched scheme usually presents one of
them in order. This order is formed by the clause literals
order or the construction of Elements of watches by the
previous propagation. Usually the order for every literal 2-
watches is fixed. We adjust the program flow with external
restart frame to start the solution processes several times
based on the number of restarts that have occurred by adding
an outer loop around the solve function. Before the solve
function is called, we increase the decision branches value of
inactive variable, manage the size of three clauses set (core,
Iter2 and local) boldly and randomize the existing 2-watched
Scheme. They are mainly for eliminating the adverse effect
of the former solution stage on the latter as far as possible.

III. SOLVERS

We add the learnt clause used frequency strategy[4] to
other parallel solvers to see the effect of this strategy in other
parallel solvers. We build our parallel Solvers based on P-
MCOMSPS-STR-32[5] and abcdSATi20[6], So the name of
parallel solvers are “ P-MCOMSPS-STR-32-SC” and
“ abcd_para18_Scavel”.

The Cadical_SCAVEL01/02 solvers in this submission
are small amount modifications of CaDiCaL [1] that
participated in SAT competition 2020, which implement our
techniques of II.C. Especially, Cadical_SCAVEL01 is based
on CADICAL-SC2020, and Cadical_SCAVEL01 is based on
adical-alluip-trail.

The Relaxed_LCMDCBDL_SCAVEL01/02 solvers in
this submission are modifications of Relaxed_LCMDCBDL

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

19

_newTech [1] that participated in SAT competition 2020.
Especially, Relaxed_LCMDCBDL_SCAVEL01 implements
our techniques of II. A, and Relaxed_LCMDCBDL_SCA-
VEL02 represents our techniques of II. A ~ II. A D.

IV. ACKNOWLEDGMENTS

The author would like to thank the developers of all
predecessors of Minisat, MapleLCMDistChronoBT-DL,
CaDiCaL, abcdsatptwenty, P-MCOMSPS-STR-32,
Relaxed_LCMDCBDL_newTech and all the authors who
contributed the modifications that have been integrated.
Their solvers are the foundation of our learning and
improvement. This work also supported by the Fundamental
Research Funds for the Central Universities
(No.2682020CX59).

REFERENCES

[1] Hickey R, Feng N, Bacchus F. Cadical-trail, Cadical-alluip,

Cadical-alluip-trail, and Maple-LCM-Dist-alluip-trail at SAT

Competition 2020[J]. SAT COMPETITION 2020, 10.

[2] M. Moskewicz, C. Conor, Y. Zhao, L. Zhang and S. Malik, Chaff:

Engineering an efficient SAT solver, in Proc. DAC’01 (2001).

[3] Ramos A., van der Tak P., Heule M.J.H. (2011) Between Restarts

and Backjumps. In: Sakallah K.A., Simon L. (eds) Theory and

Applications of Satisfiability Testing - SAT 2011. SAT 2011.

Lecture Notes in Computer Science, vol 6695. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_18

[4] Wu, G., Chen, Q., Xu, Y., & He, X. (2018). A Hybrid Learnt

Clause Evaluation Algorithm for SAT Problem. International

Journal of Computational Intelligence Systems, 12(1), 250-258..

[5] Vallade, V., Le Frioux, L., Baarir, S., Sopena, J., & Kordon, F. P-

MCOMSPS-STR: a Painless-based Portfolio of MapleCOMSPS

with Clause Strengthening. SAT COMPETITION 2020, 56.

[6]Chen, J. Optsat, Abcdsat and Solvers Based on Simplified Data

Structure and Hybrid Solving Strategies. SAT COMPETITION

2020, 25.

20

Maple MBDR Cent PERM and
Maple MDBR BJL in the 2021 SAT Solver

Competition
Sima Jamali

Simon Fraser University
Vancouver, Canada

sja88@sfu.ca

David Mitchell
Simon Fraser University

Vancouver, Canada
mitchell@cs.sfu.ca

Abstract—We give a brief description of our solvers
Maple MBDR Cent PERM and Maple MBDR BJL.
Maple MBDR Cent PERM stores high-centrality learned
clauses permanently. Maple MBDR BJL, uses a simple and
cheap scheme to learn additional small clauses. Both solvers
are based on Relaxed Maple LCMDCBDL newtech, the second
place solver from the main track of the 2020 SAT Solver
Competition.

Index Terms—High-Centrality Clauses, Permanent, Learning

I. INTRODUCTION

Relaxed Maple LCMDCBDL newtech won the silver
medal of the main track of the 2020 SAT Solver Competition
[3]. This is a recent member of the MapleSAT family of
solvers that has been improved over the last 5 years [1], [2],
[4], [6], [8], [9]. Our submissions modify the clause main-
tenance strategy of Relaxed Maple LCMDCBDL newtech,
which was inherited from COMiniSatPS and involves three
stores of learnt clauses: Core, Tier2 and Local [5], [6]. Learned
clauses are placed in one of these stores based on their
LBD. Small LBD clauses are placed in Core and retained
permanently.

Clause Centrality was introduced in [10] and shown to be
a useful clause quality measure. Maple MBDR Cent PERM
places high-centrality clauses in Core regardless of their LBD.
Small clauses are understood to be valuable, and many solvers
store very small clauses permanently. Maple MBDR BJL has
a simple scheme to learn an additional small clause after each
backjump to a small decision level.

II. HIGH-CENTRALITY PERMANENT CLAUSES

The centrality of a clause is the mean betweenness centrality
of its variables. To compute centralities, we generate the
primal graph of the input CNF (after pre-processing). The
betweenness centrality of a vertex (variable) v is the number
of shortest paths between pairs of vertices excluding v, that
visit v. It is defined by g(v) =

∑
s 6=v 6=t(σs,t(v)/σs,t), where

σs,t is the number of shortest s-t paths and σs,t(v) is the
number of those passing through v, normalized to [0, 1] [11].

This work was supported by the Natural Sciences and Engineering Council
of Canada (NSERC) through a Discovery Grant to the second author.

We use Brandes algorithm [12] to compute centrality values.
Generating the graph and computing centrality values are
memory and time intensive for large formulas, so we compute
centralities only for formulas with at most 100,000 clauses
after pre-processing. We also limit the time for centrality
computation to 150 seconds. We use the base solver without
modification for formulas without centralities. For formulas
with centralities, high centrality (HC) learned clauses (those
with centrality greater than a threshold CT), are stored in
Core, regardless of their LBD. We aim to include at least
the 0.02% of learned clauses with highest centrality in Core.
We set an initial threshold of CT ≥ 0.008. Every 100, 000
conflicts, if the number of HC clauses in Core is less than
0.02% of all learned clauses, CT is reduced by 0.001, but it
is never reduced below 0.004. We submitted two versions:
• Maple MBDR Cent PERM 10K: This solver adds at

most the first 10,000 HC clauses to Core.
• Maple MBDR Cent PERM 75K: This solver adds at

most the first 75,000K HC clauses to Core.

III. BACKJUMP LEARNING

Standard conflict analysis schemes derive one clause, called
the 1-UIP clause, at each conflict. To Maple MBDR BJL, we
add a simple and inexpensive scheme to learn additional small
clauses.
BackJump Learning Scheme (BJL): Assume a conflict
at level x, meaning after assigning x literals l1, l2, .., lx to
true, a conflict is reached. After conflict analysis the solver
backjumps to a level b and learns a 1UIP clause C =
{m1,m2, ...,mi−1,mi}. Only one literal mi from C belongs
to level x, and b < x, so after the first b decisions, if we had
C in the clause database, unit propagation would prevent this
conflict by assigning mi true. Therefore, we can also learn
clause C2 = {¬l1,¬l2, ...¬lb,mi}. For small values of b, this
new learned clauses is small.
We submitted two versions:
• Maple MBDR BJL6 Local: This solver uses the BJL

learning scheme described above and sets b = 6. The
new learned clauses are stored in Local regardless of their
LBD value.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

21

• Maple MBDR BJL7 Tier2: This solver uses the BJL
learning scheme described above and sets b = 7. The
new learned clauses are stored in tier2 regardless of their
LBD value.

REFERENCES

[1] A. Nadel and R. Vadim, “Chronological Backtracking,” in Proceedings
of SAT, 2018, pp. 111–121.

[2] A. Nadel and R. Vadim, “Maple LCM Dist ChronoBT: Featuring
Chronological Backtracking,” in Proceedings SAT Competition 2018 -
Solver and Benchmark Descriptions, 2018, pp. 29.

[3] SAT Competition 2020, https://satcompetition.github.io/2020/
[4] C. Oh, “Between SAT and UNSAT: The Fundamental Difference in

CDCL SAT,” in Proceedings of SAT, 2015, pp. 307–323.
[5] C. Oh, “Improving SAT solvers by exploiting empirical characteristics

of CDCL”, Ph.D. dissertation, New York University, 2016.
[6] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate

based branching heuristic for SAT solvers,” in Proceedings of SAT, 2016,
pp. 123–140.

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proceedings of IJCAI, 2009, pp. 399–404.

[8] M. Luo, C.-M. Li, F. Xiao, F. Manya, and Z. Lu, “An effective learnt
clause minimization approach for CDCL SAT solvers,” in Proceedings
of IJCAI, 2017, pp. 703–711.

[9] X. Zhang and Sh. Cai, “Relaxed Backtracking with Rephasing,” in
Proceedings of SAT Competition 2020 - Solver and Benchmark De-
scriptions, 2020, pp. 15-16.

[10] S. Jamali and D. Mitchell, “Centrality-based improvements to CDCL
heuristics Authors,” in Proceedings of SAT, 2018, pp. 122-131.

[11] L. Freeman, “A set of measures of centrality based on betweenness,” in
Journal of Sociometry, volume 40(1), 1977, pp. 35-41.

[12] U. Brandes, “A faster algorithm for betweenness centrality,” in Journal
of Mathematical Sociometry, volume 25(2), 2001, pp. 163–177.

22

Optsat, Abcdsat and Maple simp : Speed up
Solving Satisfiable Instances

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—In order to speed up solving satisfiable instanceswe
use a simple rephasing technique to our previous SAT solvers
such as abcdsat, maple simp and optsat.

I. INTRODUCTION

Decision variable phasing policies are very important in
CDCL solvers. Here we use a simple phasing policy similar
to the phasing policy of [1], [2] to improve the speed of our
SAT solvers.

II. A SIMPLIFIED REPHASING TECHNIQUE

We use a technique similar to the rephasing technique
in CaDiCaL [1] and Relaxed LCMDCBD [2] to the speed
of solvers on satisfiable instances. Unlike CaDiCaL and
Relaxed LCMDCBD, we delete the local search solver for
rephasing. This technique is actually a extension of the bit-
eoncoding phase selection strategy in [3]. The simplified
rephasing technique used this year may be described as
follows. When the CDCL search reaches a conflict, the trail
stack has the partial assignment of variables. We apply the
unit propagation of CDCL and the random flip to extend
the partial assignment to a full assignment. We save three
full assignments to handle the variable phase problem. When
the trail stack reaches a maximal length, the extended full
assignment is called max trail assignment. We get the current
partial assignment based on the trail stack every 1500 restarts,
and extend it to the full assignment, which is called current
full assignment. The current full assignment with minimized
unsatisfied clauses is called the best assignment. We main-
tain always the update of max trail assignment, current full
assignment and best assignment. When selecting the phase
of decision variables, we use max trail assignment, current
full assignment and best assignment with 30%, 30% and
10% probability, respectively. The probability that the other
assignment such as all true, all false, random, reverse etc is
used is 30%.

III. MAPLE SIMP21

Maple simp21 participates the main track. It is an improved
version of Maple simp20 [4]. The main difference between
them is that Maple simp21 adds the simplified rephasing
technique mentioned above.

IV. OPTSAT m21

This solver is submitted to the main track. It is an improved
version of Optsat m20 [4]. Different from Optsat m20, Optsat
m21 eliminates the hyper binary resolution in-processing.
Another difference is Optsat m21 adds the simplified rephasing
technique mentioned above.

V. OPTSAT R21

This solver is submitted to the main track. It is a recur-
sive version of Optsat m21 mentioned above. The differ-
ence between them is that Optsat R21 adds in-processing,
which includes subsumption and variable elimination. The in-
processing here is implemented by calling recursively the pre-
processing subroutine of Optsat m21.

VI. ABCDSAT i21

This solver is submitted to the incremental library track.
It is an improved version of abcdsat i20 [4]. Compared with
abcdsat i20, abcdsat i21 adjusts some parameters, and adds
adds the simplified rephasing technique mentioned above.

VII. ABCDSAT p21

This solver is submitted to the parallel track. It is an
improved version of abcdsat p18 [5], rather than last yeras
version abcdsat p20 [4]. Abcdsat p21 uses at most 64 threads.
61 out of 64 threads solve the subproblem F ∧ p , where
p and F are a pivot and the original problem respectively.
The other 3 threads solve either the original problem or the
simplified problem. The other difference from abcdsat p18 is
that abcdsat p21 contains the simplified rephasing technique
mentioned above.

REFERENCES

[1] Biere, A.: Cadical at the sat race 2019. SAT RACE 2019, p.8
[2] Zhang, X., Cai, S.: Relaxed Backtracking with Rephasing, Proceedings

of SAT competition 2020, pp.15–16
[3] Chen J.: A bit-eoncoding phase selection strategy for satisfiability solvers,

in Proceedings of Theory and Applicationsf Models of Computation
(TAMC’2014), LNCS, vol. 8402, Chennai, India, 2014, pp. 158-167

[4] Chen, J.: Optsat, Abcdsat and Solvers Based on Simplified Data Structure
and Hybrid Solving StrategiesProceedings of SAT competition 2020, pp.
25–26

[5] Chen J.: AbcdSAT and Glucose hack: Various Simplifications and Opti-
mizations for CDCL SAT solvers, Proceedings of SAT Competition 2018,
pp.10-12

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

23

CleanMaple
Benjamin Kaiser and Robert Clausecker

Zuse Institute Berlin
Berlin, Germany

{kaiser,clausecker}@zib.de

Abstract—This document describes the SAT Solver Clean-
Maple, which is a refactored version of the SAT Competition
2018 winner Maple_LCM_Dist_ChronoBT [1].

Index Terms—SAT, refactoring, CDCL

I. Overview

The complex nature of the CDCL algorithm and the
necessity of high performance implementations encourages
a tight coupling of most subroutines and data structures
in the source code. However the basic ideas on which
CDCL algorithms are based are simple when contrasted to
their implementation in Maple_LCM_Dist_ChronoBT.
Most parts of the solver Maple_LCM_Dist_ChronoBT
are included in one huge monolithic class and many of
its methods are themselves massive, having more than
50, 100 or even 150 lines of dense code, resulting in a
single source file for this class of almost 2000 lines of code.
This design choice as well as most code of the solver can
be traced back to the solver Minisat [2] [3] from which
Maple_LCM_Dist_ChronoBT evolved over a time span
of more than ten years with ideas and contributions from
many different authors, most notably by the authors of
[4], [5], [6], [7], [8] and [9]. The rather complicated code
base leads to a steep learning curve for researchers that
wish to develop SAT Solvers based on this state-of-the-art
solver.

II. Description

In CleanMaple the two main subroutines
• Unit Propagation and
• the heuristic-based Branching,

and the three main data structures
• the clause database containing all original and learned

clauses,
• the variable database containing the three-valued

truth-value with respect to the current assignment
and the polarities of all variables and

• the implication graph, i.e. the trail, used for fast
conflict analysis

have been decoupled from the actual class. This leads to
a solver that is much easier to understand. Furthermore,
due to the refactoring the size of the binary of the solver
was reduced significantly.

Acknowledgment
We want to express our gratitude towards the organizers

of the SAT Competition 2021 for making such an event
possible. Additionally we like to thank Florian Schintke
for his support and the IT and Data Services members of
the Zuse Institute Berlin for providing the infrastructure
and their fast help. Also we like to thank the authors
of Maple_LCM_Dist_ChronoBT and everyone else con-
tributing to this solver.

References
[1] Vadim Ryvchin and Alexander Nadel,

“Maple_LCM_Dist_ChronoBT: Featuring Chronological
Backtracking” in Proceedings of SAT Competition, 2018 p.29

[2] Eén, Niklas and Sörensson, Niklas, “An Extensible SAT-solver”
in Theory and Applications of Satisfiability Testing, 2004
p.502–518

[3] Sörensson, Niklas and Eén, Niklas, “Minisat v1.13-a SAT solver
with conflict-clause minimization” in International Conference
on Theory and Applications of Satisfiability Testing, 2005

[4] Audemard, Gilles and Simon, Laurent, “Predicting learnt
clauses quality in modern SAT solvers” in Proceedings of the
21st International Jont Conference on Artifical Intelligence,
2009 p.399–404

[5] Chanseok Oh, “COMiniSatPS the Chandrasekhar Limit and
GHackCOMSPS” in Proceedings of SAT Competition 2016,
p.29–30

[6] Liang, Jia Hui and Ganesh, Vijay and Poupart, Pascal and
Czarnecki, Krzysztof, “Learning Rate Based Branching Heuris-
tic for SAT Solvers” in Theory and Applications of Satisfiability
Testing – SAT 2016, 2016, p.123–140

[7] Mao Luo and Chu-Min Li and Fan Xiao and Felip Manyà
and Zhipeng Lü, “An Effective Learnt Clause Minimization
Approach for CDCL SAT Solvers” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, p.703–711

[8] F. Xiao, M. Luo, C.-M. Li, F. Manya, and Z. Lü,
“MapleLRB_LCM, Maple_LCM, Maple_LCM_Dist,
MapleLRB_LCMoccRestart and Glucose-3.0+width in SAT
Competition 2017,” in Proceedings of SAT Competition, 2017
p.22

[9] Nadel, Alexander and Ryvchin, Vadim, “Chronological Back-
tracking” in Theory and Applications of Satisfiability Testing –
SAT 2018, 2018 p.111–121

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

24

CleanMaple_PriPro, CaDiCaL_PriPro and
CaDiCaL_PriPro_no_bin

Benjamin Kaiser and Robert Clausecker
Zuse Institute Berlin

Berlin, Germany
{kaiser,clausecker}@zib.de

Abstract—Our experimental results suggest that some meth-
ods of rearranging the order in which clauses are propagated in-
crease the performance in CDCL-solvers. CleanMaple_PriPro,
CaDiCaL_PriPro and CaDiCaL_PriPro_no_bin are alter-
ations of state-of-the-art SAT-solvers in which a novel approach
of propagating some clauses with a severe priority increases
their performance.

Index Terms—SAT, CDCL, propagation order

I. Priority Propagation
In all three solvers a second two-watch-literal-scheme

of locally watched clauses is introduced. Newly learned
conflict clauses are not registered to the standard two-
watch-literal-scheme, but instead locally watched. Simi-
larly, during conflict analysis each conflicting clause with
an LBD of less than 7 not yet locally watched is de-
registered from the standard two-watch-literal-scheme and
instead registered to be locally watched. During propaga-
tion at each level the implications from all locally watched
clauses at all levels are computed similarly to how binary
clauses are propagated first in the SAT competition 2018
winner Maple_LCM_Dist_ChronoBT [1]. Every 10k con-
flicts all locally watched clauses are downgraded, i. e. de-
registered from the second two-watch-literal-scheme and
re-registered in the standard two-watch-literal-scheme.

II. Description of the solvers
The solver CleanMaple_PriPro is based

on CleanMaple [2], which itself is based on
Maple_LCM_Dist_ChronoBT. The solvers
CaDiCaL_PriPro and CaDiCaL_PriPro_no_bin are
based on CaDiCal [3]. In CleanMaple_PriPro binary
clauses are never locally watched, but instead propagated
immediately after locally watched clauses. This is
due to the fact that binary clauses are watched in a
separate watch-list in Maple_LCM_Dist_ChronoBT

and have already been propagated with increased
priority before. The solvers CaDiCaL_PriPro and
CaDiCaL_PriPro_no_bin differ only by the fact
whether binary clauses are considered for being locally
watched or not. In all three solvers some in-processing
steps needed to be removed or slightly altered, or enforce
an early downgrading of all locally watched clauses.

Acknowledgment
We want to express our gratitude towards the organizers

of the SAT Competition 2021 for making such an event
possible. Additionally we would like to thank Florian
Schintke for his support and the IT and Data Services
members of the Zuse Institute Berlin for providing the
infrastructure and their fast help. Also we would like to
thank the authors of Maple_LCM_Dist_ChronoBT and
everyone else contributing to this solver. In particular,
we would like to thank the authors of [4] who discuss
a different alteration of the propagation order and from
whom we borrowed the idea of restricting our approach
to clauses with small LBD. Benjamin Kaiser thanks Marc
Hartung for introducing him to this wonderful subject of
SAT-Solving and being a marvelous mentor during the
past 18 months.

References
[1] Vadim Ryvchin and Alexander Nadel,

“Maple_LCM_Dist_ChronoBT: Featuring Chronological
Backtracking” in Proceedings of SAT Competition, 2018 p.29

[2] Benjamin Kaiser and Robert Clausecker, “CleanMaple” in Pro-
ceedings of SAT Competition, 2021 if accepted for submission

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, Maximilian
Heisinger and Johannes Kepler, “CADICAL, KISSAT, PARA-
COOBA, PLINGELING and TREENGELING Entering the
SAT Competition 2020” in Proceedings of SAT Competition,
2020 p.50

[4] Jingchao Chen “Core First Unit Propagation” in arXiv, cs.LO,
2019, 1907.01192

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

25

HKIS, HCAD, PAKIS and
PAINLESS EXMAPLELCMDISTCHRONOBT in

the SC21
Rodrigue Konan Tchinda

Department of Mathematics and Computer Science
University of Dschang
Dschang, Cameroon

rodriguekonanktr@gmail.com

Clémentin Tayou Djamegni
Department of Mathematics and Computer Science

University of Dschang
Dschang, Cameroon
dtayou@gmail.com

Abstract—This document describes the sequential solvers
HKIS, HCAD and the parallel solvers PAKIS and PAIN-
LESS EXMAPLELCMDISTCHRONOBT submitted to the 2021
SAT Competition.

I. INTRODUCTION

The results of the latest SAT competition showed very
good performances of the sequential solvers KISSAT [1] and
CADICAL [1], [2] in the main track. The highly optimized
data structures and algorithms used by these solvers make
them particularly efficient. However, this does not exclude
the possibility of improvements. We proposed for the 2021
edition of the SAT competition, versions of these solvers
that integrate the PSIDS heuristic [3] for choosing polari-
ties of decision variables. Moreover, we submitted a paral-
lel version of KISSAT built on top of the Painless frame-
work [4] as well as a slightly modified version of PAIN-
LESS EXMAPLELCMDISTCHRONOBT [5].

II. HKIS AND HCAD

HKIS and HCAD are both “hacks” of KISSAT and CAD-
ICAL [1], [2] respectively. They all integrate the PSIDS
heuristic [3] for selecting a polarity once a branching vari-
able chosen. PSDIS is enabled through the Boolean option
--psids. These solvers also change the default configuration
of the base solvers as follows:

• HCAD is submitted with two configurations:
– default where psids=0, target=2, chrono=0 and

walk=0;
– psids where psids=1, target=2, chrono=1 and

walk=0.
• HKIS is submitted with three configurations:

– default where psids=0, target=2 and chrono=0;
– psids where psids=1, target=2 and chrono=0;
– unsat where psids=0, target=1, walkinitially=1 and

chrono=1.
The default configuration of HCAD is submitted to the

new CADICAL Hack subtrack of the 2021 SAT Competition.

III. PAINLESS EXMAPLELCMDISTCHRONOBT

The parallel solver PAINLESS EXMAPLELCMDIST-
CHRONOBT is identical to that we submitted to the 2020
SAT Competition [5] except for a slight change where we
now load the input formula to the workers in parallel. The
version we submitted to the 2021 SAT Competition was
configured to launch 24 workers in parallel.

IV. PAKIS

In sequential SAT solvers, it is unlikely to find a single
configuration that is the most efficient on all benchmarks of
a given set. There are instances that can be easily solved by
specific configurations of a given solver that are not necessarily
its best configuration. Hence, running multiple configurations
of a solver in parallel may help speedup solving times. The
goal of PAKIS is to select a number of configurations in
order to approximate the performance of the “Best Virtual
Configuration” of the solver KISSAT. To achieve this, we used
a test set consisting of the new instances submitted to the SAT
Race 2019 and selected among a large number of possible
configurations those that had the best results for SAT, UNSAT
and SAT+UNSAT. Table I gives the configurations for the 24
workers used in PAKIS. The meaning of each of the options
in this table can be obtained by running the solver KISSAT
with the traditional --help option.

In contrast to many parallel SAT solvers, PAKIS does not
allow any information sharing. This has some advantages
regarding for instance the determinism of the solver and the
production of DRAT proofs.

V. ACKNOWLEDGMENTS

We would like to thank the developers of MAPLEL-
CMDISTCHRONOBT [6], MAPLELCMDISTCHRONOBT-
DL [7], PAINLESS [4], KISSAT and CADICAL [1].

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

26

TABLE I
PAKIS WORKERS’ CONFIGURATIONS

Id tier1 chrono stable walkinitially target phase
0 2 1 1 0 1 1
1 2 1 1 0 2 1
2 2 1 0 0 1 1
3 2 0 1 0 1 1
4 2 0 1 0 1 0
5 2 1 1 0 1 0
6 2 0 2 0 1 1
7 2 1 1 0 0 1
8 2 0 1 0 0 0
9 2 1 1 0 0 0

10 2 1 1 1 1 1
11 2 0 1 0 2 1
12 2 0 1 0 2 0
13 3 0 1 0 2 0
14 3 0 1 0 2 1
15 2 1 1 0 2 0
16 2 0 2 0 2 1
17 2 1 1 0 0 1
18 2 0 1 0 0 0
19 2 1 1 0 0 0
20 3 1 1 0 0 1
21 3 1 1 0 2 1
22 2 1 1 1 2 1
23 2 0 0 0 1 1

REFERENCES

[1] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[2] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race 20219
– Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, M. Heule, M. Järvisalo, and M. Suda, Eds.,
vol. B-2019-1. University of Helsinki, 2019, pp. 8–9.

[3] R. K. Tchinda and C. T. Djamegni, “Padc maplelcmdistchronobt, padc
maple lcm dist and psids maplelcmdistchronobt in the sr19,” SAT RACE
2019, p. 33.

[4] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in International Conference on Theory and
Applications of Satisfiability Testing. Springer, 2017, pp. 233–250.

[5] R. Konan Tchinda and C. Tayou Djamegni, “Exmaplelcmdistchronobt,
upglucose-3.0 padc and painless exmaplelcmdistchronobt in the sc20,” in
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, ser.
Department of Computer Science Report Series B, T. Balyo, N. Froleyks,
M. Heule, M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2020-1.
University of Helsinki, 2020, pp. 17–18.

[6] V. Ryvchin and A. Nadel, “Maple lcm dist chronobt: Featuring chrono-
logical backtracking,” SAT COMPETITION 2018, p. 29, 2018.

[7] S. Kochemazov, O. Zaikin, V. Kondratiev, and A. Semenov,
“Maplelcmdistchronobt-dl, duplicate learnts heuristic-aided solvers at the
sat race 2019,” SAT RACE 2019, p. 24.

27

CaDiCaL Modification – Watch Sat
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—The solver CADICAL is different from other partic-
ipants in SAT competitions in many aspects. Porting an algorithm
detail from CADICAL to MERGESAT resulted in a performance
degradation. Hence, this solver modification brings CADICAL’s
behavior closer to other solvers again: when watching a satisfied
literal during unit propagation, the clause is moved to the
watch list of that literal. Previously, CADICAL just updated
the blocking literal of the clause and kept the clause in the
current watch list. The solver CADICAL-WATCH-SAT watches
the satisfied literal.

I. UNIT PROPAGATION IMPROVEMENTS

SAT solvers are used in many fields. Hence, some solvers
are heavily tuned to perform well for the target application.
Other research focusses on improving the overall solver perfor-
mance in general. Many heuristic and algorithmic extensions
to the core algorithm have been proposed [1]. The overall
runtime distributions among the algorithm components still
did not change significantly: unit propagation still takes a vast
majority of the overall runtime [6], [3].

A. Watching Clauses in Propagation

This modification alters an implementation detail of unit
propagation that is different in CADICAL when being com-
pared to other SAT solvers that participate in competitive
events. The two watched literals scheme has been implemented
first in [7]. The next major improvement to skip processing
clauses early was to move literals from the clause into the
watch list data structure, so called blocking literals. MIN-
ISAT 2.2 2.1 [2] started to use a blocking literal. When
propagating a clause, first the current truth value blocking
literal is checked. In case the blocking literal is satisfied, the
related clause is known to be satisfied. Therefore, the clause
does not have to be processed further. This technique helps to
improve the performance of the SAT solver [6].

In MINISAT 2.2, the blocking literal of a clause is typically
the other watched literal. However, any other literal of the
clause could be chosen.

B. How to Handle Satisfied Clauses

When a blocking literal is not satisfied, the clause has to be
processed. During this process, each clause of the watch list
for the current literal has to be iterated. For each clause, the
truth value of all literals has to be checked, in case we find a
conflict clause or unit clauses that force the extension of the
current truth assignment. For satisfied clauses, we only need
to process the literals until we find a satisfied clauses.

One difference between CADICAL and MINISAT 2.2 based
solvers is the way how they treat these satisfied clauses. MIN-
ISAT 2.2 based solvers watch the satisfied literal. CADICAL
implements further extensions, like memorizing the literal in
a clause that was tested when last processing the clause [4].

a) Always Watching the Satisfied Literal: When a satis-
fied literal is detected in a clause during propagating a literal,
the clause is removed from the current watch list. As a next
step, solvers append the clauses to the watch list of the satisfied
literal. Both operations are constant time, but require accessing
the other watch list, which can lead to a cache miss [6]
and TLB miss [3]. The watch list of the other literal can be
higher in the search tree, so that the clause will be touched
less frequent in the remainder of the search. Restart might
reduce the saving, on the other hand solver today use partial
restarts [9], chronological backtracking [8] as well as trail
saving [5]. All these technique give this saving back partially.

This approach is implemented by MINISAT 2.2 based
solvers.

b) Just Update the Blocking Literal: As an alternative,
CADICAL keep watching the current literal, which is now
falsified, but updates the blocking literal to the satisfied literal.
While this breaks the assumption that falsified literals are only
watched for conflict clauses or unit clauses, we still know that
the clause is satisfied. Hence, breaking this assumption does
not have consequences. The positive effect is that the clause
does not have to be removed from the current watch list. This
results in no cache miss, nor a TLB miss. However, when the
search progresses, after backtracking, the same clause might
need to be processed again. In case the satisfied literal is
still satisfied, only the blocking literal has to be processed.
Otherwise, backtracking also removed the assignment for the
blocking literal, so that the whole clause needs to be processed
again.

c) Watching the Satisfied Literal in CADICAL: Prelimi-
nary testing with MERGESAT when just updating the blocking
literal of a clause resulted in a performance degradation.
Hence, removing this technique for CADICAL might result in
a performance improvement. The solver CADICAL-WATCH-
SAT implements this modification.

Not processing a satisfied clause during propagation soon
again can result in a different order of propagated literals,
as well as different conflicts, and consequently in different
heuristic updates and many different follow-up search steps
of the solver. Hence, performance differences can not only be
attributed to less or more compute resource utilization.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

28

II. AVAILABILITY

The source of the modified CADICAL is publicly available
at https://github.com/conp-solutions/cadical/tree/watch-sat.
The used version of the tool is “rel-1.4.0-1-gc09aa31”.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. Amsterdam: IOS Press, 2009.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[3] J. K. Fichte, N. Manthey, J. Stecklina, and A. Schidler, “Towards faster
reasoners by using transparent huge pages,” in Principles and Practice of
Constraint Programming, H. Simonis, Ed. Cham: Springer International
Publishing, 2020, pp. 304–322.

[4] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res., vol. 48, pp. 231–251, 2013. [Online].
Available: https://doi.org/10.1613/jair.4016

[5] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing – SAT 2020, L. Pulina and M. Seidl,
Eds. Cham: Springer International Publishing, 2020, pp. 46–61.

[6] S. Hölldobler, N. Manthey, and A. Saptawijaya, “Improving resource-
unaware SAT solvers,” ser. LNCS, C. G. Fermüller and A. Voronkov,
Eds., vol. 6397. Heidelberg: Springer, 2010, pp. 519–534.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC 2001. New York:
ACM, 2001, pp. 530–535.

[8] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and
Applications of Satisfiability Testing – SAT 2018, O. Beyersdorff and
C. M. Wintersteiger, Eds. Cham: Springer International Publishing, 2018,
pp. 111–121.

[9] P. van der Tak, A. Ramos, and M. Heule, “Reusing the assignment trail
in cdcl solvers,” JSAT, vol. 7, no. 4, pp. 133–138, 2011.

29

MergeSAT 3.0
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—MERGESAT mission is to simplify keeping up with
SAT development from a SAT user perspective. MERGESAT
supports incremental solving, as well as being used as a library
with various interfaces. MERGESAT is setup to simplify merging
solver contributions into one solver. This setup should allow col-
laboration among solver developers more easily. The sequential
SAT solver MERGESAT is a fork of the 2018 competition winner.
The tool adds known as well as novel implementation and search
improvements, typically based on solver contributions of previous
annual competitions.

I. THE SEQUENTIAL SOLVER MERGESAT

Most SAT solvers change over time, or their maintenance
is dropped. From a user perspective, once choosing a SAT
backend mostly results in fixing the performance of the
selected SAT backend. Migrating between solvers is chal-
lenging. Furthermore, more recent successful solvers in SAT
competitions do not support being used as a library, not
incremental SAT solving. MERGESAT bridges this gap: the
solver implements the broadly used MINISAT 2.2 interface,
supports incremental solving, but also comes with the most
recent solver improvements that have been developed in 2020.

MERGESAT is based on the SAT competition winner of
2018, MAPLE LCM DIST CHRONOBT [7]. Based on recent
SAT research, several known techniques as well as novel
ideas has been integrated. To make continuing the long list of
work that influenced MERGESAT simpler, MERGESAT uses
git to combine changes from different solvers. Furthermore,
MERGESAT comes with continuous integration to simplify
extending the solver further. Starting in 2020, code style was
enforced during CI as well, allowing to understand modifica-
tions better. MERGESAT has been tested as incremental SAT
backend of several tools already. Furthermore, MERGESAT
implements the SAT interface for the parallel HORDESAT
solver [1], and can hence be used as a portfolio-parallel SAT
solver with clause sharing as backend in HORDESAT.

A. Extensions since 2020

MERGESAT participated in SAT competition 2020 [5]. This
section only details the differences since this version. All
extensions can be disabled via the command line interface.
Furthermore, the parameters to the solver can be specified via
an environment variable. This setup allows to tune the solver
even if it is used as a library in the backend.

The following improvements have been integrated into
MERGESAT since the 2020 submissions:

• parsing multiple compression formats
• trail saving [3]

• use CCNR to participate in solving [8], but initialize the
SLS engine lazily

• use rephasing as done in [8]
• allow to remove more clauses, as proposed in [4], but

with a back-off strategy
• support printing the PCS format for configuration

Furthermore, formula simplification, as well as the CCNR
engine are disabled in case too large formulas are used. When
combining several extensions to the search also uncovered
corner cases in the original implementation taken from the
original tools. These corner cases have been addressed in
MERGESAT to result in a safe search again. A full description
of the solver is [6].

B. Continuous Testing

The submitted version of MERGESAT compiles on Linux
and Mac OS. GitHub allows to use continuous testing, which
essentially build MERGESAT, and tests basic functionality:
i) producing unsatisfiability proofs, ii) building the starexec
package and producing proofs and iii) solving via the IPASIR
interface. All these steps are executed by executing the script
“tools/ci.sh” from the repository, and the script can be used as
a template to derive similar functionality.

C. Availability

The source of the solver is publicly available under
the MIT license at https://github.com/conp-solutions/mergesat.
The submitted starexec package can be reproduced by running
“./scripts/make-starexec.sh” on this commit.

D. Submitted MERGESAT Configurations

The git version “v3.0-13-g76cb34f” has been submitted
to the competition. The solver has been submitted to all
sequential tracks, including the incremental track. For the main
and agile tracks, a configuration unsat has been submitted as
well. This configuration disabled the CCNR engine as well as
rephasing, as experiments showed that these two modification
– at least in their current form – degrade the performance
on unsatisfiable formulas. Similarly, the configuration nosimp
disables formula simplification. Comparing the results of the
default configuration and nosimp should allow to motivate
implementing formula simplfication lazily, i.e. eventually start-
ing search without simplification as done in other solvers
already [2].

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

30

II. THE PARALLEL SOLVER MERGE-HORDESAT

HORDESAT supports multi-threaded, as well as distributed
solving with various SAT backends. Learned clauses can
be shared among the solver instances. MERGE-HORDESAT
extends HORDESAT with integrating MERGESAT. The fol-
lowing modifications have been applied on top:

• share learned clauses lazily, and not interrupting SAT
engines, as that misleads the original search below se-
quential performance

• automatically choosing to run on half the available CPU
cores, to allow simple parallel use

• support to print the solver model in the multi-threaded
case, to get a full parallel solver

• use MERGESAT’s CNF parser that supports compressed
CNF files, for more flexible use

• support to build the solver with a single “make” invoca-
tion, to simplify usage

• add MERGESAT via git submodules, to allow stable
version tracking when benchmarking and distributing

• remove all other SAT backends, as MERGESAT based
additions have not been provided

Interestingly, exchanging the parser of HORDESAT resulted in
a much faster file reading process. To make the solver prepared
for future changes, and simple continuous testing setup has
been created as well.

A. Availability

The source of the solver is publicly available under the MIT
license at https://github.com/conp-solutions/hordesat.

B. Submitted MERGE-HORDESAT Configurations

The wrapper package to allow to use MERGE-HORDESAT
in AWS (as done in the competition), can be found at: https:
//github.com/conp-solutions/hordesat-aws. The same version
of the tool has been submitted to both the parallel as well
as the cloud track. The solvers HORDESAT, as well as its
backend MERGESAT, are integrated into the code base via git
submodules, to allow stable version tracking. The version of
MERGE-HORDESAT is “v1.0”. MERGESAT is used in version
“v3.0-13-g76cb34f”, as submitted to the sequential tracks.

ACKNOWLEDGMENT

The author would like to thank the developers of all prede-
cessors of MERGESAT, and all the authors who contributed
the modifications that have been integrated. Furthermore, with-
out the work of the authors of HORDESAT, creating MERGE-
HORDESAT would not have happened.

REFERENCES

[1] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel
portfolio sat solver,” in Theory and Applications of Satisfiability Testing –
SAT 2015, M. Heule and S. Weaver, Eds. Cham: Springer International
Publishing, 2015, pp. 156–172.

[2] A. Biere, “PrecoSAT system description,”
http://fmv.jku.at/precosat/preicosat-sc09.pdf, 2009.

[3] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings, ser. Lecture
Notes in Computer Science, L. Pulina and M. Seidl, Eds., vol. 12178.
Springer, 2020, pp. 46–61.

[4] S. Kochemazov, “Improving implementation of SAT competitions 2017-
2019 winners,” in Theory and Applications of Satisfiability Testing - SAT
2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020,
Proceedings, ser. Lecture Notes in Computer Science, L. Pulina and
M. Seidl, Eds., vol. 12178. Springer, 2020, pp. 139–148.

[5] N. Manthey, “MergeSAT,” in Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions, ser. Department of Computer Science Report
Series B, T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and
M. Suda, Eds., vol. B-2020-1. University of Helsinki, 2020, p. 40.

[6] ——, “The MergeSAT Solver,” in Theory and Applications of Satisfia-
bility Testing - SAT 2021, 2021, submitted.

[7] V. Ryvchin and A. Nadel, “Maple LCM Dist ChronoBT: Featuring
Chronological Backtracking,” in Proceedings of SAT Competition 2018,
2018. [Online]. Available: http://hdl.handle.net/10138/237063

[8] X. Zhang and S. Cai, “Relaxed backtracking with rephasing,” in Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, ser. De-
partment of Computer Science Report Series B, T. Balyo, N. Froleyks,
M. Heule, M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2020-1.
University of Helsinki, 2020, pp. 15–15.

31

PARAFROST at the SAT Race 2021?

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description of our solver
PARAFROST which stands for Parallel Formal Reasoning
On SaTisfiability in 2 different configurations. Compared to
the solver submission in the last year competition [1], it is
completely redesigned from scratch based on our recent work
in [2]. It is a parallel SAT solver with GPU-accelerated inpro-
cessing capable of harnessing NVIDIA CUDA-enabled GPUs
in applying modern simplification techniques in parallel. The
CDCL search is built from scratch with various optimisations
based on CADICAL [3] heuristics. The inprocessing engine
extends our previous work in [4], [5] with space-efficient data
structures, parallel garbage collection and more. However, all
submitted versions of the solver are single-threaded.

PARAFROST provides easy-to-use infrastructure for SAT
solving and/or inprocessing with optimized data structures for
both CPU and GPU architectures. The solver can run under
Linux and Windows operating systems. The PARAllel keyword
in PARAFROST intuitively means that SAT simplifications
can be fully executed on variables in parallel as described
in [2] using the Least Constrained Variable Elections (LCVE)
scheduler [4], [5]. Moreover, via the Multiple Decision Making
(MDM) procedure [6], the solver is capable of making mul-
tiple decisions that can be assigned and propagated at once.
In principle, choosing variables to simplify or decide relies
heavily on freezing variables, hence the name PARAFROST.
The scheduled variables are mutually independent according
to some logical properties.

II. DECISION MAKING

Based on our work in [2], the solver improves the decision
heuristics of the solver submitted last year by adopting another
decision queue called Variable Move To Front (VMTF) [7]
where the score of a variable is defined as the number
of conflicts in which the variable was involved. VMTF is
implemented in CADICAL and our solver with a doubly-
linked list. At the decision making step, we apply both VSIDS
and VMTF for the selection of multiple decisions [8]. One
can alternate between VSIDS and VMTF queues based on
the restart mode [3] in a ping-pong manner. In CADICAL,
different restart sequences are interleaved together to remedy
the shortcomings of each individual one and alleviate the

? This work is part of the GEARS project with project number
TOP2.16.044, which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

strengths of all. The idea is to start with the geometric [9] style
with less frequent restarts (i.e. called in CADICAL the stable
mode) then switch to a more aggressive style using dynamic
restarts [10], [11] after some interval based on the number of
conflicts. The interval is increased using the total number of
propagations. In the KISSAT solver [3], the propagation metric
was replaced by estimating the number of cache lines accessed
by the watches in the unit propagation procedure. Currently,
in PARAFROST, we adopt the same technique assuming a
more realistic line size of 64-bit. Moreover, we observed that
clauses are extensively checked for being deleted or not during
propagation, simplifications, and garbage collection. To avoid
dereferencing a clause only to check its state, a stencil array is
created explicitly as part of the CNF data structure inspired by
our parallel garbage collector proposed for the GPU solver [2].

Making a decision can always lead to conflicts, but making
more of them increases the likelihood of a conflict occurring.
To avoid repeatedly selecting sets of decisions that cause
conflicts, they are constructed in such a way that it is guaran-
teed that no conflicts will occur. However, multiple decisions
cannot be always selected, as the production of implications
cannot indefinitely be avoided. The main question is therefore
when MDM should be applied. Per search, MDM is called a
number of decaying rounds (default is 3) if there are enough
free variables to assign. If no rounds are left, it can be
reset again to the initial value (e.g. 3), periodically based on
conflicts, in an n log(n) increasing step [8].

To further strengthen MDM, we add an implementation
for local search using the WALKSAT strategy [12]. Besides
running the local search frequently to improve the decision
phases [3], we call it in MDM regularly per first round at
the top level to improve the quality of the multiple deci-
sions picked [8]. Our WALKSAT version is powered by a
random number generator based on the Xorshift32 technique
discovered by George Marsaglia. The initial decision phases
are assumed to be negative which goes back to MINISAT.
Regarding clause minimization, we still keep the strengthening
method with binaries from the previous submission which is
crucial when MDM is turned on.

III. INPROCESSING

Recently, we applied GPUs in SAT solving to accelerate
preprocessing [4], [5] and inprocessing [2]. In these opera-
tions, a given SAT formula is simplified, i.e., it is rewrit-
ten to a formula with fewer variables and/or clauses, while
preserving satisfiability, using various simplification rules. In

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

32

preprocessing, this is only done once before the solving starts,
while in inprocessing, this is done periodically during the
solving. PARAFROST supports bounded variable elimination
(BVE) [13], backward subsumption elimination (SUB) [14],
Blocked Clause elimination (BCE) [15], and a new simplifica-
tion technique called eager redundancy elimination (ERE) [2].
BVE eliminates variables by either applying the resolution
rule or substitution (also known as gate equivalence reason-
ing) [14], [16]. Substitution detects patterns encoding logical
gates, and substitutes the involved variables with their gate-
equivalent counterparts. Previously [1], we only considered
AND gates. In the current inprocessor, we add support for
Inverter, If-Then-Else and XOR gate extractions. For all logical
gates, substitution can be performed by resolving non-gate
clauses (i.e., clauses not contributing to the gate itself) with
gate clauses [16]. However, for the inverter gates we do sub-
stitution in-place without adding new clauses to the formula
which saves time and memory.

ERE is a new elimination technique that we propose, which
repeats the following until a fixpoint has been reached: for a
given formula S and clauses C1 ∈ S, C2 ∈ S with x ∈ C1 and
x̄ ∈ C2 for some variable x, if there exists a clause C ∈ S
for which C ≡ C1 ⊗x C2, then let S := S \ {C}. In this
work, we restrict removing C to the condition (C1 is learnt ∨
C2 is learnt) =⇒ C is learnt. If the condition holds, C is
called a redundancy and can be removed without altering the
original satisfiability.

In this submission, a sequential implementation of all
simplifications described above is provided as part of
PARAFROST. Moreover, the inprocessing engine uses a 20-
byte data structure to store a clause (with at least one literal)
different from the solver side which requires 24 bytes. By
default, all simplifications are enabled except for BCE which
was not effective in practice. The ve+ option is always
enabled with number of phases set to 5. The phases=<n>
option applies ve+ for a configured number of iterations, with
increasingly large values of the threshold µ (maximum number
of occurrences of a variable). If there are any unit clauses
produced along the simplification process, their propagation
is delayed and run in the next phase. Finally, at the last
phase, the ERE method is executed once. Inprocessing is
scheduled periodically based on the function n log2(n) when
at least 4,000 of the fixed (root) variables are removed.
Forward subsumption is scheduled on all clauses with the same
scaling function but applied within the learnt-clauses reduction
procedure.

The solver version evaluated in [2] was missing important
inprocessing techniques (thanks to Armin Biere for pointing
this out) such as probing [17], autarky reasoning [3], and
vivification [18]. In the latter, binary clauses are considered
for the histogram but ignored in the actual vivification. This
gives proper indication of which literals are more important
to vivify. Regarding autarky, we remove autarkic variables in
our implementation as in KISSAT but treat them as fixed roots
(i.e. make the solver think they are deduced in the search) in
both solution reconstruction and variable mapping. This saves

memory and time spent in storing these variables and their
satisfied clauses as witnesses. Autarky is applied only once
after local search. With this submission we add them all to
PARAFROST and are enabled by default.

IV. THREATS TO VALIDITY

Incorrect values of literals and variables due to ill
logic or type casting breaks the solver fidelity. Therefore,
PARAFROST always checks the invariants (0 < x ≤ m) and
(1 < ` ≤ 2×m) as preconditions, where m is the number of
variables in the formula and ` encodes the variable x by a logi-
cal shift to the left. The least significant bit represents the sign.
The generated model for satisfiable formulas can be verified
against the original formula by enabling the modelverify
option. The generation of DRAT proofs is also supported for
the sequential solver.

V. SUBMISSIONS

The solver instance PARAFROST comprises all configu-
rations described in the previous sections, in which MDM
with local search, and all simplifications are enabled. The sec-
ond configuration submitted is called PARAFROST-NOMDM
which disables MDM using the command mdmrounds=0.
The initial settings of the PARAFROST instance have been
tuned on the DAS-5 cluster [19] and the Dutch national
supercomputer CARTESIUS.

REFERENCES

[1] M. Osama and A. Wijs, “ParaFROST, ParaFROST CBT, ParaFROST
HRE, ParaFROST ALL at the SAT Race 2020,” SAT Competition 2020,
pp. 42–43, 2020.

[2] M. Osama, A. Wijs, and A. Biere, “SAT Solving with GPU Accelerated
Inprocessing,” in TACAS 2021, Luxembourg, 2021, Proceedings, Part I,
ser. Lecture Notes in Computer Science, vol. 12651. Springer, 2021,
pp. 133–151.

[3] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in SAT Competition 2020, 2020, pp. 51–53.

[4] M. Osama and A. Wijs, “Parallel SAT Simplification on GPU Architec-
tures,” in TACAS, ser. LNCS, vol. 11427. Cham: Springer International
Publishing, 2019, pp. 21–40.

[5] ——, “SIGmA: GPU Accelerated Simplification of SAT Formulas,” in
iFM, ser. LNCS, vol. 11918. Springer, 2019, pp. 514–522.

[6] M. Osama and A. Wijs, “Multiple Decision Making in Conflict-Driven
Clause Learning,” in 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), 2020, pp. 161–169.

[7] A. Biere and A. Fröhlich, “Evaluating CDCL Variable Scoring
Schemes,” in SAT, ser. LNCS, vol. 9340. Springer, 2015, pp. 405–
422.

[8] M. Osama and A. Wijs, “Improving Decision Making in CDCL SAT
Solvers,” in Journal of Automated Reasoning, 2021, to be submitted.

[9] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT, ser.
LNCS, vol. 2919. Springer, 2004, pp. 502–518.

[10] G. Audemard and L. Simon, “Refining Restarts Strategies for SAT
and UNSAT,” in Principles and Practice of Constraint Programming,
M. Milano, Ed. Springer, 2012, pp. 118–126.

[11] A. Biere and A. Fröhlich, “Evaluating CDCL Restart Schemes,” in
Proceedings of Pragmatics of SAT 2015 and 2018, ser. EPiC Series
in Computing, D. L. Berre and M. Järvisalo, Eds., vol. 59. EasyChair,
2019, pp. 1–17.

[12] B. Selman and H. A. Kautz, “An Empirical Study of Greedy Local
Search for Satisfiability Testing,” in Proceedings of the 11th National
Conference on Artificial Intelligence. Washington, USA, 1993. AAAI
Press / The MIT Press, 1993, pp. 46–51.

33

[13] S. Subbarayan and D. K. Pradhan, “NiVER: Non-increasing variable
elimination resolution for preprocessing SAT instances,” in SAT, ser.
LNCS, vol. 3542. Springer, 2004, pp. 276–291.

[14] N. Eén and A. Biere, “Effective Preprocessing in SAT Through Variable
and Clause Elimination,” in SAT, ser. LNCS, vol. 3569. Springer, 2005,
pp. 61–75.

[15] T. Balyo, A. Fröhlich, M. J. H. Heule, and A. Biere, “Everything You
Always Wanted to Know about Blocked Sets (But Were Afraid to Ask),”
in SAT, C. Sinz and U. Egly, Eds. Cham: Springer International
Publishing, 2014, pp. 317–332.

[16] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing Rules,” in IJCAR,
ser. LNCS, vol. 7364. Springer, 2012, pp. 355–370.

[17] I. Lynce and J. Marques-Silva, “Probing-based preprocessing techniques
for propositional satisfiability,” in ICTAI. IEEE, 2003, pp. 105–110.

[18] C. Piette, Y. Hamadi, and L. Saı̈s, “Vivifying Propositional Clausal
Formulae,” in ECAI. NLD: IOS Press, 2008, pp. 525–529.

[19] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A Medium-Scale Distributed System for
Computer Science Research: Infrastructure for the Long Term,” IEEE
Computer, vol. 49, no. 5, pp. 54–63, 2016.

34

MapleSSV SAT Solver
for SAT Competition 2021
Saeed Nejati∗‡, Md Solimul Chowdhury†‡, Vijay Ganesh∗

∗ University of Waterloo, Waterloo, Canada
† University of Alberta, Alberta, Canada

‡ Joint first authors

Abstract—This document describes the SAT solver MapleSSV,
as part of which we implemented a set of heuristics that are
found to be useful in solving SAT benchmarks that encode ARX
(Addition-Rotation-XOR) functions. These heuristics are inspired
by machine learning-based optimization methods, namely, im-
proving branching using exploration, Bayesian moment match-
ing based search initialization, and multi-armed bandit based
restarts.

I. INTRODUCTION

We present the SAT solver MapleSSV, which is a modifica-
tion of the SAT solver MapleLCMDistChronoBT [1] (winner
of the SAT competition 2018). There are four main modifica-
tions that we made to the base solver, enhancing branching,
search initialization, restarts, and pre-processing. First, we
used exploration in phases that the solver goes into a conflict
depression (large sequences of decisions without learning any
clauses) to get the solver to a more fruitful sub-space. Second,
we used a Bayesian moment matching formulation of SAT to
arrive at a promising initial search point, initializing variable
order and polarities. Third, we employed multi-armed bandit
based restarts to adaptively choose between restart strategies.
Finally, we added XOR pre-processing to simplify the formula.
Sections II, III and IV, describes each of these additions in
more detail.

Motivation for Machine Learning-based Solver Heuristics:
While a Boolean SAT solver is a decision procedure that
decides whether an input formula is satisfiable, internally it
can be seen as an optimization procedure whose goal is to
minimize its run time while correctly deciding the satisfiability
of the input formula. Every sub-routine in a SAT solver can
be viewed either as a logical reasoning engine (i.e., a proof
rules such as resolution in the case of conflict clause learning
scheme or unit resolution in the case of BCP), or as a heuristic
aimed at optimizing the sequencing, selection, and initializa-
tion of proof rules (e.g., variable selection, polarity selection,
restarts, etc.). These optimization heuristic can in turn be
implemented effectively using machine learning algorithms,
since solvers are a data-rich environment. This philosophy was
first articulated in the SAT 2016 paper by Liang et al. [2] on
the LRB branching heuristic, has since been widely adopted
and underpins many solver heuristics for branching, restarts,
and initialization developed in recent years.

II. EXPLORATION AMID CONFLICT DEPRESSION PHASES

Here we describe our exploration-based branching heuristic
expVSIDS. This approach is based on our observation that
CDCL SAT solving entails clear non-random patterns of bursts
of conflicts followed by longer phases of conflict depression
(CD) [3]. During a CD phase a CDCL SAT solver is unable
to generate conflicts for a consecutive number of decisions.
To correct the course of such a search, we propose to use
exploration to combat conflict depression. We therefore design
a new SAT solver, called expSAT, which uses random walks
in the context of CDCL SAT solving. In a conflict depression
phase, random walks help identify more promising variables
for branching. As a contrast, while exploration explores future
search states, LRB and VSIDS relies on conflicts generated
from the past search states. In [3], we proposed expVSIDS,
the exploration based extension of VSIDS. In addition to
expVSIDS, our submitted solver MapleSSV, uses expLRB,
the exploration based extension of LRB.

III. INITIALIZATION PROBLEM

Many modern branching heuristics in CDCL SAT solvers
assume that all variables have the same initial activity score
(typically 0) at the beginning of the run of a solver. However, it
is well known that a solver’s runtime can be greatly improved
if the initial order and value assignment of variables is not
fixed a priori but chosen via appropriate static analysis of the
formula. By the term initial variable order (resp., initial value
assignment), we refer to the order (resp. value assignment) at
the start of the run of a solver. This problem of determining
the optimal initial variable order and value assignment is often
referred to as the initialization problem.

In this work, we used a solution to the initialization problem
based on a Bayesian moment matching (BMM) formulation of
solving SAT instances and a concomitant method we refer to
as BMM-based initialization [4]. Our method is used as a pre-
processing step before the solver starts its search (i.e., before
it makes its first decision).

A. Bayesian Moment Matching (BMM)

The SAT problem, simply stated, is to determine whether a
given Boolean formula is satisfiable. In order to reformulate
the SAT problem in a Bayesian setting, we start by defining a
random variable for each variable of the input formula, where
P (x = T) shows the probability of setting x to True in a

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

35

satisfying assignment, assuming the formula is satisfiable. We
assume that each of these variables has a Beta distribution,
and collectively they form our prior distribution. We have the
constraint that all of the clauses must be satisfied (i.e., it is
assumed that the formula is satisfiable), therefore the clauses
can be seen as evidence as to how the probability distribution
should look like such that they are all satisfied. We then apply
Bayesian inference using each clause as evidence to arrive at
a posterior distribution. Applying Bayesian inference, gives
us a mixture model, and this makes the learning intractable
as the number of components grows exponentially with the
number of clauses. To avoid this blow up, we use the method
of moments to approximate the mixture Beta distribution with
a single Beta distribution.

B. BMM as a Component in CDCL SAT Solvers

We implement an approximate version of the BMM method
described above to solver the initialization problem of CDCL
SAT solvers, since the complete method does not scale as
the size of the input formulas increase. Fortunately, this
approximate method is efficient and arrives at a promising
point, as it attempts to satisfy as many clauses as possible.
We take this starting point and initialize the preferred polarity
and activity scores of each variable of an input formula, and
then let the solver complete its search. The derived posterior
distribution collectively represents a probabilistic assignment
to the variables that satisfies most of the clauses. For polarity
initialization, we used: Polarity[x] = False if P (x = T) <
0.5 and True otherwise. For activity initialization, we gave
higher priority to variables based on the confidence that BMM
has about their values, i.e., Activity[x] = max(P (x =
T), 1 − P (x = T)). We initialized both VSIDS and LRB
scores with the aforementioned methods.

IV. MULTI-ARMED BANDIT RESTART

Many restart policies have been proposed in the SAT
literature [5], [6], in particular we focus on the uniform, linear,
Luby, and geometric restart policies [7]. For a given SAT
instance, we can not know a priori which of the 4 restart
policies will perform the best. To compensate for this, we use
multi-armed bandits (MAB) [8], a special case of reinforce-
ment learning, to switch between the 4 policies dynamically
during the run of the solver. We chose to use discounted UCB
algorithm [9] from MAB literature, as it accounts for the
non-stationary environment of the CDCL solver, in particular
changes in the learnt clause database over time. Discounted
UCB has 4 actions to choose from corresponding to the
uniform, linear, Luby, and geometric restart policies. Once the
action is selected, the solver proceeds to perform the CDCL
backtracking search until the chosen restart policy decides
to restart. The algorithm computes the average LBD of the
learnt clauses generated since the action was selected, and the
reciprocal of the average is the reward given to the selected
action. Intuitively, a restart policy which generates small LBDs
receives larger rewards and UCB increases the probability of
selecting that restart policy in the future. Over time, this biases

UCB towards restart policies that generate small LBDs for the
give input SAT instance [10].

V. AVAILABILITY AND LICENSE

The source code of our solver have been made freely avail-
able under the MIT license. Note that the license of the M4RI
library (which is used to implement Gaussian elimination) is
GPLv2+.

ACKNOWLEDGMENT

We thank the authors of Glucose, GlueMiniSat, Lingeling,
CryptoMiniSat, and MiniSAT for making their solvers avail-
able to us and answering many of our questions over the years.

REFERENCES

[1] “Maplelcmdistchronobt,
http://sat2018.forsyte.tuwien.ac.at/solvers/main and glucose hack.”

[2] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning Rate
Based Branching Heuristic for SAT Solvers,” in Proceedings of the 19th
International Conference on Theory and Applications of Satisfiability
Testing, ser. SAT’16, 2016.

[3] M. S. Chowdhury, M. Müller, and J. You, “Guiding CDCL SAT search
via random exploration amid conflict depression,” in Proceedings of
AAAI 2020, 2020, pp. 1428–1435.

[4] H. Duan, S. Nejati, G. Trimponias, P. Poupart, and V. Ganesh, “Online
bayesian moment matching based sat solver heuristics,” in International
Conference on Machine Learning. PMLR, 2020, pp. 2710–2719.

[5] A. Biere, “Adaptive Restart Strategies for Conflict Driven SAT Solvers,”
in Theory and Applications of Satisfiability Testing–SAT 2008. Springer,
2008, pp. 28–33.

[6] G. Audemard and L. Simon, “Refining Restarts Strategies for SAT
and UNSAT,” in Principles and Practice of Constraint Programming.
Springer, 2012, pp. 118–126.

[7] A. Biere and A. Fröhlich, “Evaluating CDCL Restart Schemes,” in
Pragmatics of SAT, 2015.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
MIT Press Cambridge, 1998, vol. 135.

[9] A. Garivier and E. Moulines, Algorithmic Learning Theory: 22nd
International Conference, ALT 2011, Espoo, Finland, October 5-7, 2011.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, ch.
On Upper-Confidence Bound Policies for Switching Bandit Problems,
pp. 174–188.

[10] S. Nejati, J. H. Liang, C. Gebotys, K. Czarnecki, and V. Ganesh,
“Adaptive restart and cegar-based solver for inverting cryptographic hash
functions,” in Working Conference on Verified Software: Theories, Tools,
and Experiments. Springer, 2017, pp. 120–131.

36

SLIME SAT Solver
1st Oscar Riveros

PEQNP
Santiago, Chile

oscar.riveros@peqnp.science

Abstract—A nobel rephasing technique via Black-Box HESS
algorithm, alternate BOOST Heuristic, and deterministic and
simplified variation of techniques described on RelaxedLCMD-
CBDLnewTech and DurianSat [1].

I. INTRODUCTION

We improve the restart stage with a reconfiguration of
preassigned polarities, via HESS black-box algorithm (Re-
laxed), in this case with a MaxSAT Oracle, that improve
the reassignment of polarities with a approximate MaxSAT
solution, based on the current assignment. We replace the
pseudo-random calls with the conflicts counter, this allow
a deterministic execution on each instance. We improve the
BOOST Heuristic from competition 2019 and 2020, with
alternate behaviour, i.e. this alternate the zone of execution
according the stage of the solver VSID or not-VSID. We add
a parameter ”massive” used on the SLIME Cloud, that produce
a initial random assignment of polarities.

II. METHODS

A. HESS black-box algorithm

HESS black-box algorithm use the ”The Monty Hall Prob-
lem” [2] to approximate values from an Oracle, In this case
a MaxSAT oracle get a complete assignment and return the
number of falsified clauses, for CDCL use the native and
learnts clauses.

B. HESS º1 order (Relaxed)

• Create an initial boolean array ρ(bit0, bit1 . . . bitn) based
on current assignment

• Set the current value to ∞, and i to 0.
• Change the state of i-th boolean variable
• Get Oracle(ρ)

1) less than current value, reassign and retain the
current assignment, and continue with next variable.

2) if greater, change the variable to original state, and
continue with next variable.

3) if equal, reassign the polarities to ρ, and exit.
• Continue with execution of CDCL.

C. Experimental Evaluation

We select a small set of cryptography related instances
(Combined SLS and CDCL instances at the SAT Competition
2020, Mate Soos) [1], and add ”The State of The Art SAT
Solver” Kissat-sc2020, RelaxedLCMDCBDLnewTech-sc2020

Thanks to all supporters of http://www.peqnp.com projects.

Fig. 1.

with SLIME deterministic and without HESS (presented on
the competition 2021), to evaluate the performance and pure
state difference.

III. SLIME CLOUD

Consist on a MPI implementation of SLIME where al
nodes with hess no-deterministic configuration compete for
the solution, can generate certificates certificates for UNSAT.

The no-deterministic indicates that the initial polarities are
random assigned.

REFERENCES

[1] Balyo, T., Froleyks, N., Heule, M. J. H., Iser, M., Järvisalo, M., Suda,
M. (Eds.) (2020). Proceedings of SAT Competition 2020: Solver and
Benchmark Descriptions. (Department of Computer Science Report
Series B; Vol. B-2020-1). Department of Computer Science, University
of Helsinki.

[2] Weisstein, Eric W. ”Monty Hall Problem.” From MathWorld–A Wolfram
Web Resource. https://mathworld.wolfram.com/MontyHallProblem.html

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

37

Mallob in the SAT Competition 2021
Dominik Schreiber

Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
dominik.schreiber@kit.edu

Abstract—We describe our contribution to the parallel and
cloud tracks of the SAT Competition 2021. Notable differences
over last year’s submission include additional diversification, a
simple kind of memory awareness, lock-free clause import in
Lingeling, and updated parametrization of clause sharing.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

After the great success of the distributed SAT solving
system named mallob-mono in the SAT Competition 2020 [1],
we submit a new version of this system with a number of
improvements to this year’s SAT Competition. We submit our
system not only to the cloud track but to the parallel track as
well in order to see how it compares to state-of-the-art shared
memory solvers at a smaller scale.

We decided to name our submission Mallob and omit the
suffix “-mono” which was meant to emphasize the mode of
operation where only one instance at a time is solved. Mallob
as a whole is capable of solving many instances at once and
performing decentralized malleable load balancing on top of
these jobs [2]. Furthermore, since last year, Mallob gained
promising new solver interfaces to CaDiCaL [3], Glucose [4],
and (work in progress) MergeSAT [5]. However, due to the
rules of the competition, we cannot make use of more than
one CDCL solver and can only solve one instance at a time. In
productive environments free of such constraints, our system
can reach better performance by employing a careful mix of
these solvers and by solving several instances in parallel.

II. SYSTEM AND SOLVER SETUP

The setup of our system remains mostly unchanged com-
pared to last year’s submission. We subdivide each physical
compute node into groups of four hardware threads each
and run one MPI process on each such group. Each MPI
process then runs four core solvers in parallel. We make use
of Lingeling and YalSAT [3] as last year with the same kind
of “native” diversification options.

We revisited the concurrent program code in Lingeling’s
solver interface and made the clause import lock-free by
introducing a concurrent lock-free ring buffer1 instead of a
simple array guarded by a mutex. While the array used to
grow indefinitely if a solver did not import any clauses for a
long time, the size of the ring buffer is now limited to a small

1https://github.com/rmind/ringbuf

PE 0 Core

PE 1

PE c− 1

...

PE k

...

. . .

PE k + 1

PE p− 1
. . .

MPI

Compute node 0 Compute node m− 1

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Fig. 1. Architecture of Mallob in the cloud track [2]

multiple of the payload that may be shared each round, and if
the buffer is full, further incoming clauses are discarded.

As an experimental change, we introduce a new kind of
diversification based on permuting the input: With probability
p, a solver will randomly shuffle all clauses and the literals
within each clause. Preliminary experiments at a small scale
showed that performing this permutation in each solver is
detrimental to the overall performance, but we believe that
letting a small ratio of solvers operate on a permutation of
the input may provide different insights to the problem and
improve performance in large scale environments where all
native diversification options are exhausted. We set p = 0.03
which, in the cloud track with 1600 solver threads, leads to
an expected number of 48 “permuted solvers” and still leaves
the great majority of solvers running on the original problem.

III. MEMORY AWARENESS

Last year’s benchmarks featured a few very large instances
for which we experienced out-of-memory errors on the com-
pute nodes running Mallob. We introduce a simple kind of
memory awareness to alleviate this problem: As described in
[2], we limit the total number of literals (including clause
separation zeroes) which may be imported to the solver threads
of a particular MPI process. This measure provides a coarse
estimate on the memory the solver threads will use. If the input
size were to exceed this limit, the number of solver threads to
spawn is reduced such that either the import size is below the
limit or only a single thread remains. We allow a total import
size of 50 · 106 for each thread which we expect to prevent
most out-of-memory issues given that in both tracks 4 GB of
main memory are available per hardware thread.

IV. CLAUSE EXCHANGE

We repaired a subtle issue within the merging step of our
distributed clause aggregation scheme: In the set data structure

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

38

used for bookkeeping inserted clauses and for detecting dupli-
cate clauses, we did use a hash function which is insensitive
to the ordering of literals [6] but checked the equality of two
clauses in an order-sensitive manner. We made the equality
check order-insensitive as well such that our filtering during
aggregation should now reliably detect duplicates even if the
literals are ordered differently.

Based on large scale experiments [2] we adjusted the clause
sharing parameters of our system compared to last year’s
submission. We significantly increased the clause length limit
from five to 30: As our clause aggregation scheme only shares
the globally shortest clauses, we found that it is not particularly
harmful (but can rather be beneficial) to let individual solvers
export some longer clauses. Likewise, experiments indicated
that at the scale of the cloud track, it is beneficial to slightly
increase the overall volume of clauses which can be shared
compared to last year’s configuration. As a result, we increased
the clause buffer discount factor α from 0.75 to 0.9. In the
parallel track, we set α = 1 because we believe that employing
only 64 solvers on a single machine allows for even more
clauses to be shared with less of a penalty. This is the only
difference between our parallel track submission and our cloud
track submission.

ACKNOWLEDGMENT

The author expresses his heartfelt thanks to Armin Biere for
providing the core solvers of Mallob, and to Laurent Simon
and Armin Biere for allowing the use of Glucose and CaDiCaL
in the competition even though it was ultimately not possible
to make use of them.

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

Evaluation of this work was partially performed on the su-
percomputer ForHLR funded by the Ministry of Science,
Research and the Arts Baden-Württemberg and by the Federal
Ministry of Education and Research. The author gratefully
acknowledges the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing
computing time on the GCS Supercomputer SuperMUC-NG
at Leibniz Supercomputing Centre (www.lrz.de).

REFERENCES

[1] D. Schreiber, “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track,” in Proc. of SAT Competition, pp. 45–46,
2020.

[2] D. Schreiber and P. Sanders, “Scalable SAT solving in the cloud,” in
International Conference on Theory and Applications of Satisfiability
Testing, 2021. In review.

[3] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
entering the SAT competition 2018,” Proc. of SAT Competition, pp. 13–
14, 2018.

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Twenty-first International Joint Conference on Artificial
Intelligence, 2009.

[5] N. Manthey, “MergeSAT,” in Proc. of SAT Competition, pp. 40–41, 2020.
[6] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-

lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156–172, Springer, 2015.

39

New Concurrent and Distributed Painless
solvers: P-MCOMSPS, P-MCOMSPS-COM,

P-MCOMSPS-MPI, and P-MCOMSPS-COM-MPI

Vincent Vallade∗, Ludovic Le Frioux†, Razvan Oanea∗, Souheib Baarir∗§, Julien Sopena∗†,
Fabrice Kordon∗, Saeed Nejati¶, Vijay Ganesh¶

∗Sorbonne Université, LIP6, CNRS, UMR 7606, Paris, France
†INRIA, Delys Team, Paris, France
‡Université Paris Nanterre, France

§University of Waterloo, Waterloo, ON, Canada

Abstract—This paper describes the solvers P-MCOMSPS and
P-MCOMSPS-COM submitted to the parallel track of the
SAT Competition 2021; as well as P-MCOMSPS-MPI and
P-MCOMSPS-COM-MPI submitted to the cloud track of the SAT
Competition 2021. P-MCOMSPS and P-MCOMSPS-MPI are LBD-
based, and P-MCOMSPS-COM and P-MCOMSPS-COM-MPI are
community and LBD-based.

I. INTRODUCTION

P-MCOMSPS is a concurrent SAT solver built by using
the Painless framework [1]. It is a portfolio-based [2]
solver implementing a diversification strategy [3], fine con-
trol of learnt clause exchanges [4] based on LBD [5],
using MapleCOMSPS [6] as a core sequential solver,
and where learnt clause strengthening [7] has been inte-
grated. P-MCOMSPS-COM is based on P-MCOMSPS and
uses COM and LBD sharing [8]. P-MCOMSPS-MPI (resp.
P-MCOMSPS-COM-MPI) is a distributed solver using on each
node P-MCOMSPS (resp. P-MCOMSPS-COM), and relying on
MPI for termination and clause sharing between nodes.

Section II details the implementation of P-MCOMSPS us-
ing Painless and MapleCOMSPS. Section III explains
how community and LBD sharing has been implemented
in P-MCOMSPS-COM. Finally, section IV explains how
our concurrent solvers have been adapted to implement
P-MCOMSPS-MPI and P-MCOMSPS-COM-MPI.

II. P-MCOMSPS
This section describes the overall behaviour of our compet-

ing instantiation named P-MCOMSPS. Its architecture is high-
lighted in Fig. 1. It implements the Painless strengthening
described in [9].

A. MapleCOMSPS
MapleCOMSPS [6] has been adapted for the parallel con-

text as follows: (1) we parametrized the solver to use either
LRB [10], or VSIDS [11] (resp. L and V); (2) we added
callbacks to export and import clauses; (3) we added an option
to activate or not the Gaussian elimination (GE) preprocessing;
(4) we parametrized the solver to use as a variable score
comparator either < or <= (resp. head: H and tail: T).

‘

SharingParallelization

SW

SW

...

SW
PF

ControlFlow

Sharer 1

ControlFlow

Sequential
Engines

...
LHk MapleCOMSPS

LTk MapleCOMSPS

...
VHk MapleCOMSPS

VTk MapleCOMSPS

SW

SW

...

R1 MapleCOMSPS

......

SW

SW

...

SW

...
LH2k MapleCOMSPS

LT2k MapleCOMSPS

...
VH2k MapleCOMSPS

VT2k MapleCOMSPS

SW

SW

...

R2 MapleCOMSPS

......
Sharer 2

Fig. 1. Architecture of P-MCOMSPS

B. Strengthener

Two reducer engines (R in Fig. 1) implement the algorithm
introduced in [7]. We implemented the strengthening operation
as a decorator of SolverInterface. This decorator uses, by
delegation, another SolverInterface to apply the strengthening,
in the present case a MapleCOMSPS solver.

C. Portfolio and Diversification

As depicted in Fig. 1, P-MCOMSPS implements a portfolio
strategy (PF), where two solvers are used as reducers, and
the other underlying core engines are either LH, LT, VH
or VT instances (i.e., combination of V or L, and H or
T). For each type of instances, we apply a sparse random

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

40

diversification [3]. Moreover, only one of the solvers performs
the GE preprocessing.

D. Controlling the Flow of Shared Clauses

In P-MCOMSPS, the sharing strategy ControlFlow is
inspired by the one used by [3], [4]. As highlighted in Fig. 1,
we instantiate two sharers, for each half of the solvers and one
reducer are producers. It gets clauses from this producer and
exports some of them to all others (the consumers).

The exchange strategy is defined as follows: each solver
exports clauses having an LBD value under a given threshold
(2 at the beginning). Every 1.5 seconds, 1500 literals (the
sum of the size of the shared clauses) are selected from each
producer by the sharers and dispatched to consumers. The
LBD threshold of the concerned solver is increased (resp.
decreased) if an insufficient (resp. a too big) number of literals
are dispatched (75% and 98%).

E. Online Strengthening

There is one reducer engine that is both consumer and
producer in each of the two sharing groups. It receives clauses
from half of the sequential solvers, strengthened them, in case
of success it then exports them back. The sharing mechanism
will then share this strengthened clauses to all the other
solvers. Since a strengthened clause subsumes the original one,
it is likely that cores will forget the original clause over time.

III. P-MCOMSPS-COM

P-MCOMSPS-COM has exactly the same behaviour than
P-MCOMSPS except for its clause sharing policy where
clauses are filtered through community and LBD as presented
in [8].

A. Community Structure

It is well admitted that real-life SAT formulas exhibit
notable “structures”. One way to highlight such structures is
to represent the formula as a graph and analyze its community
structure [12]. In P-MCOMSPS-COM, community structure is
computed using the Louvain method [13] on the variable
incident graph (VIG) of the simplified formula. The result is a
disjoint partition of the variables present in the formula. Since
this process can take some time, only one of the solver is
responsible for the computation; until it ends sharing is based
only on LBD as in P-MCOMSPS.

B. Community and LBD Sharing

We call ”COM of a clause” the number of communities
in which a clause spans. To compute the COM of a clause,
we consider the variables corresponding to the literals of the
clause and we count the number of distinct communities rep-
resented by these variables. When information on community
structure is available, sharing policy switches and clauses are
filtered using COM and LBD: shared clauses are those with
LBD ≤ 3 or (LBD ≤ 4 and COM ≤ 3); this threshold has
been highlighted in [8].

IV. P-MCOMSPS-MPI AND P-MCOMSPS-COM-MPI

This section presents P-MCOMSPS-MPI (reps.
P-MCOMSPS-COM-MPI) which is a distributed adaptation
of P-MCOMSPS (resp. P-MCOMSPS-COM). In order to adapt
our concurrent solvers for the cloud track we added distant
clause sharing, and termination. Moreover, since in the cloud
track nodes have less CPUs, underlying concurrent solvers
only use one reducer and one sharing group.

A. Distant Clause Sharing
On each node a concurrent solver (described in pre-

vious sections) runs. We added a component called
VirtualSolverAsynchronous which supports the MPI-
based communications between nodes. This solver receives
clauses from other workers on the same node and send them
to the other nodes. It also receives distant clauses (from other
VirtualSolverAsynchronous) which are spread over
the local node using the classical sharing mechanism.

B. Termination
Termination is handled by regularly synchronising main

threads of each concurrent solver and is implemented thanks
to the MPI_Allgather function.

REFERENCES

[1] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT),
pp. 233–250, Springer, 2017.

[2] Y. Hamadi, S. Jabbour, and L. Sais, “Manysat: a parallel sat solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 6,
pp. 245–262, 2009.

[3] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel
portfolio sat solver,” in Proceedings of the 18th International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 156–172,
Springer, 2015.

[4] Y. Hamadi, S. Jabbour, and J. Sais, “Control-based clause sharing in
parallel sat solving,” in Autonomous Search, pp. 245–267, Springer,
2011.

[5] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.,” in IJCAI, vol. 9, pp. 399–404, 2009.

[6] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
comsps lrb vsids, and maplecomsps chb vsids,” pp. 20–21, 2017.

[7] S. Wieringa and K. Heljanko, “Concurrent clause strengthening,” in
Proceedings of the 16th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), pp. 116–132, Springer, 2013.

[8] V. Vallade, L. Le Frioux, S. Baarir, J. Sopena, V. Ganesh, and F. Kordon,
“Community and LBD-based clause sharing policy for parallel SAT
solving,” in Proceedings of the 23rd International Conference on Theory
and Applications of Satisfiability Testing (SAT’20), pp. 11–27, Springer,
2020.

[9] V. Vallade, L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “On the
usefulness of clause strengthening in parallel sat solving,” in Proceedings
of the 12th NASA Formal Methods Symposium (NFM), Springer, 2020.

[10] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate
based branching heuristic for sat solvers,” in Proceedings of the 19th
International Conference on Theory and Applications of Satisfiability
Testing (SAT), pp. 123–140, Springer, 2016.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
Design Automation Conference (DAC), pp. 530–535, ACM, 2001.

[12] C. Ansótegui, J. Giráldez-Cru, and J. Levy, “The community structure
of sat formulas,” in int. conf. on Theory and Applications of Satisfiability
Testing, pp. 410–423, Springer, 2012.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

41

Improving CDCL via Local Search

Xindi Zhang, Shaowei Cai*, Zhihan Chen

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,caisw,chenzh}@ios.ac.cn

Abstract—This document describes our SAT solvers submitted
to the SAT Competition 2021, the solvers are based on Relaxed,
CaDiCaL and kissat.

I. LSTECH MAPLE

LStech Maple (short for LSTech) is the improved version
of Relaxed LCMDCBDL newTech (short for Relaxed),
which proposed the relaxed CDCL method [9]. The relaxed
method is to relax the backtracking process for protecting
promising partial assignment, where a promising assignment
is defined according to its consistency and length. When the
CDCL process meets some conditions, the algorithm will enter
a non-backtracking stage until it gets a full assignment α. Once
it gets α, a local search SAT solver is called immediately.

The differences between LSTech and Relaxed lie in
the non-backtracking stage entrance conditions and the local
search process entrance conditions. Inspired by the updat-
ing method of target phase [4], LSTech enters the non-
backtracking phase to construct a full assignment each time the
CDCL process reaches a higher trail. And LSTech enters the
local search process according to the number of restarts, rather
than after each non-backtracking stage. The detailed rules are
described as follow.

No-backtracking Stage Entrance Rule: Let p be the size
of non-conflict trail that allowing the algorithm enter the non-
backtracking stage. p = 0 at the beginning. If the CDCL
process reaches a higher no-conflict trail with size p′, then it
will enter the non-backtracking stage, and p← p′ accordingly.
Moreover, p← 0.9× p after each local search process.

Local Search Entrance Rule: CCAnr [3] is called every δ
restarts and the best local search solution (denoted as lb soln)
is updated accordingly. δ is set to 300 initially. And δ ←
δ + 300 if the lb soln has not been improved, δ ← δ − 300
(keeping δ > 300) if the lb soln has been improved.

Furthermore, we improve the CCAnr with clause state based
CC [5] instead of neighborhood based CC [3], and the latter
method need to keep a neighborhood list for each variable,
which is time and space consuming. In addition, LSTech
remove the distance branching strategy [8] in the beginning.

This work was supported by Beijing Academy of Artificial Intelligence
(BAAI), and Youth Innovation Promotion Association, Chinese Academy of
Sciences [No. 2017150].

* Corresponding author

II. CADICAL RP

Phase saving [7] is a powerful and standard technique for
modern CDCL solvers, which saves the latest polarity of each
variable in a vetecr polarity. Rephase [4] is recent proposed
to reset polarity with some promising full assignments (which
is also called phases). The goal of CaDiCaL rp is to improve
their base-solver CaDiCaL and kissat [4] by selecting the
appropriate phases based on probability as Relaxed [9].

III. KISSAT CF

For better utilize the information of local search, we use
the local search conflict frequency to enhance the VSIDS
branching strategy [6]. The technique is used in Relaxed [9]
and LSTech as well. The conflict frequency for a variable v
is denoted as freq(v), which is the number of steps in which
it appears in at least one unsatisfied clause divided by the total
number of steps of the local search process. freq(v) will be
updated after each local search process of kissat, in which a
local search solver YalSAT [2] is embedded. Every 20 restarts,
the activity of each variable v is bumped by 100×freq(v),
unless there are variables eliminated in in-processing.

IV. KISSAT BONUS

Considering that modern branching strategies like VSIDS
[6] only bump activity score for each variable based on the
recency, which means that the activity scores of the variable in
the conflict clause will be bumped by the same score inc, no
matter which clause it is. Thus, we designed a method to take
the clause quality (measured by LBD [1]) into account. We
set a reward coefficient bonus for each new conflict clause,
and the score of each variable related to this conflict will be
bumped with inc∗ bonus instead of inc. bonus is 1 when the
LBD of the conflict clause is equal to the global average LBD
value, andbonus is 2 when the LBD is unit. And we design
the bonus factor as an exponential function negatively related
to LBD.

REFERENCES

[1] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
SAT solvers. In IJCAI 2009, pages 399–404, 2009.

[2] A. Biere. Yet another local search solver and lingeling and friends
entering the sat competition 2014. Sat competition, 2014(2):65, 2014.

[3] S. Cai, C. Luo, and K. Su. Ccanr: A configuration checking based local
search solver for non-random satisfiability. In International Conference
on Theory and Applications of Satisfiability Testing, pages 1–8, 2015.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

42

[4] A. B. K. F. M. Fleury and M. Heisinger. Cadical, kissat, paracooba,
plingeling and treengeling entering the sat competition 2020. SAT
COMPETITION 2020, page 50, 2020.

[5] C. Luo, S. Cai, W. Wu, Z. Jie, and K. Su. Ccls: an efficient local search
algorithm for weighted maximum satisfiability. IEEE Transactions on
Computers, 64(7):1830–1843, 2014.

[6] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June
18-22, 2001, pages 530–535, 2001.

[7] K. Pipatsrisawat and A. Darwiche. A lightweight component caching
scheme for satisfiability solvers. In J. Marques-Silva and K. A. Sakallah,
editors, Theory and Applications of Satisfiability Testing - SAT 2007, 10th
International Conference, Lisbon, Portugal, May 28-31, 2007, Proceed-
ings, volume 4501 of Lecture Notes in Computer Science, pages 294–299,
2007.

[8] F. Xiao, C. Li, M. Luo, F. Manyà, Z. Lü, and Y. Li. A branching heuristic
for SAT solvers based on complete implication graphs. Sci. China Inf.
Sci., 62(7):72103:1–72103:13, 2019.

[9] X. Zhang and S. Cai. Relaxed backtracking with rephasing. SAT
COMPETITION 2020, page 15.

43

BENCHMARK DESCRIPTIONS

Benchmark Instance Selection
Markus Iser

Institute of Theoretical Informatics
Karlsruhe Institute of Technology

markus.iser@kit.edu

Abstract—We selected 400 benchmark instances for the Main
track of SAT Competition 2021. The selected instances are
composed of 300 new submitted instances and 100 instances
which have already been used in previous competitions. For the
Crypto track, we selected 200 instances, of which 115 are new
and 85 have already been used in previous competitions.

I. INTRODUCTION

Many researchers followed our call for benchmarks. Also
our rules required each participating teams to submit at least
20 benchmark instances. Like this, we received a total of 1091
new benchmark instances. We filtered out instances which
could be solved by Minisat within one minute. The remaining
952 instances were partitioned into 352 instances for the Main
track and 600 instances for the Crypto track.

II. MAIN TRACK BENCHMARKS

The 352 new instances for the Main track came from 19
authors. We added the unused fractions of three large sets of
instances by three different authors, i.e., Holten, Johnson and
Schidler, which have been submitted last year. Per instance
author, we randomly sampled a maximum of 13 benchmark
instances. We added 18 instances which we randomly sampled
from a large set of hard SMT Bitvector instances to obtain a to-
tal of 300 previously unseen benchmark instances (cf. Table I).
This set constists of 104 to be satisfiable, 74 unsatisfiable, and
122 unknown benchmark instances.

We randomly sampled 35 satisfiable and 65 unsatisfiable
instances used in previous competitions to obtain the final set
of 400 benchmark instances. Table II display the final numbers
of instances selected.

III. CRYPTO TRACK BENCHMARKS

We received three large sets of cryptographic instances for
this and last years competition of which we could randomly
sample 109 instances which have not been used before in
previous competitions. We augmented this set by random
selection of 91 cryptographic instances by 15 different authors
which have been seen in previous competitions.

IV. BENCHMARK INSTANCE DISTRIBUTION

All instances are available at https://gbd.iti.kit.edu/. The
GBD Benchmark Database (GBD) uses instance identification
to make instances accessible online, to assign attributes to
them, and to facilitate access to instances based on their
attributes [1], [2].

Amount Author Family
13 Biere Test Configuration
13 Bouvier Petrinet Concurrency
13 Cherif Maxsat Optimum
13 Chowdhury Cellular Automata
13 Djamegni Timetable
13 Heule Hamiltonian Cycle
13 Jamali Relational Dependencies
13 Jingchao Prime Testing
13 Kaiser Sliding Puzzle
13 Lagniez KTF
13 Lester Minimal Superpermutation
13 Manthey At Least Two Solutions
13 Mengel Edit Distance
13 Osama strcmp Verification
11 Reeves Generalized Mutilated Chessboard
2 Reeves Generalized Pigeonhole
2 Riveros Maximum Constraint Partition
10 Riveros Sum of Three Cubes
13 Shunyang Circuit Multiplier
13 Xindi Argumentation
10 Yolcu Mycielski Graph
13 Holten Edge Matching
13 Johnson Stedman Triples
13 Schidler Hypertree Decomposition
18 Preiner SMT Bitvector

TABLE I
FAMILIES AND AMOUNTS OF 300 PREVIOUSLY UNSEEN INSTANCES

SAT UNSAT UNKNOWN ⌃
NEW 104 74 122 300
OLD 35 65 – 100
⌃ 139 139 122 400

TABLE II
AMOUNTS OF OLD AND NEW INSTANCES BY RESULT

REFERENCES

[1] M. Iser and C. Sinz, “A Problem Meta-Data Library for Research in
SAT”, Proceedings of Pragmatics of SAT 2018, Oxford, UK, July 7,
2018., pp. 144–152, 2018

[2] M. Iser, C. Sinz, and L. Springer, “Collaborative Management of
Benchmark Instances and their Attributes”, CoRR 2020, https://arxiv.
org/abs/2009.02995

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

45

CNF Encodings of Complete Pairwise
Combinatorial Testing of our SAT Solver SATCH

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria

Abstract—This note describes the benchmarks we have sub-
mitted to the SAT Competition 2021 encoding the existence of a
list of configurations of a given size k which covers pairwise all
combinations of configurations of our SAT solver SATCH.

The submitted DIMACS files encode feasibility of a list of
configurations of a given size k for complete combinatorial
pairwise testing [1], [2] of one internal version of our SAT
solver SATCH available at https://github.com/arminbiere/satch.
The encodings were generated by the tool GENCOMBI that
comes with SATCH.

The configure script of SATCH has many different build
options. Given a test suite (in case of SATCH the included
test suite) the basic idea of two-way or pairwise testing is
to run the suite on all combinations of all possible pairs of
configuration options under the constraint that incompatible
configuration options are avoided. Thus we want to produce a
smallest possible list of configuration options satisfying these
criteria. The DIMACS files encode the existence of such a list
for a given size k. By default we also make sure that each
pair of options is not used in at least one configuration.

Beside the size k of the test set, which corresponds to
the number of different configurations, the instances vary in
terms of dropping certain sorting constraints for symmetry
breaking (option --unsorted and suffix ‘u’) or dropping
the requirement that all pairs of features should also not occur
in a least one configuration (option --weak and suffix ‘w’).

For the considered version of SATCH there does exist a list
of configurations of size k = 20 satisfying all criteria. For
size k = 20 all four instances are easy to satisfy including
dropping inclusion of sorting constraints (‘u’) or dropping the
requirement that pairs should also not occur (‘w’). The smaller
ones are getting hard at around k = 14 and are expected to
be all unsatisfiable.

Note that in practical use GENCOMBI generates a new CNF
for each considered k and first doubles k until an instance
becomes satisfiable, where solving time is limited. Then the
tool decreases k trying to reduce the upper bound or to find a
lower bound where solving time takes 10 times more than
for the upper bound. If a new upper bound is found the
process repeats. The individual instances are actually kept in
memory and solving is simply resumed if necessary (the only
incremental way of solving supported for SATCH at this point).

Supported by the Austrian Science Fund (FWF) under projects W1255-N23,
S11408-N23 and by the LIT AI Lab funded by the State of Upper Austria.

REFERENCES

[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatiorial design,”
IEEE Trans. Software Eng., vol. 23, no. 7, pp. 437–444, 1997. [Online].
Available: https://doi.org/10.1109/32.605761

[2] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E. Choi,
“Greedy combinatorial test case generation using unsatisfiable cores,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7,
2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp. 614–624.
[Online]. Available: https://doi.org/10.1145/2970276.2970335

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

46

SAT-Competition Benchmarks
Spawning from Concurrency Theory

Pierre Bouvier and Hubert Garavel
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

{pierre.bouvier,hubert.garavel}@inria.fr

Abstract—We present an original approach for generating
Boolean formulas stemming from the decomposition of Petri
nets into automata networks. Carefully chosen examples of these
formulas have been proposed for the 2020 and 2021 editions of
the SAT Competition.

I. SCIENTIFIC CONTEXT

Interesting Boolean formulas can be generated as a by-
product of our recent work [1] on the decomposition of
Petri nets into networks of automata, a problem that has
been around since the early 70s. Concretely, we developed
a tool chain that takes as input a Petri net (which must be
ordinary, safe, and hopefully not too large) and produces as
output a network of automata that execute concurrently and
synchronize using shared transitions. Precisely, this network
is expressed as a Nested-Unit Petri Net (NUPN) [2], i.e., an
extension of a Petri net, in which places are grouped into sets
(called units) that denote sequential components. A NUPN
provides a proper structuring of its underlying Petri net, and
enables formal verification tools to be more efficient in terms
of memory and CPU time. Hence, the NUPN concept has
been implemented in many tools and adopted by software
competitions, such the Model Checking Contest1 [3], [4] and
the Rigorous Examination of Reactive Systems challenge2 [5],
[6], [7]. Each NUPN generated by our tool chain is flat,
meaning that its units are not recursively nested in each other,
and unit-safe, meaning that each unit has at most one execution
token at a time.

Our tool chain works by reformulating concurrency con-
straints on Petri nets as logical problems, which can be later
solved using third-party software, such as SAT solvers, SMT
solvers, and tools for graph coloring and finding maximal
cliques [1]. We applied our approach to a large collection of
more than 12,000 Petri nets from multiple sources, many of
which related to industrial problems, such as communication
protocols, distributed systems, and hardware circuits. We thus
generated a huge collection of Boolean formulas, from which
we carefully selected a subset of formulas matching the
requirements of the SAT Competition.

II. STRUCTURE OF FORMULAS

Each of our formulas was produced for a particular Petri
net. A formula depends on three factors:

1https://mcc.lip6.fr
2http://rers-challenge.org

• the set P of the places of the Petri net;
• a concurrency relation ‖ defined over P such that p ‖ p′

is the two places p and p′ may simultaneously have an
execution token; and

• a chosen number n of units.
A formula expresses whether there exists a partition of P into
n subsets Pi (1 ≤ i ≤ n) such that, for each i, and for any
two places p and p′ of Pi, p 6= p′ =⇒ ¬ (p ‖ p′). A model
of this formula is thus an allocation of places into n units,
i.e., a valid decomposition of the Petri net. The value of n is
chosen large enough so that the formula is satisfiable, i.e., at
least one decomposition exists. This can also be seen as an
instance of the graph coloring problem, in which n colors are
to be used for the graph with vertices defined by the places
of P and edges defined by the concurrency relation.

More precisely, each formula was generated as follows. For
each place p and each unit u, we created a propositional
variable xpu that is true iff place p belongs to unit u. We
then added constraints over these variables:
• For each unit u and each two places p and p′ such that

p ‖ p′ and #p < #p′, where #p is a bijection from
places names to the interval [1, card (P)], we added the
constraint ¬xpu ∨ ¬xp′u to express that two concurrent
places cannot be in the same unit.

• For each place p, we could have added the constraint∨
u xpu to express that p belongs to at least one unit,

but this constraint was too loose and allowed n! similar
solutions, just by permuting unit names. We thus replaced
this constraint by a stricter one that breaks the symmetry
between units: for each place p, we added the refined
constraint

∨
1≤#u≤min(#p,n) xpu, where #u is a bijection

from unit names to the interval [1, n].
Each formula is provided as a separate file, expressed in

Conjunctive Normal Form and encoded in the DIMACS-CNF
format3.

III. SELECTION OF BENCHMARKS

Using the approach presented in Sections I and II, we
previously published a test suite, named VLSAT1 [8], of
100 formulas. However, VLSAT1 only contains satisfiable for-
mulas, as it was designed for the Model Counting Competition,
which seeks formulas accepting a large number of models.

3http://www.satcompetition.org/2009/format-benchmarks2009.html

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

47

For the SAT Competition, we therefore undertook the pro-
duction of a different collection containing both satisfiable
and unsatisfiable formulas, depending on the number of units
chosen for a given Petri net. Figure 1 shows that, despite the
symmetry-breaking constraints mentioned in Sect. II, satisfi-
able formulas are often easier to solve than unsatisfiable ones.

For the SAT 2020 Competition, we submitted 36 formulas,
listed in Table I. All of them have been tagged as “interesting”
by the organizers of the competition, who selected 7 satisfiable
and 7 unsatisfiable formulas for the Main Track; the selected
formulas are those marked with a star in this table.

TABLE I
LIST OF 2020 FORMULAS

type variables clauses type variables clauses
SAT* 16,676 1,598,591 UNSAT 14,640 1,323,246
SAT 18,090 1,781,277 UNSAT* 15,440 1,409,906
SAT 20,868 2,204,462 UNSAT* 15,960 1,464,039
SAT 21,190 2,597,791 UNSAT 16,297 1,562,268
SAT 21,573 2,289,124 UNSAT 17,688 1,741,702
SAT* 24,450 2,770,239 UNSAT 20,424 2,157,568
SAT 26,606 3,191,844 UNSAT* 21,114 2,240,429
SAT 27,507 3,314,450 UNSAT 23,961 2,714,844
SAT 29,736 3,780,419 UNSAT 26,104 3,131,630
SAT* 30,744 3,925,645 UNSAT 26,988 3,251,923
SAT 33,040 4,437,242 UNSAT 29,205 3,712,921
SAT* 34,161 4,607,712 UNSAT* 30,195 3,855,554
SAT 36,518 5,166,057 UNSAT* 32,480 4,362,044
SAT* 37,758 5,364,539 UNSAT 33,582 4,529,625
SAT* 40,170 5,970,608 UNSAT* 35,929 5,082,743
SAT 41,535 6,200,014 UNSAT* 39,552 5,878,762
SAT* 57,038 10,572,502 UNSAT 40,896 6,104,639
SAT 71,816 14,478,832
SAT 83,334 20,350,783

For the SAT 2021 Competition, we submit 20 formulas,
10 satisfiable and 10 unsatisfiable ones, which are listed in
Table II. All of them have been checked by five solvers
(CaDiCal, MathSAT, MiniSAT, Kissat and Z3) in their most
recent versions. We used a machine with a Xeon E5-2630 v3
and 128 GB RAM. Each satisfiable formula takes at least
35 seconds with any of these solvers. Each unsatisfiable
formula takes at least 37 minutes with any of these solvers.

TABLE II
LIST OF 2021 FORMULAS

type variables clauses type variables clauses
SAT 11,130 1,186,888 UNSAT 1134 26,703
SAT 11,374 1,150,943 UNSAT 1155 42,917
SAT 19,565 3,665,001 UNSAT 4424 545,056
SAT 29,736 3,780,419 UNSAT 5152 824,642
SAT 37,758 5,364,539 UNSAT 5600 1,042,700
SAT 59,204 10,973,962 UNSAT 11,280 4,223,777
SAT 67,996 13,708,722 UNSAT 11,664 5,532,624
SAT 68,760 13,862,744 UNSAT 14,280 6,781,327
SAT 69,524 14,016,766 UNSAT 14,424 7,585,190
SAT 70,288 14,170,788 UNSAT 16,788 9,021,307

REFERENCES

[1] P. Bouvier, H. Garavel, and H. P. de León, “Automatic Decomposition
of Petri Nets into Automata Networks – A Synthetic Account,” in
Proceedings of the 41th International Conference on Application and

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.01

0.1

1

10

100

1000

Number of units

R
es

o
lu

ti
o

n
 t

im
e,

 in
 lo

g
10

 (
se

co
n

d
s)

UNSAT SAT

Fig. 1. Resolution times for a given NUPN

Theory of Petri Nets and Concurrency (PETRI NETS’20), Paris, France,
ser. Lecture Notes in Computer Science, R. Janicki and N. Sidorova, Eds.
Springer, Jun. 2020.

[2] H. Garavel, “Nested-Unit Petri Nets,” Journal of Logical and Algebraic
Methods in Programming, vol. 104, pp. 60–85, Apr. 2019.

[3] F. Kordon, H. Garavel, L. M. Hillah, E. Paviot-Adet, L. Jezequel,
C. Rodrı́guez, and F. Hulin-Hubard, “MCC’2015 – The Fifth Model
Checking Contest,” Transactions on Petri Nets and Other Models of
Concurrency, vol. XI, pp. 262–273, 2016.

[4] F. Kordon, H. Garavel, L. Hillah, E. Paviot-Adet, L. Jezequel, F. Hulin-
Hubard, E. Amparore, M. Beccuti, B. Berthomieu, H. Evrard, P. G.
Jensen, D. Le Botlan, T. Liebke, J. Meijer, J. Srba, Y. Thierry-Mieg,
J. van de Pol, and K. Wolf, “MCC’2017 – The Seventh Model Checking
Contest,” Transactions on Petri Nets and Other Models of Concurrency,
vol. XIII, pp. 181–209, 2018.

[5] M. Jasper, M. Fecke, B. Steffen, M. Schordan, J. Meijer, J. van de Pol,
F. Howar, and S. F. Siegel, “The RERS 2017 Challenge and Workshop,” in
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software (SPIN’17), Santa Barbara, CA, USA,
H. Erdogmus and K. Havelund, Eds. ACM, Jul. 2017, pp. 11–20.

[6] B. Steffen, M. Jasper, J. Meijer, and J. van de Pol, “Property-Preserving
Generation of Tailored Benchmark Petri Nets,” in Proceedings of the 17th
International Conference on Application of Concurrency to System Design
(ACSD’17), Zaragoza, Spain. IEEE Computer Society, Jun. 2017, pp.
1–8.

[7] M. Jasper, M. Mues, A. Murtovi, M. Schlüter, F. Howar, B. Steffen,
M. Schordan, D. Hendriks, R. R. H. Schiffelers, H. Kuppens, and
F. W. Vaandrager, “RERS 2019: Combining Synthesis with Real-World
Models,” in Proceedings of the 25th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’19),
Part III: TOOLympics, Prague, Czech Republic, D. Beyer, M. Huisman,
F. Kordon, and B. Steffen, Eds. Springer, Apr. 2019, pp. 101–115.

[8] P. Bouvier and H. Garavel, “The VLSAT-1 Benchmark Suite,” INRIA
Grenoble Rhône-Alpes, Tech. Rep., Nov. 2020.

48

Verifying Optimums of (Partial) Max-SAT Formulas
Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
{mohamed-sami.cherif, djamal.habet, cyril.terrioux}@univ-amu.fr

Abstract—Checking whether a certain bound holds over a set
of relaxation variables is a subproblem which often arises in
the context of Maximum Satisfiability (Max-SAT) solving and
particularly SAT-based solving. This document describes a col-
lection of SAT instances that have been submitted to the 2021 SAT
competition. These instances are derived from Max-SAT formulas
whose soft clauses are augmented with relaxation variables. An
At-Most-K constraint is then set over these variables to check
the validity of a provided bound. We use this process to verify
known solutions of (Partial) Max-SAT formulas.

Index Terms—SAT, Max-SAT, At-Most-K constraint

I. INTRODUCTION

The maximum satisfiability (Max-SAT) problem is an opti-
mization extension of the satisfiability (SAT) problem. For a
given formula in Conjunctive Normal Form (CNF), it consists
in finding an assignment of the variables which maximizes the
number of satisfied clauses. In Partial Max-SAT, clauses are
divided into hard and soft clauses and the goal is to find an
assignment that satisfies all hard clauses and maximizes the
number of satisfied soft clauses. In recent years, Max-SAT
solvers have achieved great breakthroughs by relying on SAT
technology. In fact, Complete methods for this problem in-
clude SAT based approaches which iteratively call SAT solvers
making them particularly efficient on industrial instances [5].

Checking whether a certain bound holds over a set of
relaxation variables is a subproblem which often arises in
the context of Maximum Max-SAT solving and particularly
in SAT-based solving. For instance, Linear Search algorithms
[2], [3] augment soft clauses with relaxation variables and add
a CNF encoding over their sum to specify that the number of
falsified soft clauses must be less than a given bound. A SAT
solver is then iteratively called and the bound is increased
(resp. decreased) until the formula becomes satisfiable (resp.
unsatisfiable). Similarly to these algorithms, we rely on the
fact that the optimum of a Max-SAT formula is the threshold
in which the formula becomes satisfiable to verify the validity
of a given optimum. To this end, given a Max-SAT formula
and an integer value, we encode two SAT instances to check
whether the given value is the threshold, i.e. the optimum of
the formula.

II. VERIFYING (PARTIAL) MAX-SAT OPTIMUMS

Let φ = H ∪ S be a Partial Max-Sat formula where H
denotes the set of hard clauses and S = {c1, ..., cm} the set of
soft clauses. Let k be an integer value. We define the following
formula:

φk = H ∪ {ci ∪ {ri}|ci ∈ S} ∪ CNF (
∑

1≤i≤m

ri ≤ k)

where r1, .., rm are new relaxation variables.
To verify that a given value o is the optimum of a CNF

formula φ, it is sufficient to check that this value is the
threshold in which the formula becomes satisfiable. To this
end, we need to encode the formulas φo−1 and φo and verify
that φo−1 is unsatisfiable and φo is satisfiable.

III. THE SUBMITTED BENCHMARK

We consider the Single machine scheduling family in the
2020 Max-SAT Evaluation described in [4]. We picked the 18
instances which were solved (by at least one solver) in the
2020 Max-SAT Evaluation and thus for which the optimum is
known. For each instance φ, we encoded the formulas φo−1

and φo. The submitted benchmark thus comprises 36 instances
in total with 18 satisfiable instances and 18 unsatisfiable ones.
We maintain the same naming conventions used in [4] except
that we add ’ sat’ or ’ unsat’ to each formula indicating
respectiviely whether it is satisfiable or unsatisfiable. We
used the PySAT library [1] to add the cardinality constraints
(i.e. At-Most-K constraints) over the relaxation variables. The
encoding chosen for these constraints is the sequential counter
encoding [6]. Finally, it is important to note that, once the
constraints added, the clauses in the resulting formulas are
shuffled.

REFERENCES

[1] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[2] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa.
Qmaxsat: A partial max-sat solver system description. Journal on
Satisfiability, Boolean Modeling and Computation, 8, 01 2012.

[3] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2, system
description. Journal on Satisfiability Boolean Modeling and Computation,
7:59–64, 07 2010.

[4] Xiaojuan Liao and Miyuki Koshimura. Description of Benchmarks
on Single-Machine Scheduling. In Fahiem Bacchus, Jeremias Berg,
Matti Järvisalo, and Rubens Martins, editors, MaxSAT Evaluation 2020:
Solver and Benchmark Descriptions, Department of Computer Science
Report Series B 2020-2, page 54. University of Helsinki, Department of
Computer Science, 2020.

[5] Antonio Morgado, Federico Heras, Mark Liffiton, Jordi Planes, and Joao
Marques-Silva. Iterative and core-guided MaxSAT solving: A survey and
assessment. Constraints, 18, 10 2013.

[6] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints. In Peter van Beek, editor, Principles and Practice of
Constraint Programming - CP 2005, pages 827–831, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

49

Safe Population Growth with Rule 30
Md Solimul Chowdhury, Martin Müller, Jia-Huai You

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada.

{mdsolimu, mmueller, jyou}@ualberta.ca

Abstract—A population is an one-dimensional grid of n ≥ 1
organisms, where each organism evolves between being alive (1)
and dead (0) across chronological time steps by following a fixed
rule of evolution. At any time step t ≥ 1, the combined states
of n organisms represent the state of the population at t. At t,
a population is under the threat of extinction, if the number of
alive organisms falls below n ∗ (P/100), where 0 < P ≤ 100
and safe, otherwise. We say that a population grows over T time
steps, if for any time step t < T − 1, population at t′ has more
alive organisms than population at t, with t′ = t+ 1.

In our proposed SAT benchmark Safe Population Growth
(SPG), given a population of n organisms, a maximum time step
T , we verify if a population could safely grow upto time step T ,
while following a fixed rule of evolution. For the SAT competition
2021, we have submitted 20 instances of the SPG benchmark.

I. SPG AS A CELLULAR AUTOMATON

State evolution in the Safe Population Growth (SPG) prob-
lem represents the state evolution of cells in finite elementary
cellular automaton (CA) [2], with respect to (i) the safety
constraint at any given time step and (ii) the growth constraint
between any two consecutive time steps.

In an elementary CA, at time step t+ 1, the state of a cell
c, which has cell l (resp. r) as its left (resp. right) neighbour,
is computed based on a boolean combination the states of c,
l,and r at time t. There are 23 = 8 combinations of boolean
values for l, c, and r at t, for each of which, there are 2 ways
to set the value of the state of c at t + 1. Hence, there are
28 = 256 ways to set the new state of the c at t + 1. Each
of these 256 ways are called rules [2] for a given elementary
CA.

We consider Rule 30 [3] for the SPG problem, which is
known to produce chaotic patterns over time. At time t + 1,
for a given center cell (center), its left (left) and right (right)
neighbours, Rule 30 computes the state centert+1 of the
center cell as follows:

centert+1 ← leftt XOR (centert OR rightt)

.

Fig. 1: State evolution for the center cell for Rule 30; black
cells represents alive (1) cells, white cells represents dead (0)
state.

Figure 1 (taken from [3]) shows the evolution scheme for
Rule 30, which is known to exhibit chaotic behavior for some
initial states. Figure 2 shows such a chaotic evolution of a CA
that follows Rule 30 (also taken from [3]).

Fig. 2: Emergence of chaotic behavior with Rule 30

II. SAT ENCODING OF THE SPG PROBLEM

A. SPG as a SAT Benchmark

Given a population of n ≥ 1 organisms, a maximum time
step T ≥ 2, , and a safety threshold 0 < P ≤ 100, the task
of the SPG problem is to determine if the population evolve
upto T by following Rule 30, with respect to the following
two constraints:
safety: Total number of alive organisms in every time step
1 ≤ t ≤ T is at least n ∗ (P/100).
growth: For any two consecutive time steps t and t′, where
t′ = t+ 1, number of alive cells at t′ is greater or equals to
the number of alive cells at t.

We can encode an instance of the SPG problem as a SAT
instance. Let sti be the state of the current cell i, where 1 ≤
t ≤ T and 1 ≤ i ≤ n. Given a SPG problem, we encode it as
a SAT formula FSPG as follows

FSPG = Fevolution ∪ Fsafety ∪ Fgrowth ∪ Fboundary

, where, Fevolution, Fsafety, Fgrowth, and Fboundary are de-
fined as follows:

Fevolution :
T∧

t=1

n∧

i=1

(st+1
i = (sti−1 ⊕ (sti ∨ sti+1)))

Fsafety :
T∧

t=1

n∑

i=1

sti ≥ n ∗ (P/100)

Fgrowth :
T−1∧

t=1

n∑

i=1

st+1
i ≥

n∑

i=1

sti

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

50

Fboundary :
T∧

t=1

¬st0 ∧ ¬stn+1

Over T time steps,
• Fevolution encodes the evolution of the population of n

organisms that follows Rule 30.
• Fsafety encodes the population safety constraint.
• Fgrowth encodes the population growth constraint.
• Fboundary encodes the assertion that left neighbor (resp.

right neighbor) of the leftmost (resp. rightmost) organism
(resides outside of the boundary of a given population)
of the population is always dead (0).

FSPG is SATISFIABLE, if the population can evolve upto
time step T with respect to the safety and growth constraint,
otherwise, it is UNSATISFIABLE.

III. PROBLEM MODELING AND INSTANCE GENERATION
FOR THE SPG BENCHMARKS

A. Problem Modeling

picat [1] is a CSP solver, which accepts a CSP problem
and converts it to a SAT CNF formula, which is inturn solved
by a SAT solver hosted by picat. Before solving the converted
CNF formula, picat outputs the CNF formula.

To generate instances for the SPG benchmark, we use this
CNF generation feature of picat. First, we modelled the SPG
problem in a picat program picatSPG. Then, for a given set
of parameter values for (T, n, P), we use this picatSPG model
to generate CNF FSPG by exploiting the CNF generation
functionality of picat.

B. Instance Generation

We have generated a set of FSPG instances with the
picatSPG by varying the parameters T and n, while setting
P to a fixed value of 70. From this set of instances, we have
submitted 20 instances for SAT competition-2021 (CNF file
names with prefix spg), 10 of which are interesting1.

REFERENCES

[1] Picat, http://picat-lang.org/resources.html, Accessed: 2020-04-09
[2] Stephen Wolfram, A new kind of science. Wolfram-Media 2002, ISBN

978-1-57955-008-0, pp. I-XIV, 1-1197.
[3] Rule 30 , https://mathworld.wolfram.com/Rule30.html, Accessed: 2020-

04-09

1Not too easy (solvable by MiniSat in a minute) or too hard (unsolvable
by the participants own solver within one hour on a computer similar to the
nodes of the StarExec cluster)

2

51

Bipartite Perfect Matching Benchmarks
Cayden R. Codel, Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, United States

INTRO

The pigeonhole and mutilated chessboard problems are
challenging benchmarks for most SAT solvers not employing
special reasoning techniques. The solvers that do employ
special techniques can efficiently solve the canonical versions
of these two problems, but may fail with even slight problem
variations. To evaluate and improve the robustness of SAT
solvers, we designed a benchmark family of perfect matching
problems on bipartite graphs that generalizes the pigeonhole
and mutilated chessboard problems [1]. Our benchmark gen-
erator supports various encodings and randomized construc-
tions. These formulas are generally hard in the absence of
reasoning techniques resilient under randomness and encoding
variations.

BIPARTITE PROBLEM AND ENCODING

Random bipartite graphs are used to explore non-structured
problem instances of the perfect matching problem. The
density of a bipartite graph with node partitions of size n
and m is defined as the ratio of the number of edges to
the number of possible edges n ⇥m. To generate a random
connected bipartite graph, edges are added randomly to a
random spanning tree until the desired density is reached.

Given a connected bipartite graph, a Boolean variable is
associated with each edge such that a satisfying assignment is
the edges in a perfect matching. The problem is encoded as
a CNF with at-least-one (ALO) constraints on nodes from the
larger partition and at-most-one (AMO) constraints on nodes
in the smaller partition. This is the Sparse problem encoding.
The Full problem encoding is derived by using both ALO and
AMO constraints for each node.

AMO constraints are encoded in three ways: Pairwise, Sinz,
and Linear,

Pairwise(x1, ..., xn) is the pairwise set of binary clauses
with no auxiliary variables:

(xi _ xj) with 1  i < j  n

Sinz(x1, ..., xn) introduces signal variables that propagate
the AMO condition:

xi_si for 1  i  n si_si+1, si_xi+1 for 1  i < n

Linear(x1, ..., xn) introduces variables to split up the Pair-
wise encoding when n > 4:

Pairwise(x1, x2, x3, y) ^ AMO(y, x4, .., xn)

The Mixed AMO constraint option selects one of the three
AMO encodings at random for each node independently. Note
the signal sn could be left out for the Sinz encoding of AMO,
and is in our implementation.

BOUNDED VARIABLE ELIMINATION ON PIGEONHOLE

Experimental findings [2] revealed a performance de-
cline for top-tier solvers when bounded variable elimination
(BVE) [3] was enabled on pigeonhole formulas. To explore
this phenomenon, we started with a pigeonhole formula using
the Sparse problem encoding and Pairwise AMO encoding,
then applied BVE to some set of variables and gave solvers
the new formula to solve. We found that specific variable
elimination orderings generated formulas that are difficult for
all solvers tested. Namely, eliminating n variables coming
from independent pigeons and independent holes. Notably, this
elimination ordering is forced in the Full problem encoding for
solvers that employ BVE.

BENCHMARKS

We submitted 21 benchmarks to the 2021 SAT Competition.
The first 17 formulas represent three configurations for random
bipartite problem generation: (1) Sparse with Pairwise AMO,
(2) Sparse with Mixed AMO (denoted by MIX in the naming),
and (3) Full (denoted by B in the naming) with Mixed AMO.
For each configuration we construct iteratively larger graphs
with partition sizes n from 15..20, with the exception of the
first configuration starting at n = 16. Each graph has edges
added until a density of 0.5 is reached which is generally hard
as seen in 1.

4 formulas are pigeonhole formulas with n from 11..14
and the Sparse with Pairwise AMO encoding. BVE is applied
to n variables for each (denoted by e# in the naming), with
eliminated variables selected from independent pigeons and
independent holes. This elimination order proves difficult for
previous competition winners shown in 2.

All formulas are UNSAT.

REFERENCES

[1] C. Codel, J. Reeves, M. Heule, and R. Bryant, “Bipartite perfect matching
benchmarks,” in Proceedings of Pragmatics of (SAT), 2021.

[2] J. Reeves and M. Heule, “The impact of bounded variable elimination
on solving pigeonhole formulas,” in Proceedings of Pragmatics of (SAT),
2021.

[3] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing (SAT), ser. LNCS, vol. 3569. Springer, 2005, pp. 61–75.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

300

600

900

1200

1500

1800

density

ti
m

e(
s)

PAR-2
timeout
Pairwise-Sparse
Sinz-Sparse
Linear-Sparse
Mixed-Sparse
Pairwise-Full
Sinz-Full
Linear-Full
Mixed-Full

Fig. 1. Average execution time for KISSAT (2020 version) over randomly generated bipartite matching problems using a 900 second timeout and 1800
second PAR-2 score. For each density value, 60 random bipartite graphs are generated with a fixed edge count (130). Experiments cover the different AMO
and problem encodings described above. Problems are harder around the 0.5 density, and the Mixed AMO encodings are difficult for the respective Sparse
and Full encodings.

NO-E DEF 1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

h

ti
m

e(
s)

CADICAL
KISSAT

MAPLE17
MAPLE18
MAPLE19

Fig. 2. Execution time on BVE instances of pigeonhole formula n = 11. In each h instance (x-axis) 12 variables are eliminated, selected from independent
pigeons and h independent holes. NO-E is the solvers on pigeonhole n = 11 with BVE disabled, and DEF is the default configuration on the pigeonhole
formula. Solvers are previous SAT competition winners. h = 11 represents the independent pigeon/hole BVE instance used in the n = 11 benchmark, and
this variable elimination ordering is extended to n = 12, 13, 14. It is the most difficult formula for the solvers, though some experience larger performance
degradation.

53

Hamiltonian Cycle Instances
using the Chinese Remainder Encoding

Marijn J.H. Heule
Carnegie Mellon University, Pittsburgh, United States

INTRO

Satisfiability (SAT) solvers have become very powerful tools
to solve many hard combinatorial problems in a broad range
of applications. However, the quality of the encoding can have
a significant impact on the effectiveness of a SAT solver, in
particular for problems with complicated constraints. One such
problem is the Hamiltonian Cycle Problem (HCP), which has
a constraint requiring that the edges form exactly one cycle.

Recently two new HCP encodings have been proposed. Both
encodings assign a binary index to each vertex using k =
dlog2 |V |e variables per vertex. The first one is based on linear-
feedback shift registers (LFSR) [1], [2]. LFSR loops through
the numbers {1, . . . , 2k � 1} by shifting a binary number by
one position to the left and puts the parity of some bits in the
vacated position. This facilitates a compact SAT encoding. The
second encoding uses a binary adder that loops through the
numbers {0, . . . , 2k � 1} in ascending order and returns to 0
after 2k � 1 [3]. The binary adder encoding requires auxiliary
variables, more clauses, and/or longer clauses compared to
LFSR. Yet, the binary adder is more effective as it facilitates
quick refutation of some subcycles, e.g., cycles of odd length.

In a recent paper [4], we present the Chinese remainder
encoding that aims to combine the best of the incremental SAT,
binary adder, and LFSR approaches. From the incremental
approach, we borrow the observation that only some subcycles
need to be blocked. From the binary adder approach we borrow
techniques to easily refute some subcycles. Finally, from the
LFSR approach we borrow the compact encoding with short
clauses without auxiliary variables.

CHINESE REMAINDER ENCODING

Given a graph G = (V, E), the Chinese remainder encoding
enforces that all but one cycle has length 0 (mod m) for
a given m. The cycle that includes the initial vertex is
special and is enforced to have length |V | (mod m). The
encoding exploits the Chinese remainder theorem to enforce
these lengths: it suffices to enforce the length of cycles to be
0 (mod pi), respectively |V | (mod pi), for each prime factor
pi of m. By picking m such that it has multiple small prime
factors, the encoding will be compact with lots of propagation.
Table I shows the results for various values of m on 8 graphs
from the Flinders Hamiltonian Cycle Problem Challenge Set
when solving the formulas using CaDiCaL. For small m,
the encoding typically produces multiple cycles. However, for

larger m (but much smaller than |V |), the encoding tends to
produce a single cycle (thus Hamiltonian).

BENCHMARKS

We submitted 24 benchmarks to the 2021 SAT Competition:
for each graph listed in Table I, we submitted the formula
produced by m 2 {60, 105, 420}. As the table shows, most of
these formulas can be solved using CaDiCaL in a couple of
minutes. All benchmarks are satisfiable.

TABLE I
RUNTIME STATISTICS IN SECONDS OF THE SELECTED FLINDERS HCP

CHALLENGE GRAPHS USING CADICAL AND VARIOUS VALUES FOR THE
CYCLE LENGTH. THE SYMBOLS 3 AND 7 DENOTE WHETHER THE

SATISFYING ASSIGNMENT REPRESENTS A SINGLE OR MULTIPLE CYCLES,
RESPECTIVELY.

graph # 2 6 12 60 105 420

424 9.81 7 665.18 7 340.11 7 307.71 7 494.11 3 488.70 3
446 13.24 7 334.62 7 169.52 7 380.47 7 573.38 3 722.23 3
470 17.08 7 166.16 7 152.31 7 933.36 7 501.91 7 840.89 3
491 0.06 7 22.04 7 7.47 3 34.45 3 123.36 3 135.22 3
506 0.11 7 31.75 7 19.24 3 33.48 3 28.73 3 63.20 3
522 0.63 7 5.66 7 32.95 3 133.40 3 30.40 3 67.03 3
526 0.05 7 24.16 7 71.67 3 34.37 3 34.69 7 158.69 3
529 0.40 7 17.90 7 60.19 3 48.09 3 42.33 3 365.58 3

REFERENCES

[1] S. W. Golomb, Shift Register Sequences. Aegean Park Press, 1982.
[2] M. Haythorpe and A. Johnson, “Change ringing and Hamiltonian cycles:

The search for Erin and Stedman triples,” EJGTA, vol. 7, pp. 61–75, 2019.
[3] N.-F. Zhou, “In pursuit of an efficient SAT encoding for the Hamiltonian

cycle problem,” in Principles and Practice of Constraint Programming,
H. Simonis, Ed. Cham: Springer International Publishing, 2020, pp.
585–602.

[4] M. J. H. Heule, “Chinese remainder encoding for Hamiltonian cycles,”
in Theory and Applications of Satisfiability Testing – SAT 2021, C.-M.
Li and F. Manyà, Eds. Cham: Springer International Publishing, 2021,
pp. 216–224.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

54

Database Repair for Multivalued Dependencies
Sima Jamali

Simon Fraser University
Vancouver, Canada

sja88@sfu.ca

Babak Salimi
University of California San Diego

San Diego, United States
bsalimi@ucsd.edu

David Mitchell
Simon Fraser University

Vancouver, Canada
mitchell@cs.sfu.ca

Abstract—We describe a set of SAT solver benchmark in-
stances (CNF formulas) obtained from the problem of finding a
minimal repair for a relational database to satisfy a multivalued
dependency constraint.

Index Terms—MVD, SAT encoding, database repair

I. MULTIVALUED DEPENDENCY (MVD)

A MultiValued Dependency (MVD) for a relational database
is a constraint between sets of attributes in a relation. An MVD
holds when there are three attributes, say X,Y and Z, where for
each value of Z there is a specific set of values for each of X
and Y, but the values of X and Y are independent [1]. An MVD
is a tuple-generating dependency, meaning that presence of
certain tuples in the relation imply that other tuples must also
be present. If a relation does not satisfy an MVD, the relation
can be modified to satisfy the constraint (repaired) either by
adding tuples or removing tuples. (An empty database satisfies
an MVD constraint). For a database D that does not satisfy
an MVD constraint, the minimal database repair problem is
to find another database D∗ at minimal distance from D that
satisfies the MVD. As distance function we use the symmetric
difference, i.e. |D −D∗|. Our encoding as SAT is a decision
version of the MaxSAT encoding of [2].

II. SAT ENCODING

If database D does not satisfy an MVD constraint φ, it can
be repaired either by adding tuples or by removing tuples.
Each CNF formula expresses, for a given database D and
MVD constraint φ, the question: Is it possible to modify D so
that it satisfies φ by adding at most i1 tuples and/or removing
at most i2 tuples?

Consider database D with schema (X,Y,W1, . . .Wn),
where the MVD constraint is on X,Y and some Wi.
Let the (finite) domains of X and Y be Dom(X) and
Dom(Y). We treat the remaining attributes as one variable
Z, with Dom(Z) =

∏
Wi∈W1...Wn

Dom(Wi). Now define the
database D* from D as:

D∗(X1,Y2,Z) = D(X1,Y1,Z) ∧D(X2,Y2,Z)

D∗ is the repaired version of database D that satisfies MVD
by adding all the missing tuples.

To encode the problem, we associate to each tuple t in D∗

(which includes all tuples of D) a variable Vt. Algorithm 1

Funded in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC), through a Discovery Grant to the third author.

generates the encoding (for the slightly simplified cases where
i1 = i2). We express the MVD constraint as a set of clauses of
the form (Vt1 ∧Vt2) −→ Vt3 , where t1 and t2 are tuples in D
and t3 is a tuple that must, as a consequence, be in D to satisfy
φ. This is done by the second for loop in Algorithm 1. We
also include clauses representing the fact that we are allowed
to add up to i1 clauses (those in D∗ but not in D) or remove
up to i2 clauses. This is done by the first loop in Algorithm 1.
It ensures that, for each subset i2 + 1 existing tuples, not all
can be removed, by including ¬(¬Vt1∧...∧¬Vti+1

). A similar
encoding ensures that, for each set of i1+1 missing tuples (in
D), not all can be added, by including ¬(Vt1 ∧ ... ∧ Vti+1

).

Algorithm 1: Encodes problem of deciding D can be
repaired to satisfy a MVD for with at most i − 1 deletions
or i− 1 additions as a CNF formula.

Input: A database D with vairables X ∪Y ∪ Z
Output: A CNF Ψ
Compute D∗(X1,Y2,Z) = D(X1,Y1,Z) ∧D(X2,Y2,Z)
for t1, ...ti ∈ D∗ do

If t1, ...ti ∈ D, add a clause (Vt1 ∨ ... ∨ Vti) to Ψ
If t1, ...ti ∈ D∗ −D add a clause (¬Vt1 ∨ ... ∨ ¬Vti) to
Ψ

Compute
C(X1,Y1,X2,Y2,Z) = D∗(X1,Y1,Z)∧D∗(X2,Y2,Z)

for t ∈ C do
t1 ← t[X1,Y1,Z]; t2 ← t[X2,Y2,Z];
t3 ← t[X1,Y2,Z]

Add a clause (¬Vt1 ∨ ¬Vt2 ∨ Vt3) to Ψ

III. INSTANCE NAMING

The file names are of the form MVD-database-sequential#-
i1-i2. Our instances submitted to the 2021 SAT Solver compe-
tition are generated from random subsets 300 to 600 rows of
the database https://archive.ics.uci.edu/ml/datasets/adult. The
resulting file names then are of the form MVD-ADS-sample#-
i1-i2.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, “Foundations of Databases,”,
January 1955.

[2] B. Salimi, L. Rodriguez, B. Howe and D. Suciu, “Interventional fairness:
Causal database repair for algorithmic fairness,” Proceedings of the 2019
International Conference on Management of Data, pp. 793-810, August
2019.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

55

SAT Encodings for Testing Prime and Quadratic
Residue

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—Here we present SAT encodings of prime and
quadratic residue testing. The quadratic residue testing problem
is to ask whether there exists an integer x such that x2 = a mod
p, where a and p are integers given. If an integer p is prime,
there exist no integers x and y such that x×y = p, x > 1, y > 1.
Although several algorithms in cryptography can test prime and
quadratic residue efficiently, so far no SAT solver can solve it
efficiently.

I. INTRODUCTION

The quadratic residue testing problem is formalized as
follows:

Given three positive integer a and p, find an integer x such
that x2 = a mod p.

The Jacobi symbol is a generalization of the Legendre
symbol, which can be used to compute quadratic residues by
the law of quadratic reciprocity and many of the properties of
the Legendre symbol.

The prime testing problem is formalized as follows:
Given a positive integer p, find two integers x and y such

that x × y = p, x > 1, y > 1.
Prime testing can implement efficiently by sieve of Er-

atosthenes, sieve of Euler, Solovay-Strassen primality testing
algorithm [1] and Rabin-Miller testing algorithm etc.

Here we encode two problems mentioned above into SAT
problems directly. By our observation, no known SAT solver
can solve efficiently the resulting SAT problems. That is, they
are more difficult than the original problems.

II. ENCODING PRIMALITY TESTING

We translate the primality testing problem into a SAT prob-
lem by encoding directly x×y = p, x > 1, y > 1. The pseudo-
code of this encoding algorithm is shown in Algorithm 1. In
this algorithm, we assume that x and y are denoted by binary
variable strings xm, . . . x2, x1 and yn, . . . , y2, y1, respectively.
Every binary yk is processed, middle result f is updated.
Every update need generate new two binary variable strings
zm, . . . z2, z1 and fm+n, . . . f2, f1. Therefore, we require at
least 2mn middle binary variables.

III. ENCODING QUADRATIC RESIDUE TESTING

Encoding quadratic residue testing is the same as encoding
primality testing. It can be done by replacing y with x, since
x2 = a can be viewed as a special instance of x × y = p.
Therefore, we can get a SAT encoding algorithm for testing

Algorithm 1 Encode x × y = p

x is denoted by binary variable string xm, . . . x2, x1

y is denoted by binary variable string yn, . . . , y2, y1

p has binary expansion (pm+n . . . p2p1)2
middle result f is denoted by binary variable string
fm+n, . . . f2, f1

encode x ̸= 1, y ̸= 1
for k = 1 to n do

encode zm . . . z2z1 = xm ∧ yk . . . x2 ∧ ykx1 ∧ yk

encode fk+m . . . fk+2fk+1 := zm ⊕ fk+m . . . z2 ⊕
fk+2z1 ⊕ fk+1

end for
encode (fm+n . . . f2f1) = (pm+n . . . p2p1)

quadratic residue by rewriting y and p into x and a, deleting
the encoding of x ̸= 1, y ̸= 1 in Algorithm 1, and adding
the encoding of (fm+n . . . f2f1) = (am+n . . . a2a1) mod p,
where a and p are constants. If the sizes are the same, the
SAT problem generated by quadratic residue testing is more
difficult than one generated by primality testing.

REFERENCES

[1] Solovay, Robert M.; Strassen, Volker: A fast Monte-Carlo test for
primality, SIAM Journal on Computing,6 (1), 84C85, 1977.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

56

Sliding Tile Puzzles
Robert Clausecker and Benjamin Kaiser

Zuse Institute Berlin
Berlin, Germany

{clausecker,kaiser}@zib.de

1 3 8 9

10 6 4

2 12 5 15

14 7 13 11

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 1. a permuted and a solved 15 puzzle

Abstract—We translate 5 × 5 sliding tile puzzle (24 puzzle)
instances into CNF formulæ to compare the performance of SAT
solvers with standard heuristic search methods in this domain.
We find that SAT solvers still have a long way to go before they
might be competitive in this problem domain.

I. INTRODUCTION

Sliding tile puzzles comprise an n × m rectangular tray
holding square tiles numbered 1 to (nm − 1) with one spot
empty. The objective is to permute the tiles such that their are
arranged in order. To get there, the state of the puzzle can be
changed by shifting tiles adjacent to the blank spot into the
blank spot.

In the domain of heuristic search, sliding tile puzzles are
frequently used as NP-hard model problems for graph search
methods. They are particularly useful due to their simple and
regular structure and admit use of many advanced search
techniques.

With this submission, we would like to understand how
well SAT methods might be suitable for solving this problem.
While SAT solvers lack dowmain specific heuristics, they are
able to attack the problem in ways that aren’t really accessible
to tree-search methods, e.g. by drawing conclusions from parts
of the puzzle configuration that can be reused in other parts.

II. ENCODING

The basic decision problem is: can a given configuration
of the (n × n − 1) puzzle be transitioned into the solved
configuration within k moves? This decision problem is en-
coded into a SAT instance by creating k+1 sets of variables,
each representing one puzzle configuration. Clauses are added
encoding that adjacent configurations must be related by

performing a single move. Furthermore, the first configuration
must be equal to the problem configuration and there must
exist a configuration equal to the solved configuration.

Each configuration is represented as an array of n×n vectors
of literals where each vector ti,j represents the number of the
tile at grid location (i, j). The grid is rotated horizontally and
vertically such that the blank spot (numbered 0) is always in
the top left corner. Two vectors of bits h and v encode in one-
hot encoding where the top left tile ends up after the grid is
rotated.

The move relation is encoded using two literals m0 and m1

encoding if the move taken was up, down, left, or right. By
checking the polarity of these literals in the model found by
the solver, the solution to the puzzle can be extracted.

Using these literals, we then check if the tiles on the board
moved according to the move taken. We also check h and v
to ensure that moves across the border do not occur.

III. SUBMITTED BENCHMARKS

As a sample instance, we picked problem 50 of Korf’s
instances of the 24 puzzle [1]. As the full problem with its
113 step solution is too difficult to be solved by current SAT
solvers, we simplified it by tracing the solution of the problem
and taking the puzzle configurations obtained with distances
k = 30 . . . 60 to the solved configuration. With rising k, the
configurations become progressively harder to solve.

For each such k, two SAT instances were generated. One
instance has a move budget of k and is satisfiable. The other
instance has a move budget of k− 2 and is unsatisfiable. This
way, both the capability to solve SAT and UNSAT instances
is exercised using the same type of instance.

ACKNOWLEDGMENT

We want to express our gratitude towards the organisers of
the SAT Competition 2021 for making such an event possible.
Additionally we like to thank Florian Schintke for his support
and the IT and Data Services members of the Zuse Institute
Berlin for providing the infrastructure.

REFERENCES

[1] Richard E. Korf and Ariel Felner, “Disjoint Pattern Database Heuristics”,
Artificial Intelligence 134(1–2), p. 9–22, 2020.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

57

Minimal Superpermutation SAT Benchmarks
Martin Mariusz Lester

Department of Computer Science
University of Reading

Reading, United Kingdom
m.lester@reading.ac.uk
0000-0002-2323-1771

Abstract—This benchmark consists of several SAT-based en-
codings of instances of the minimal superpermutation problem.

I. INTRODUCTION

The minimal superpermutation problem [1] asks, for a pos-
itive integer n, what is the smallest sequence of the digits 1–n
that contains every permutation of [1, n] as a subsequence?

For example, for n = 4, the minimal superpermutation has
length l = 33. If the first permutation in the sequence is fixed
to be 1234, then it is uniquely determined to be:

123412314231243121342132413214321

For n = 5, l = 153, but the sequence is not unique [2]. For
higher values of n, the length of the minimal superpermutation
is not known. For example, for n = 6, 861 ≤ l ≤ 872.

An instance of the superpermutation problem can be el-
egantly encoded as an instance of the Travelling Salesman
Problem (TSP). The best known automated methods for solv-
ing instances of the superpermutation problem use dedicated
TSP solvers. This method was used to verify minimality for
n = 5 and find the smallest known sequence for n = 6 [3].
As the TSP is NP-complete, instances can be translated into
SAT instances, but the resulting SAT instances are often hard
for current solvers.

The instances in this benchmark suite instead use direct
encodings of the superpermutation problem into SAT. The
instances encode the decision problem of whether a super-
permutation (or a prefix of a superpermutation) of length l for
n distinct digits exists, rather than the optimisation problem
of finding the smallest l for a particular n.

II. ENCODINGS

The instances directly encode a sequence of l digits drawn
from [1, n] and a combinatorial circuit to recognise whether
the sequence is a superpermutation.

The 1st layer of the circuit recognises individual permuta-
tions. Each permutation consists of n! digits; a permutation
recognising circuit checks whether the values of the digits
match those expected for a particular permutation. A permu-
tation could start at any of the l digits, except those at the
end of the sequence, so roughly l copies of each permutation
circuit are needed.

In the 2nd layer of the circuit, for each permutation, the
outputs of each copy of the permutation recognising circuit

are ORed together. The 3rd layer of the circuit ANDs together
the outputs of the 2nd layer, evaluating to true only if all
permutations exist in the sequence.

Different instances in the benchmark use different encodings
of the digits and the circuit. There are 3 different encodings
of the digits:

1) Binary encoding, using log n bits per digit.
2) One-hot encoding, using n bits per digit, with k encoded

as bit k set to 1 and all other bits to 0.
3) Unary encoding, using n bits per digit, with k encoded

using the k least significant bits set to 1 and all remain-
ing bits set to 0.

For each encoding digit encoding, there are 2 variants:
1) A non-strict encoding, where a digit’s bits are con-

strained only by the permutation recognising circuit.
2) A strict encoding, where extra clauses constrain a digit’s

bits only to valid encodings of a digit; this sometimes
allow a smaller encoding of the permutation recognising
circuit.

The 1st layer of the circuit has 2 variants:
1) Flat: The permutation recognising circuit is a large AND

over equality of all digits.
2) Tree: The permutation recognising circuit is built from

a tree of permutation prefix recognising circuits. Where
two permutations share a common prefix, they share
circuitry to recognise that prefix.

In total, this amounts to 3 · 2 · 2 = 12 different encodings.

III. INSTANCES

The benchmark suite contains instances of 3 slightly differ-
ent problems:

1) Find the minimal superpermutation for n = 4 with
l = 33. These instances are easy, with MiniSAT 2.2.1
solving them in less than 1 minute.

2) Show that the minimal superpermutation for n = 4
with l = 33 is unique, once the first permutation is
fixed. These instances add a clause to instances from the
preceding set that forbids the known superpermutation,
making them unsatisfiable. These instances are still
relatively easy, with MiniSAT solving the hardest in just
over 2 minutes.

3) Find a prefix of a superpermutation for n = 5 with either
l = 21 and g = 15 permutations, or l = 26 and g = 19

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

58

permutations. These instances are harder, with MiniSAT
solving 7 out of the 12 l = 21 instances in under 10
minutes and none of the l = 26 instances.

In the final set of instances, the check for g permutations
was encoded by converting the SAT instance to a Pseudo-
boolean (PB) instance, where it could easily be added as
a cardinality constraint. Then the cardinality constraint was
converted back to SAT using pbencoder from pblib [4].

The values of l for the final set of instances were chosen to
be hard but plausible within the 5000 second time limit used
in the SAT Competition. With the PB formulation, the default
configuration of the PB solver clasp [5] was able to solve 8
out of 12 of the l = 26 instances within this time limit.

All timings are for an Intel i5-7500 CPU running at
3.40GHz.

REFERENCES

[1] D. A. Ashlock and J. Tillotson, “Construction of small superpermutations
and minimal injective superstrings,” in Conference on Algebraic Aspects
of Combinatorics and Sundance Conference and International Conference
on Algol 68 Implementation, ser. Congressus Numerantium, no. v. 93.
Utilitas Mathematica Pub. Incorporated, 1993, pp. 91––98. [Online].
Available: https://books.google.co.uk/books?id=f5PgAAAAMAAJ

[2] N. Johnston, “Non-uniqueness of minimal superpermutations,” Discret.
Math., vol. 313, no. 14, pp. 1553–1557, 2013. [Online]. Available:
https://doi.org/10.1016/j.disc.2013.03.024

[3] R. Houston, “Tackling the minimal superpermutation prob-
lem,” CoRR, vol. abs/1408.5108, 2014. [Online]. Available:
http://arxiv.org/abs/1408.5108

[4] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean
constraints into cnf,” in Theory and Applications of Satisfiability Testing
– SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340, pp.
9–16.

[5] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp :
A conflict-driven answer set solver,” in Logic Programming and
Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007, Proceedings, ser. Lecture Notes
in Computer Science, C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483. Springer, 2007, pp. 260–265. [Online]. Available:
https://doi.org/10.1007/978-3-540-72200-7 23

59

At Least Two Solutions
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—This document describes the ATLEASTTWO tool,
as well as the benchmarks that have been submitted to the SAT
competition 2021. The tool takes a CNF and encodes a new
CNF which is satisfiable only if the initial CNF has at least two
satisfying solutions. The difference of the two solutions can be
restricted to input variables only, to support formulas that have
been encoded with auxiliary variables.

I. INTRODUCTION

When encoding problems, one might ask whether given
problem has more than one solution. This property is for ex-
ample useful when generating logic puzzles to know whether
a generated puzzle has multiple solutions. A related property
is to encode that a formula has exactly one solution. Similarly,
the encoding could be extended to ask for at least two
satisfying assignments, or at most k satisfying assignments.
However, the result formula would grow quadratically with k.
The current tool only supports asking for at least two solutions.
Other extensions would be to encode that at least a given
number of K assignments need to be different. In this case,
the currently used at-least-k constraint – a clause – would have
to be replaced by a properly encoded cardinality constraint.

II. ENCODING AT LEAST TWO SOLUTIONS

The input for the ATLEASTTWO tool is an uncompressed
CNF file with the formulas F . This formula has n variables,
and m clauses, where we assume all variables n to be present.
As in CNF, variables are represented as integers, we will use
math rules to describe transformations. The resulting formula
is basically encoded by the following steps: (1) duplicate F
into a formula G, but add the offset n to all variables to obtain
fresh variables, (2) encode the equivalence for all variable pairs
in F and G, respecting the offset, and (3) enforce that are least
one equivalence from (2) is falsified. The three steps will be
explained in more details next.

A. Duplicate Input Formula

As a first step, we duplicate all clauses in F . During this
step, for all clauses Ci, we add the offset n to the variable
representation of all literals li when creating the new clauses.

G :=
∧

Ci∈F

∨

li∈Ci

li + n

B. Encode Solution Equality

To encode whether two variable assignments are equivalent,
we need to introduce a new variable for each existing variable
in F , or at least for the range of selected variables whose
satisfying assignment should be different. Let e be the number

of variables from 1 to e which should have at least one
different assignment. As the default case, the number of
variables to consider is the number of variables in the input,
i.e. e = n.

E :=
e∧

i=1

ai ↔ (fi ↔ gi)

,
where ai are variables that do not occur in F nor in G.

Note, the variables fi and gi again have the offset of n again,
i.e. gi = fi + n.

C. Force Inqeuality of Solutions

When combining all formulas above, we obtain a formula
that encodes the same formulas twice, and a sub-formula that
indicates whether the assignments for both formulas are equal:

R′ = F ∧G ∧ E

.
A model for this formula can assign the same truth value

for all variable pairs in F and G. To make sure, the models are
different, we need to ensure that at least one pair of variables
is not equal, by encoding an at-least-one constraint for the new
auxiliary variables:

R = F ∧G ∧ E ∧
e∨

i=1

¬ai

.
Formula R is the resulting formula that will be generated

by the tool.

D. Properties of the Generated Formula

First, we discuss the relationship between the satisfiability
of the input formula F and the produced formula R. When
the input formula F is unsatisfiable, the resulting formula R
is also unsatisfiable.

Next, when F has exactly one model, the truth values of this
model can be assigned to satisfy F . Formula G will can only
be satisfied with the same set of assignments. Consequently,
all variables ai will be assigned to >. In this case, the last
subformula of R will be falsified.

In the final case, multiple model I and J exist to satisfy
F . Then, I can satisfy F , and J can satisfy G by respecting
the offset n. As I and J are diferent, at least one variable ai
will be assigned to ⊥, resulting in a satisfying assignment for
R. Note, such a satisfying assignment to R contains the two
models I and J that satisfy the input formula F .

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

60

III. THE SUBMITTED BENCHMARK

The submitted benchmark formulas have been generated by
using formulas from previous SAT competition benchmarks.
The initial set of formulas to select the submitted formulas
from is the robust benchmark for tuning SAT solvers from [1].

IV. AVAILABILITY

The source of the tool is publicly available under the MIT
license at https://github.com/conp-solutions/cnfmiter.

REFERENCES

[1] H. H. Hoos, B. Kaufmann, T. Schaub, and M. Schneider, “Robust bench-
mark set selection for boolean constraint solvers,” in Revised Selected
Papers of the 7th International Conference on Learning and Intelligent
Optimization - Volume 7997, ser. LION 7. Berlin, Heidelberg: Springer-
Verlag, 2013, p. 138–152.

61

A Naive SAT-Encoding of Cluster Editing
Stefan Mengel

CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), Lens, F-62300, France
Univ. Artois, UMR 8188, Lens, F-62300, France

INTRO

A cluster graph is defined to be a graph whose connected
components are all cliques. The cluster editing problem is,
given a graph G, to turn it into a cluster graph by applying as
few edge modifications, i.e. edge additions and deletions, as
possible. This problem is well known to be NP-hard.

Due to numerous applications, cluster editing has been stud-
ied extensively, in particular in the parameterized algorithms
community, see e.g. [1], [2] for an overview. There is also quite
an extensive literature on practical approaches to cluster edit-
ing, see again [2] for a discussion and [3]. Note that practical
implementations largely rely on integer linear programming
or specialized branch & bound methods. SAT-encodings have
been tried, but were largely inefficient [4]. Since cluster editing
is the problem treated in PACE 2021, the yearly Parameterized
Algorithms and Computational Experiments Challenge [5], we
thought it might be interesting to see how state-of-the-art SAT
solvers fare on the problem. To this end, we provide several
(naively encoded) instances for the SAT competition 2021.

DESCRIBING THE ENCODING

It is easy to see that a graph G is a cluster graph if and
only if for every triple u, v, w of vertices in G the following
is true: if uv and uw are edges in G, then vw is an edge of G
as well. This observation is the basis of our encoding. Given a
vertex set V , for ever potential edge uv, we add an indicator
variable xuv that is true if and only if uv is an edge in the
graph we want to describe. Then for every triple u, v, w 2 V ,
we add the three clauses

x̄uv _ x̄uw _ xvw, x̄uv _ x̄vw _ xuw, x̄uw _ x̄vw _ xuv.

By what we said before, the satisfying assignments of the
resulting formula FV are exactly the encodings of all cluster
graphs on the vertex set V .

Now given a graph G on vertex set V and an integer k, we
can encode the question of if there is a cluster graph G0 that
we can get from G by modifying at most k edges as follows:
let aG be the assignment of the variables xuv that corresponds
to the graph G. Then we add a single cardinality constraint c
that forces that at most k variables may differ from the value
they get in the assignment aG.

BENCHMARKS

The above gives for every graph G and a bound k an
encoding. We implemented this using PySAT [6], in particular
for the convenient generation of cardinality constraints. As

input graphs, we used public instances of the exact track of
PACE 2021 [4], which in turn were taken from different public
sources [7], [8], [9], [10], [11], [12] or randomly generated;
for more details see also the description of the benchmarks
by the organizers of PACE 2021 that will be published soon.
While the size of our encoding is cubic in the number of
vertices of the graph, due to the limited size of the graphs
in the benchmark set, we can still mostly generate the CNF-
formulas reasonably quickly.

To have interesting bounds for k that are close to the optimal
value, we ran a simple greedy heuristic that tries to turn
an input into a cluster graph by modifying edges uv that
contribute to many conflicting triples u, v, w. For not too big
graphs, this tends to give values that are reasonably close to
the optimal value. To generate unsatisfiable instances (or get
closer to the optimum), we subtract a small number for some
SAT instances. When k is close to the optimum, the resulting
instances are surprisingly hard in our preliminary tests, even
for some small graphs. In particular, this also tends to be true
for satisfiable instances.

We submitted 20 benchmarks to the 2021 SAT Compe-
tition, 6 unsatisfiable, 14 satisfiable. The naming format of
the instances is edit_distancexxx_kk.cnf where xxx
corresponds to the number of the graph in the PACE 2021
exact track benchmark set and kk is the bound that is tested.
Note that for some graphs we have submitted instances for
several bounds.

OUTLOOK

As stated above, the instances that we created are, at least in
our preliminary tests, hard to solve even for small graphs. We
have tried another encoding of cluster editing that was inspired
by coloring problems, where we essentially gave every node a
color enconding the clique it is in in the modified graph. This
encoding was smaller, but the solvers performed even worse
on it.

For our encoding, there are different ways in which it can
be improved. For example, we have performed tests in which
we used known preprocessing rules for cluster editing to add
unit clauses to the encoding. Unfortunately, this made only
very little difference for the solver runtime, so we have not
included it in the submitted instances.

It would be interesting to see if there are better SAT-
encodings of cluster editing that make SAT-solvers competitive
with MIP-solvers and branch & bound techniques.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

62

REFERENCES

[1] V. Froese, “Fine-grained complexity analysis of some combinatorial data
science problems,” Ph.D. dissertation, Technical University of Berlin,
Germany, 2018. [Online]. Available: https://nbn-resolving.org/urn:nbn:
de:101:1-2018101702004553735214

[2] S. Böcker and J. Baumbach, “Cluster editing,” in The Nature of
Computation. Logic, Algorithms, Applications - 9th Conference on
Computability in Europe, CiE 2013, Milan, Italy, July 1-5, 2013.
Proceedings, ser. Lecture Notes in Computer Science, P. Bonizzoni,
V. Brattka, and B. Löwe, Eds., vol. 7921. Springer, 2013, pp. 33–44.
[Online]. Available: https://doi.org/10.1007/978-3-642-39053-1 5

[3] S. Hartung and H. H. Hoos, “Programming by optimisation meets
parameterised algorithmics: A case study for cluster editing,” in
Learning and Intelligent Optimization - 9th International Conference,
LION 9, Lille, France, January 12-15, 2015. Revised Selected Papers,
ser. Lecture Notes in Computer Science, C. Dhaenens, L. Jourdan, and
M. Marmion, Eds., vol. 8994. Springer, 2015, pp. 43–58. [Online].
Available: https://doi.org/10.1007/978-3-319-19084-6 5

[4] A. Nichterlein, personal communication.
[5] Pace 2021: Call for participation. [Online]. Available: https://

pacechallenge.org/2020/10/22/PACE-2021-CFP/
[6] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python

toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

[7] Wcs data archives. [Online]. Available: http://www.icsi.berkeley.edu/
wcs/data.html

[8] The 20 newsgroups text dataset. [Online]. Available: https://scikit-learn.
org/0.19/datasets/twenty newsgroups.html

[9] Transclust example data. [Online]. Available: https://transclust.compbio.
sdu.dk/online service/web.php

[10] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and
S. Böcker, “Exact and Heuristic Algorithms for Weighted Cluster
Editing,” in Proc. of Computational Systems Bioinformatics (CSB 2007),
vol. 6, 2007, pp. 391–401.

[11] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[12] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß, “A
fixed-parameter approach for weighted cluster editing,” in Proceedings
of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17
January 2008, Kyoto, Japan, ser. Advances in Bioinformatics and
Computational Biology, A. Brazma, S. Miyano, and T. Akutsu, Eds.,
vol. 6. Imperial College Press, 2008, pp. 211–220. [Online]. Available:
http://www.comp.nus.edu.sg/%7Ewongls/psZ/apbc2008/apbc050a.pdf

63

Verifying String Safety Properties in AWS C99
Package with CBMC

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

Abstract—In this paper, state-of-the-art proofs are generated
with harness using the CBMC bounded model checker for the
Amazon Web Services C99 core package. We check, in particular,
the safety properties of the String compare routine with various
loop unwinding settings. The generated proof has proven to be
reasonably hard to solve using modern SAT solvers. It has many
variable-clause redundancies which are not only challenging for a
SAT solver but also useful to assess the performance of different
simplification techniques.

I. INTRODUCTION

Bounded Model Checking (BMC) [1], [2] determines
whether a model M satisfies a certain property ϕ expressed in
temporal logic, by translating the model checking problem to
a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to
the fact that the BMC procedure searches for a counterexample
to the property, i.e., an execution trace, which is bounded in
length by an integer k. If no counterexample up to this length
exists, k can be increased and BMC can be applied again.
This process can continue until a counterexample has been
found, a user-defined threshold has been reached, or it can be
concluded (via k-induction [2]) that increasing k further will
not result in finding a counterexample. CBMC [3], [4] is an
example of a successful BMC model checker that uses SAT
solving. CBMC can check ANSI-C programs. The verification
is performed by unwinding the loops in the program under
verification a finite number of times, and checking whether the
bounded executions of the program satisfy a particular safety
property [5]. These properties may address common program
errors, such as null-pointer exceptions and array out-of-bound
accesses, and user-provided assertions.

II. BENCHMARKS

In this paper, we are interested in verifying the safety
properties of the compare routine implemented in the String
data structure of the Amazon Web Services (AWS) C99 core
package. The proof covers the following:
• Memory allocation failure and access violations
• Pointer/floating-point overflow
• Data types conversion

We generated 41 different formulas using a loop unwinding
upper-bound in the range [600, 1000], with an increasing step
of 10. These bounds make the SAT formulas achieve 100%
coverage of all functionalities. All problems are written in this

format:
string_compare_safety_cbmc_unwinding_<x>

where x denotes the unwinding value. The first and the last
formulas are solved via MiniSat [6] within 470 and 3000
seconds respectively on a machine with Intel Core i5-7600
operating at 3.5 GHz. The solving time of the rest of the
benchmarks are expected to be monotonically increasing.

III. ACKNOWLEDGMENT

We would like to thank Daniel Kroening and Natasha Jebbo
for referring us to the AWS C99 package and helping with the
configuration of the proof environment.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS. Springer, 1999, pp. 193–207.

[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, “Bounded
Model Checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[3] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS, ser. LNCS, vol. 2988. Springer, 2004, pp. 168–
176.

[4] D. Kroening and M. Tautschnig, “CBMC – C Bounded Model Checker,”
in TACAS. Springer, 2014, pp. 389–391.

[5] D. Kroening and O. Strichman, Decision Procedures. Springer, 2016.
[6] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT, ser. LNCS,

vol. 2919. Springer, 2004, pp. 502–518.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

64

PEQNP Python Library Benchmarks
1st Oscar Riveros

PEQNP
Santiago, Chile

oscar.riveros@peqnp.science

Abstract—The formulas that are generated by PEQNP Library
represent some particular instances of the following Problems:
Sum of 3 Cubes [1] and Maximum Constrained Partition [2].

I. INTRODUCTION

The PEQNP System its an automatic CNF encoder and
SAT Solver for General Constrained Diophantine Equations
and NP-Complete Problems, fully integrated with Python [3].

II. SAT COMPETITION 2021 BENCHMARKS

The collected formulas have generated with PEQNP Library
for the following problems:

A. Sum of 3 Cubes

Let be x, y, z ∈ Z and x3 + y3 + z3 = t search for x, y, z.
with t ∈ {87, 96, 91, 80, 39, 84, 75, 30, 52, 74}.

B. Maximum Constrained Partition

Given a finite set S of 2n elements in N decide if exist a
partition of X ∪ Y = S with X ∩ Y = ∅, |X| = |Y | and
ΣX = ΣY.

III. INSTANCES

maximum_constrained_partition_10_bits_n200.cnf
maximum_constrained_partition_11_bits_n200.cnf
maximum_constrained_partition_12_bits_n200.cnf
maximum_constrained_partition_13_bits_n200.cnf
maximum_constrained_partition_14_bits_n200.cnf
maximum_constrained_partition_15_bits_n200.cnf
maximum_constrained_partition_16_bits_n200.cnf
maximum_constrained_partition_17_bits_n200.cnf
maximum_constrained_partition_18_bits_n200.cnf
maximum_constrained_partition_19_bits_n200.cnf
sum_of_3_cubes_37_bits_87.cnf
sum_of_3_cubes_42_bits_96.cnf
sum_of_3_cubes_50_bits_91.cnf
sum_of_3_cubes_51_bits_80.cnf
sum_of_3_cubes_52_bits_39.cnf
sum_of_3_cubes_76_bits_84.cnf
sum_of_3_cubes_87_bits_75.cnf
sum_of_3_cubes_94_bits_30.cnf
sum_of_3_cubes_108_bits_52.cnf
sum_of_3_cubes_145_bits_74.cnf

Thanks to all supporters of http://www.peqnp.com projects.

REFERENCES

[1] A compendium of NP optimization problems, Nikos Drakos, Ross
Moore. http://www.csc.kth.se/ viggo/wwwcompendium/node152.html

[2] Which integers can be expressed as a sum of
three cubes in infinitely many ways?, Mathoverflow.
https://mathoverflow.net/questions/138886/which-integers-can-be-
expressed-as-a-sum-of-three-cubes-in-infinitely-many-ways

[3] PEQNP Mathematical Solver, Oscar Riveros, http://www.peqnp.com

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

65

Multiplier Input Decomposition Instances generated

by ToughSAT

 1st Shunyang Bi, 1st Zhang Qu, 5th

Hailong You

School of Microelectronics

XiDian University

Xi’an China

shybi@stu.xidian.edu.cn,

quzhang2019@stu.xidian.edu.cn,
hlyou@mail.xidian.edu.cn

 2nd Meihua Liu

School of Electronic and Computer

Engineering

Peking University Shenzhen Graduate

School

Shenzhen Guangdong China
liumh@pku.edu.cn

 3rd Pengfei Li, 4th Yang Zhang

EDA Group

SMIT Holdings Limited

Shenzhen Guangdong China

379401663@qq.com,
yanzhang@smit.com.cn

Abstract—this description introduce our instances to the

SAT Competition 2021. We generated instances that would

select proper input decomposition from multiplication of large

numbers.

I. DATA

In the circuit design of n-digit multiplication multiplier,
using the ordinary multiplication algorithm needs 𝑛2 times of

multiplication, while 3 ∗ 𝑛log2 3 (3 ∗ 𝑛1.585) times of
multiplication in the fast multiplication algorithm(Karatsuba’s
algorithm). For example, let x and y be represented as n-bit
strings in a cardinality b. For any positive integer less than n,
two given numbers can be written as:

𝑥 = 𝑏𝑚 ∗ 𝑥1+𝑥0

𝑦 = 𝑏𝑚 ∗ 𝑦1+𝑦0

Where x and y are less than 𝑏𝑚, that is to say:

𝑥 ∗ 𝑦 = (𝑏𝑚 ∗ 𝑥1+𝑥0) ∗ (𝑏𝑚 ∗ 𝑦1+𝑦0)

Let

𝑧0= 𝑥1 ∗ 𝑦1

𝑧1= 𝑥0 ∗ 𝑦1+𝑥1 ∗ 𝑦0

𝑧2= 𝑥0 ∗ 𝑦0

Then,

𝑥 ∗ 𝑦 = 𝑏2𝑚 ∗ 𝑧0+𝑏𝑚 ∗ 𝑧1+𝑧2

In this process, it takes 4 times multiplication operations to
decompose the multiplication. But in fast multiplication
algorithm, z1 can be expressed as:

𝑧1= (𝑥1+𝑥0) ∗ (𝑦1+𝑦0)−𝑥1 ∗ 𝑦1−𝑥0 ∗ 𝑦0

And we just need 3 times of multiplication. In the actual circuit,
we need to verify whether this decomposition method is
feasible.

II. SELECTION

Whether the input of a designed multiplier circuit can be
decomposed into multiplication factor based on fast

multiplication algorithm is very important for our circuit
design. The multiplier constraint is defined as the multiplier
inputs of the circuit we designed. These inputs have appeared
in our circuit design. We define the input in the multiplier as
f1, f2, and assign them according to the actual design circuit.

TABLE Ⅰ shows the running time of 20 instances in Minisat.

TABLE I. RESULTS WITH MINISAT FOR 20 INSTANCES SUBMITTED

FOR SAT COMPETITION-2021.

Instance name f1 f2
Minisat

Time
Status

Circuit_multiplier_18.cnf 71472475 35478902 5000 UNKNOWN

Circuit_multiplier_20.cnf 17783402 274475 206.98 SAT

Circuit_multiplier_22.cnf 47545134 8348021 1659.06 SAT

Circuit_multiplier_23.cnf 54513144 34802174 595.69 SAT

Circuit_multiplier_24.cnf 479613144 1802174 5000 UNKNOWN

Circuit_multiplier_25.cnf 96131440 802174 5000 UNKNOWN

Circuit_multiplier_26.cnf 61314404 2174734 5000 UNKNOWN

Circuit_multiplier_28.cnf 144024741 773457 1444.49 SAT

Circuit_multiplier_29.cnf 77340057 40247415 5000 UNKNOWN

Circuit_multiplier_33.cnf 979147121 175171 253.31 SAT

Circuit_multiplier_34.cnf 59147121 7325171 3073.5 SAT

Circuit_multiplier_35.cnf 98325171 1441721 4539.31 SAT

Circuit_multiplier_36.cnf 179325171 93411721 5000 UNKNOWN

Circuit_multiplier_37.cnf 9263325171 721721 181.99 SAT

Circuit_multiplier_47.cnf 977317491 7894567 5000 UNKNOWN

Circuit_multiplier_48.cnf 435678915 9647851 4307.78 SAT

Circuit_multiplier_45.cnf 169117141 16773165 703.21 SAT

Circuit_multiplier_17.cnf 8642475 6547892 500.02 SAT

Circuit_multiplier_53.cnf 92147042 13795646 5000 UNKNOWN

Circuit_multiplier_54.cnf 92776646 85247042 5000 UNKNOWN

III. TOOLS

We used ToughSAT [1] to assist in adding the constraints
of multiplier and generating the CNF formulas.

REFERENCES

[1] Joseph Bebel, “Harder SA T Instances from Factoring with Karatsuba

and Espresso,”in Proceedings of SAT Competition 2019. [Online].
Available: https://helda.helsinki.fi/handle/10138/306988

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

66

Computing Preferred Extensions for Abstract
Argumentation

Xindi Zhang, Shaowei Cai*

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{zhangxd,caisw,chenzh}@ios.ac.cn

Abstract—In this document, we describe how to generate SAT
instances though a general SAT-based abstract argumentation
solver called MiniAF. We only focus on solving the reasoning
tasks of preferred semantic on the ICCMA benchmarks.

I. INTRODUCTION

SAT-based method is one of the most popular formal
argumentation approaches for solving reasoning tasks of the
abstract argumentation framework [1]. In this document, we
use a general solver called MiniAF [6] to solve tasks from
International Competition on Computational Models of Argu-
mentation(ICCMA). For clearer understanding, we repeating
the encoding method in this document.

II. BASIC CONCEPTS

A given abstract argumentation framework(AF) AF =
(A,R) can be represented by a directed graph, where A is
a set of arguments and R ⊆ A × A is the relation. For two
arguments a, b ∈ A, the relation aRb means that a attacks b
(which can be represented by a→ b as well), and we denote
a− = {b|bRa}. A set S ⊆ A defends an argument b ∈ A
if for all a with aRb there is c ∈ S with cRa. Semantic σ
represents a kind of property over a set of arguments, and a
σ-extension E ⊆ A is a argument set with the property σ.
There are definitions of some important semantic extensions.
• An extension E is conflict-free (cf) iif there are no

arguments a, b ∈ E with aRb;
• An extension E is admissible (adm) iif E is cf and E

defends every a ∈ E;
• An extension E is complete (co) iif E is adm and if E

defends a then a ∈ E;
• An extension E is preferred (prf) iif E is maximal co.
Given a semantic σ ∈ {co, prf} and an AF AF = (A,R),

an argument a ∈ A is skeptically accepted in AF if a is
contained in every σ-extensions, is credulously accepted in
AF if a is contained in some σ-extensions. There are some
tasks base on a given AF AF = (A,R) and an argument a.
• EE-σ: Enumerate all extensions E ⊆ A that are σ-

extensions;

This work was supported by Beijing Academy of Artificial Intelligence
(BAAI), and Youth Innovation Promotion Association, Chinese Academy of
Sciences [No. 2017150].

* Corresponding author

• SE-σ: Return an extension E ⊆ A that is a σ-extension;
• DC-σ: Decide if a is credulously accepted under σ;
• DS-σ: Decide if a is skeptically accepted under σ.

III. LABELLING ENCODING METHOD

This section introduces an equivalent way to define different
types of semantics by labelling encoding method [4], [6].
Given a set of arguments A, a labelling L mapping each
argument a ∈ A to {in, out, undec}, which means that a is
accepted, rejected or the status is undecided, respectively. The
set of all labellings for a given AF = (A,R) is denoted as
ζ(AF).
L ∈ ζ(AF) is called a complete labelling (co-L) iif for

any a ∈ A holds:
• L(a) = in⇔ ∀b ∈ a−, L(b) = out;
• L(a) = out⇔ ∃b ∈ a−, L(b) = in.
A co-L L ∈ ζ(AF) is equal to a prf -extension iif L

maximize the set of arguments labelled in.

IV. ENCODING FOR COMPLETE SEMANTICS

This section gives the classic encoding method for complete
semantics [2] used in MiniAF [6]. Given an AF AF = (A,R)
with |A| = k, and Φ : {1, ..., k} → A is an indexing bijection.

At first, we define three symbols Ii, Oi, Ui for each argu-
ment a ∈ AF with indexing i, and for each argument a ∈ AF ,
a can labelled exact one type label.
∧

i∈{i,...,k}
((Ii∨Oi∨Ui)∧(¬Ii∨¬Oi)∧(¬Ii∨¬Ui)∧(¬Oi∨¬Ui))

(1)
By the definition, for each argument a ∈ AF without any

attackers, a should be labelled in.
∧

{i|Φ(i)−=∅}
(Ii ∧Oi ∧ Ui) (2)

Then, for each argument a ∈ AF with at least one attacker:
L(a) = in ⇒ ∀b ∈ a−, L(b) = out; L(a) = in ⇐ ∀b ∈
a−, L(b) = out.

∧

{i|Φ(i)− 6=∅}

(∧

{j|Φ(j)→Φ(i)}
¬Ii ∨Oj

)
(3)

∧

{i|Φ(i)− 6=∅}

(
Ii ∨

(∨

{j|Φ(j)→Φ(i)}
¬Oj

))
(4)

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

67

At last, for each argument a ∈ AF with at least one attacker:
L(a) = out ⇒ ∃b ∈ a−, L(b) = in; L(a) = out ⇐ ∃b ∈
a−, L(b) = in.

∧

{i|Φ(i)− 6=∅}

(
¬Oi ∨

(∨

{j|Φ(j)→Φ(i)}
¬Ij
))

(5)

∧

{i|Φ(i)− 6=∅}

(∧

{j|Φ(j)→Φ(i)}
Ij ∨Oi

)
(6)

All the above formulas (1)-(6) make up a conjunctive
normal form (CNF) Π, which can be solved by a given SAT
solver. At last, to enumerate all extensions, MiniAF excluding
previous model s by add a formula ¬s to Pi after each time a
model is found by the SAT solver, until the SAT solver return
that there are no more model (UNSAT).

V. PREFERRED SEMANTICS AND RELATED TASKS

MiniAF uses an improved PrefSAT algorithm [3] for com-
puting preferred labellings (prf -L). The algorithm iterates
over a set of co-Ls to identify the preferred ones and optimizes
the process by set inclusion to maximise co-Ls.

To decide the credulous acceptance of an argument a, the
CNF Π is updated to Π∧IΦ−1(a). To check the skeptically ac-
ceptance of an argument a, MiniAF subsequently enumerates
all prf -Ls util it finds a labelling with L(a) 6= in.

VI. BENCHMARK SELECTION

We use MiniAF to solve the tasks of EE-prf , DS-
prf and DC-prf on the benchmarks from ICCMA-
17, ICCMA-19 which can be downloaded from
http://argumentationcompetition.org/. Following the definition
of ‘interesting instance’ that one should not be solved by
MiniSat [5] in a minute and should be solved by our own
solver within 1 hour, We select some interesting instances
from the intermediate results of MiniAF, which are in the
format of “.cnf”.

REFERENCES

[1] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial intelli-
gence, 93(1-2):63–101, 1997.

[2] F. Cerutti, P. E. Dunne, M. Giacomin, and M. Vallati. Computing
preferred extensions in abstract argumentation: A sat-based approach. In
International Workshop on Theorie and Applications of Formal Argumen-
tation, pages 176–193, 2013.

[3] F. Cerutti, M. Vallati, and M. Giacomin. An efficient java-based solver
for abstract argumentation frameworks: jargsemsat. International Journal
on Artificial Intelligence Tools, 26(02):1750002, 2017.

[4] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, and S. Woltran.
Methods for solving reasoning problems in abstract argumentation–a
survey. Artificial intelligence, 220:28–63, 2015.

[5] N. Eén and N. Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing, pages 502–
518, 2003.

[6] J. Klein and M. Thimm. Revisiting sat techniques for abstract argumenta-
tion. Computational Models of Argument: Proceedings of COMMA 2020,
326:251, 2020.

68

Mycielski principle formulas with PR clauses
Emre Yolcu and Marijn Heule

Carnegie Mellon University, Pittsburgh, PA 15213, USA

MYCIELSKI GRAPHS

The Mycielskian [1] µ(G) of a graph G = (V, E) is
constructed as follows:

1) Include G in µ(G) as a subgraph.
2) For each vi 2 V , add a vertex ui 2 U adjacent to all of

NG(vi).
3) Add a vertex w adjacent to all of U .

If G is triangle-free then so is µ(G), and µ(G) has chromatic
number one higher than G.

Let M2 = K2 (the complete graph on 2 vertices). Mycielski
graphs are an infinite family {M2, µ(M2), µ(µ(M2)), . . . } of
triangle-free graphs with arbitrarily high chromatic number.
In particular, for each k � 2, the graph Mk has chromatic
number k. Figure 1 shows the first few Mycielski graphs.

M2

���!
µ

M3

���!
µ

M4

Fig. 1. The first few graphs in the family of Mycielski graphs.

MYCIELSKI PRINCIPLE FORMULAS

Given graph G and a number k 2 N, it is straightforward
to encode graph coloring as a CNF formula. Specifically,
the following collection of clauses, denoted Color(G, k), is
satisfiable if and only if G is k-colorable:

_

c2[k]

xc for each x 2 V

xc _ yc for each xy 2 E, c 2 [k]

The Mycielski principle is the falsehood stating that Mk is
colorable with k � 1 colors. For each k � 2, the unsatisfiable
formula Myck := Color(Mk, k � 1) is a CNF encoding of
the Mycielski principle. The benchmarks described herein are
extensions of Myck with satisfiability-preserving inferences in
some recently introduced propositional proof systems.

SATISFIABILITY-PRESERVING INFERENCES

Inferences allowed in most commonly studied propositional
proof systems respect logical implication. In such proof sys-
tems, we can derive a clause F from a set � of clauses
only if � logically implies F (every assignment satisfying

� satisfies F). Alternatively, one might consider inferences
that only respect satisfiability, where we can derive F from
� only if � [F is equisatisfiable to � (the set � [F
is satisfiable if and only if � is satisfiable). Examples of
such inferences are blocked clause introduction [2] or the
more general propagation redundant clause introduction [3].
Proof systems based on these inferences have been shown to
admit short proofs of many “hard” principles [3], [4] without
requiring new variables (unlike, say, Extended Frege).

BENCHMARKS

In recent work [5], we proved the existence of short proofs
of the Mycielski principle in the propagation redundancy
proof system without requiring new variables. The submitted
benchmarks contain two subsets containing versions of the
formulas Myc10 and Myc11 extended with parts of the proof
in [5]. All of the submitted instances are unsatisfiable, and
they have quasilinear-length resolution refutations. For the
following description we follow the notation of [5].
BCk is a set of binary clauses for Myck that enforce the

coloring to be a well-defined function, stating that each vertex
has to be assigned at most one color. PRk is a set of ternary
clauses for Myck [BCk stating that (under a condition) we
can assume without loss of generality that the colors of the
vertices in an inner layer of the Mycielski construction are the
same as that of the corresponding vertices in the outer layer
(see the second arrow in Figure 1 where the layers become
apparent). R1k and R2k are reverse unit propagation inferences
for Myck [BCk [PRk that essentially allow us to copy the
edges from an outer layer in the Mycielski construction to an
inner layer. The first subset of benchmark instances contain
Myc10 [BC10 [PR10 as a core, with individual instances
additionally containing 50, 60, . . . , 100 percent of the R110

clauses. The second subset of instances contain Myc11[BC11[
PR11 [R111 as a core, with individual instances additionally
containing 10, 20, . . . , 40 percent of the R211 clauses.

REFERENCES

[1] J. Mycielski, “Sur le coloriage des graphs,” Colloquium Mathematicae,
vol. 3, no. 2, pp. 161–162, 1955.

[2] O. Kullmann, “On a generalization of extended resolution,” Discrete
Applied Mathematics, vol. 96-97, pp. 149–176, 1999.

[3] M. J. H. Heule, B. Kiesl, and A. Biere, “Strong extension-free proof
systems,” Journal of Automated Reasoning, vol. 64, no. 3, pp. 533–554,
2020.

[4] S. Buss and N. Thapen, “DRAT and propagation redundancy proofs
without new variables,” Logical Methods in Computer Science, vol. 17,
no. 2, 2021.

[5] E. Yolcu, X. Wu, and M. J. H. Heule, “Mycielski graphs and PR proofs,”
in Theory and Applications of Satisfiability Testing (SAT), 2020, pp. 201–
217.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2021.

69

70

Solver Index

abcd_para18_Scavel, 19
Abcdsat, 23

CaDiCaL, 10
CaDiCaL_hack_gb, 17
CaDiCaL_PriPro, 25
CaDiCaL_PriPro_no_bin, 25
CaDiCaL_rp, 42
Cadical_SCAVEL01, 19
Cadical_SCAVEL02, 19
CleanMaple, 24
CleanMaple_PriPro, 25
cms_expV_gbL, 17

hCaD, 26
hKis, 26

Kissat, 10
Kissat_bonus, 42
Kissat_cf, 42
kissat_crvr_gb, 17
kissat_gb, 17
Kissat_MAB, 15

LStech_Maple, 42

Mallob, 38
Maple_MBDR_Cent_PERM, 21
Maple_MDBR_BJL, 21
Maple_simp, 23
MapleSSV, 35
MergeSAT 3.0, 30

Optsat, 23

P-MCOMSPS, 40
P-MCOMSPS-COM, 40
P-MCOMSPS-COM-MPI, 40
P-MCOMSPS-MPI, 40
P-MCOMSPS-STR-32-SC, 19
PaInleSS_ExMapleLCMDistChronoBT,

26
PaKis, 26
Paracooba, 10
ParaFROST, 32

Relaxed_LCFTP, 14

Relaxed_LCFTP_V2, 14
Relaxed_LCFTP_V3, 14
Relaxed_LCMCBDL_BLB, 14
Relaxed_LCMDCBDL_SCAVEL01,

19
Relaxed_LCMDCBDL_SCAVEL02,

19

SLIME, 37

Watch Sat, 28

71

Benchmark Index

At least two solutions, 60

Bipartite perfect matching, 52

Cluster editing, 62
Complete pairwise combinatorial

testing, 46

Database Repair , 55
Decomposition of Petri nets into

automata networks, 47

Hamiltonian Cycle, 54

MaxSAT satisfiability at bound,
49

Minimal superpermutation, 58
Multiplier input decomposition,

66

PEQNP Python library Bench-
marks, 65

Preferred extensions in argumen-
tation frameworks, 67

Prime and quadratic residue test-
ing, 56

Safe population growth, 50
Sliding tile puzzles, 57
String safety property verification,

64

72

Author Index

Baarir, Souheib, 40
Bi, Shunyang, 14, 66
Biere, Armin, 10, 46
Bouvier, Pierre, 47
Bryant, Randal E., 52

Cai, Shaowei, 42, 67
Chen, Jingchao, 23, 56
Chen, Zhihan, 42
Cherif, Mohamed Sami, 15, 49
Chowdhury, Md Solimul, 17, 35,

50
Clausecker, Robert, 24, 25, 57
Codel, Cayden R., 52

Djamegni, Clémentin Tayou, 26

Fleury, Mathias, 10
Fu, Huimin, 19

Ganesh, Vijay, 35
Garavel, Hubert, 47

Habet, Djamal, 15, 49
Heisinger, Maximilian, 10
Heule, Marijn J. H., 52, 54, 69

Iser, Markus, 45

Jamali, Sima, 21, 55

Kaiser, Benjamin, 24, 25, 57

Le Frioux, Ludovic, 40
Lester, Martin Mariusz, 58
Li, Pengfei, 14, 66
Li, Zhihui, 19
Liu, Meihua, 14, 66

Müller, Martin, 17, 50
Manthey, Norbert, 28, 30, 60
Mengel, Stefan, 62
Mitchell, David, 21, 55

Nejati, Saeed, 35

Oanea, Razvan, 40
Osama, Muhammad, 32, 64

Qu, Guanfeng, 19
Qu, Zhang, 14, 66

Reeves, Joseph E., 52
Riveros, Oscar, 37, 65

Salimi, Babak, 55
Schreiber, Dominik, 38
Sopena, Julien, 40

Tchinda, Rodrigue Konan, 26
Terrioux, Cyril, 15, 49

Vallade, Vincent, 40

Wijs, Anton, 32, 64

Xu, Yang, 19

Yolcu, Emre, 69
You, Hailong, 14, 66
You, Jia-Huai, 17, 50

Zhang, Xindi, 42, 67
Zhang, Yang, 14, 66

73

