26 research outputs found

    Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG

    Get PDF
    Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures

    Biomarkers to Localize Seizure from Electrocorticography to Neurons Level

    Get PDF

    Automatic Detection and Classification of Neural Signals in Epilepsy

    Get PDF
    The success of an epilepsy treatment, such as resective surgery, relies heavily on the accurate identification and localization of the brain regions involved in epilepsy for which patients undergo continuous intracranial electroencephalogram (EEG) monitoring. The prolonged EEG recordings are screened for two main biomarkers of epilepsy: seizures and interictal spikes. Visual screening and quantitation of these two biomarkers in voluminous EEG recordings is highly subjective, labor-intensive, tiresome and expensive. This thesis focuses on developing new techniques to detect and classify these events in the EEG to aid the review of prolonged intracranial EEG recordings. It has been observed in the literature that reliable seizure detection can be made by quantifying the evolution of seizure EEG waveforms. This thesis presents three new computationally simple non-patient-specific (NPS) seizure detection systems that quantify the temporal evolution of seizure EEG. The first method is based on the frequency-weighted-energy, the second method on quantifying the EEG waveform sharpness, while the third method mimics EEG experts. The performance of these new methods is compared with that of three state-of-the-art NPS seizure detection systems. The results show that the proposed systems outperform these state-of-the-art systems. Epilepsy therapies are individualized for numerous reasons, and patient-specific (PS) seizure detection techniques are needed not only in the pre-surgical evaluation of prolonged EEG recordings, but also in the emerging neuro-responsive therapies. This thesis proposes a new model-based PS seizure detection system that requires only the knowledge of a template seizure pattern to derive the seizure model consisting of a set of basis functions necessary to utilize the statistically optimal null filters (SONF) for the detection of the subsequent seizures. The results of the performance evaluation show that the proposed system provides improved results compared to the clinically-used PS system. Quantitative analysis of the second biomarker, interictal spikes, may help in the understanding of epileptogenesis, and to identify new epileptic biomarkers and new therapies. However, such an analysis is still done manually in most of the epilepsy centers. This thesis presents an unsupervised spike sorting system that does not require a priori knowledge of the complete spike data

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Influence of deep structures on the EEG and their invasive and non-invasive assessment

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Fisiología, leída el 22-11-2019El EEG es la prueba diagnóstica de mayor utilidad en el diagnóstico de la epilepsia. Consiste esencialmente en la representación gráfica de los potenciales postsinápticos generados en las neuronas piramidales de la corteza. Los campos eléctricos registrados en la superficie tienen principalmente dos mecanismos de origen: conducción de volumen desde regiones adyacentes y propagación interneuronal sináptica. Las neuronal piramidales se agrupan formando microcircuitos locales siendo estos circuitos los responsables de la generación delos ritmos registrados en el EEG. Uno de los principales retos de la electroencefalografía consiste en descifrar la relación entre la actividad registrada y la actividad subyacente en las redes neuronales. Para encontrar la fuente de dichas actividades, es necesario tener en cuenta complejos mecanismos tanto no lineales como lineales, así como el efecto de la conducción de volumen y la influencia de la morfología y las propiedades eléctricas del cerebro y el cráneo. Además, las regiones cerebrales se encuentran profusamente interconectadas a menudo produciendo una modulación recíproca que añade un mayor grado complejidad...The EEG is the most valuable diagnostic test in epilepsy. In essence, it mainly consists in agraphical representation of the summated postsynaptic potentials generated in the pyramidal neurons from the cortex. The electrical fields can be generated on the scalp by two mechanisms: volume conduction from nearby regions and synaptic inter‐neuronal propagation. Pyramidal cells align conforming local microcircuit configurations which activation lead to the generation of EEG rhythms. One of the main challenges of EEG is to decipher the relation between the recorded EEG activity and the activity in the neuronal networks. To find the source of EEG activity, complex non‐linear and linear mechanisms as well as volume conduction effect and influence of the shape and electrical properties of the brain and skull need to be taken in consideration. In addition, brain regions are profusely interconnected and functionally connected regions often produce mutual modulation that adds additional complexity...Depto. de FisiologíaFac. de MedicinaTRUEunpu

    Effects of repetitive SSVEPs on EEG complexity using multiscale inherent fuzzy entropy

    Full text link
    © 2019 Elsevier B.V. Multiscale inherent fuzzy entropy is an objective measurement of electroencephalography (EEG) complexity, reflecting the habituation of brain systems. Entropy dynamics are generally believed to reflect the ability of the brain to adapt to a visual stimulus environment. In this study, we explored repetitive steady-state visual evoked potential (SSVEP)-based EEG complexity by assessing multiscale inherent fuzzy entropy with relative measurements. We used a wearable EEG device with Oz and Fpz electrodes to collect EEG signals from 40 participants under the following three conditions: a resting state (closed-eyes (CE) and open-eyes (OE) stimulation with five 15-Hz CE SSVEPs and stimulation with five 20-Hz OE SSVEPs. We noted monotonic enhancement of occipital EEG relative complexity with increasing stimulus times in CE and OE conditions. The occipital EEG relative complexity was significantly higher for the fifth SSVEP than for the first SSEVP (FDR-adjusted p < 0.05). Similarly, the prefrontal EEG relative complexity tended to be significantly higher in the OE condition compared to that in the CE condition (FDR-adjusted p < 0.05). The results also indicate that multiscale inherent fuzzy entropy is superior to other competing multiscale-based entropy methods. In conclusion, EEG relative complexity increases with stimulus times, a finding that reflects the strong habituation of brain systems. These results suggest that multiscale inherent fuzzy entropy is an EEG pattern with which brain complexity can be assessed using repetitive SSVEP stimuli

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Mapping Sensorimotor Function and Controlling Upper Limb Neuroprosthetics with Electrocorticography

    Get PDF
    Electrocorticography (ECoG) occupies a unique intermediate niche between microelectrode recordings of single neurons and recordings of whole brain activity via functional magnetic resonance imaging (fMRI). ECoG’s combination of high temporal resolution and wide area coverage make it an ideal modality for both functional brain mapping and brain-machine interface (BMI) for control of prosthetic devices. This thesis demonstrates the utility of ECoG, particularly in high gamma frequencies (70-120 Hz), for passive online mapping of language and motor behaviors, online control of reaching and grasping of an advanced robotic upper limb, and mapping somatosensory digit representations in the postcentral gyrus. The dissertation begins with a brief discussion of the framework for neuroprosthetic control developed by the collaboration between Johns Hopkins and JHU Applied Physics Laboratory (JHU/APL). Second, the methodology behind an online spatial-temporal functional mapping (STFM) system is described. Trial-averaged spatiotemporal maps of high gamma activity were computed during a visual naming and a word reading task. The system output is subsequently shown and compared to stimulation mapping. Third, simultaneous and independent ECoG-based control of reaching and grasping is demonstrated with the Modular Prosthetic Limb (MPL). The STFM system was used to identify channels whose high gamma power significantly and selectively increases during either reaching or grasping. Using this technique, two patients were able to rapidly achieve naturalistic control over simple movements by the MPL. Next, high-density ECoG (hdECoG) was used to map the cortical responses to mechanical vibration of the fingertips. High gamma responses exhibited a strong yet overlapping somatotopy that was not well replicated in other frequency bands. These responses are strong enough to be detected in single trials and used to classify the finger being stimulated with over 98% accuracy. Finally, the role of ECoG is discussed for functional mapping and BMI applications. ECoG occupies a unique role among neural recording modalities as a tool for functional mapping, but must prove its value relative to stimulation mapping. For BMI, ECoG lags microelectrode arrays but hdECoG may provide a more robust long-term interface with optimal spacing for sampling relevant cortical representations
    corecore