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Abstract 

 

 Electrocorticography (ECoG) occupies a unique intermediate niche between 

microelectrode recordings of single neurons and recordings of whole brain activity 

via functional magnetic resonance imaging (fMRI).  ECoG’s combination of high 

temporal resolution and wide area coverage make it an ideal modality for both 

functional brain mapping and brain-machine interface (BMI) for control of 

prosthetic devices.  This thesis demonstrates the utility of ECoG, particularly in high 

gamma frequencies (70-120 Hz), for passive online mapping of language and motor 

behaviors, online control of reaching and grasping of an advanced robotic upper 

limb, and mapping somatosensory digit representations in the postcentral gyrus.  

The dissertation begins with a brief discussion of the framework for 

neuroprosthetic control developed by the collaboration between Johns Hopkins and 

JHU Applied Physics Laboratory (JHU/APL).  Second, the methodology behind an 

online spatial-temporal functional mapping (STFM) system is described.  Trial-

averaged spatiotemporal maps of high gamma activity were computed during a 

visual naming and a word reading task.  The system output is subsequently shown 

and compared to stimulation mapping.  Third, simultaneous and independent ECoG-

based control of reaching and grasping is demonstrated with the Modular Prosthetic 

Limb (MPL).  The STFM system was used to identify channels whose high gamma 

power significantly and selectively increases during either reaching or grasping.  

Using this technique, two patients were able to rapidly achieve naturalistic control 

over simple movements by the MPL.  Next, high-density ECoG (hdECoG) was used to 
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map the cortical responses to mechanical vibration of the fingertips.  High gamma 

responses exhibited a strong yet overlapping somatotopy that was not well 

replicated in other frequency bands.  These responses are strong enough to be 

detected in single trials and used to classify the finger being stimulated with over 

98% accuracy.  Finally, the role of ECoG is discussed for functional mapping and BMI 

applications.  ECoG occupies a unique role among neural recording modalities as a 

tool for functional mapping, but must prove its value relative to stimulation 

mapping.  For BMI, ECoG lags microelectrode arrays but hdECoG may provide a 

more robust long-term interface with optimal spacing for sampling relevant cortical 

representations. 

 

Primary Reader:  Nathan E. Crone, M.D. 

Secondary Reader:  Nitish V. Thakor, Ph.D. 
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Summary and Organization of Dissertation 

In this dissertation, I will describe my efforts to map sensorimotor function 

and control neuroprosthetics with human electrocorticography.  Each of the first 

four chapters has been developed into a manuscript for publication.  The fifth 

chapter is a summary of my thoughts on the future of electrocorticography for 

functional mapping and neuroprosthetics, and is meant to conclude the efforts 

described in this thesis.  The five chapters are each described briefly below. 

Chapter 1.  The approach to ECoG-based neuroprosthetics taken by our team, 

which includes clinical and engineering teams at Johns Hopkins University and an 

engineering team at the Johns Hopkins University Applied Physics Laboratory, is 

discussed.  A brief background for the ECoG neuroprosthetics project at the start of 

the thesis is presented, in addition to preliminary data describing our team’s ability 

to decode movement kinematics from ECoG signals.  This chapter also presents a 

description and a schematic of our system which streams neural and kinematic data, 

performs neural decoding, and streams movement commands to either a virtual or 

physical Modular Prosthetic Limb (MPL). 

Chapter 2.  The design and validation of a system for online ECoG-based 

spatial-temporal functional mapping (STFM) is described.  High gamma amplitude is 

extracted in real-time from streaming ECoG signals, and the features from each 

channel are statistically compared to brief periods of rest before each cue.  The 

results of these analyses can be visualized in real-time.  This system was found to be 
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more sensitive and more specific than stimulation mapping via a region of interest 

approach which estimated functional roles based on classical anatomical boundaries. 

Chapter 3.  A version of the system described in Chapter 1 is used to provide 

online ECoG-based control over reaching and grasping of the Modular Prosthetic to 

two human subjects.  The STFM system from Chapter 2 is used to identify channels 

whose high gamma activity robustly increases during movements and is selective 

for either reach or grasp.  Using these tools, the two subjects are able to rapidly gain 

independent neural control over reaching and grasping of the prosthetic limb. 

Chapter 4.  A high-density ECoG (hdECoG) array is used to map the cortical 

representations of mechanical vibration of a human subject’s fingertips.  A strong 

somatotopic gradient is seen in the postcentral gyrus between thumb (inferiorly) 

and little finger (superiorly), especially in the high gamma power.  The high gamma 

power is robust enough to be observed and classified with near perfect accuracy in 

single trials.  Low frequency power and smoothed amplitude exhibit much weaker, 

and more disordered, somatotopy than the high gamma power. 

Chapter 5.  The thesis is concluded with a discussion of ECoG’s current and 

likely future place amongst other prominent functional mapping and brain-machine 

interface tools, including microelectrode arrays, functional magnetic resonance 

imaging, electroencephalography, and electrocortical stimulation.  The future of 

ECoG for clinical adoption over microelectrode arrays (for brain-machine interface) 

and electrocortical stimulation (for functional mapping) receive particular attention.  

Extensions of the three major projects described in Chapters 2-4 are also discussed. 
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List of Figures 

 

1.1 MPL Photographs and Schematic.  Pictures of the JHU/APL MPL (A) full 
limb, (B) a zoomed-in picture of the hand portion of the MPL, (C) a 
schematic showing the controllable joints proximal to the palm, and 
(D) a schematic showing the controllable and passive joints of the hand.  
© 2014 IEEE, included from (Fifer et al., 2014). 

1.2 A schematic of an ECoG brain-machine interface (BMI). The 
configuration depicted involves acquisition of ECoG signals from 
electrodes placed on a human brain (left and top), their computational 
analysis and modeling (right) to drive a prosthetic limb (bottom).  © 
2012 IEEE. 

1.3 Stylized and photographic examples of ECoG arrays.  (left) 
Electroencephalogram (EEG), electrocorticogram (ECoG), and 
microelectrode arrays (MEAs) are contrasted in a stylized diagram.  
Notice that MEAs penetrate the pia mater and cortex, while the ECoG 
strip shown is merely subdural; EEG, by comparison records the signal 
after it has passed through the pia mater, arachnoid layer, dura mater, 
and scalp.  (right) An intraoperative photo of an ECoG grid being 
placed in a human patient.  © 2012 IEEE. 

1.4 ECoG System Schematic.  This schematic diagram depicts the flow of 
data and information throughout the parallel architecture described in 
the main text.  Two key components of the system are neural data 
acquisition from Neuroscan (top left) and kinematic data acquisition 
from Optotrak and CyberGlove (top right).  Each of the acquisition 
systems is saved to its own data file and simultaneously streamed into 
a custom MATLAB framework and processed by a parallel node.  
Frequency and amplitude features are extracted from the neural 
signals in real time and recorded with kinematics and target locations 
in a single composite data file (left).  Simultaneous parallel port signals 
synchronize the neural and kinematic data to correct for clock drift for 
offline analysis (top).  A physical or virtual prosthetic arm can be used 
driven from one of the parallel nodes using either pure kinematic data 
or models trained from previous offline recording sessions with the 
same subject (bottom).  © 2012 IEEE. 

1.5 Patient room experimental layout.  A real object target is presented 
(from bottom right) as a cue to a patient (off-screen to the left for 
anonymity).  The patient is pointing to the target, and his motions are 
being tracked by Optotrak markers on the shoulder and hand.  The 
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three-dimensional position of the patient’s hand and cue are being 
displayed in the MSMS simulation environment.  The virtual cue is 
yellow, indicating a successful trial.  © 2012 IEEE. 

1.6. Spatial distribution of single feature decoding accuracy relative to 
identified motor electrodes.  (a) Circles denote implanted electrodes 
that were included in the analysis, while darkened electrodes indicate 
that motor behavior was elicited or interrupted during electrocortical 
stimulation mapping (ESM).  (b) – (f) Single feature decoding 
accuracies (Pearson’s correlation r between observed and decoded 
traces) at electrode locations shown in (a) were used to reconstruct 
observed grasp aperture traces during reach-to-grasp movements.  
Only positive correlations were considered for display purposes.  
These plots show concentrations of good decoding electrodes in areas 
of cortex identified as motor by ESM.  (Adapted and modified from 
(Fifer et al., 2011)).  © 2011, 2012 IEEE. 

1.7 Decoding of grasp aperture in four experimental sessions with one 
patient.  The example traces above show the fidelity of decoded grasp 
aperture to observed grasp aperture.  Predicted traces have been 
formed in fivefold cross-validation with linear models trained with 
twenty distinct neural signal feature inputs.  (Adapted and modified 
from (Fifer et al., 2011)).  © 2011, 2012 IEEE. 

2.1 Online STFM Signal Processing Algorithm. A visual schematic is 
presented to describe the online signal processing and statistical 
methods used. A more detailed description of each step can be found in 
Section 2.3. N, 𝑥̅ , and s2 represent sample size, mean, and variance, 
respectively.   

2.2 Feature extraction algorithm illustration from auditory word 
repetition in Patient 1. The ‘Silent’ column plots are from a 
macroelectrode (LFT33 in Figure 2.3B) that had no significant task-
related high gamma response. The ‘Activated’ column plots are from a 
microelectrode (PMIC13 in Fig 3B) with a significant task-related high 
gamma response. In (A)-(C), the units have been normalized so that the 
baseline period has zero mean and unit standard deviation. (A) Raw 
ECoG signals from the same single trial are shown after re-referencing 
to the common average reference (CAR). (B) The high gamma 
amplitude feature is shown after it was extracted from the same single 
trial shown in (A) using the algorithm described in Figure 2.1. (C) Post-
stimulus high gamma amplitude averaged across all 96 trials of 
auditory word repetition is shown for both electrodes. (D) The average 
post-stimulus spectrogram is shown, calculated by averaging the FFT 
coefficients time-locked to the stimulus marker in 512 ms bins with 
256 ms overlap. Time zero is the stimulus onset of each trial. This 
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spectrogram is not shown to the system user online, but is included 
here only for comparison with the feature output. 

2.3 STFM of visual object naming (A) and auditory word repetition (B) in 
Patient 1. STFM results are shown as a raster of high gamma responses 
on the left, and as brain maps of high gamma response magnitude 
(represented by disc size and color) on the right. ESM maps (colored 
bars between electrodes) are also shown. Color-shaded areas denote 
anatomical boundaries of classical language areas used as regions of 
interest (ROI) in ROI sensitivity/specificity analysis. Color plots from 
offline matching pursuit analysis are illustrated below the brain maps 
for selected electrodes. Each raster plot displays the spatial-temporal 
distribution of significant increases (red spectrum) or decreases (blue 
spectrum) in high gamma energy relative to pre-cue baseline in 16 ms 
windows. Each row corresponds to a different electrode as displayed 
on the right brain maps. All times are relative to cue onset (t=0s). To 
highlight the spatial pattern of cortical activation at early 
(visual/auditory perception) and late (response production) stages, 
high gamma responses are integrated across an early and late 
temporal window (early stage highlighted in red and late stage in blue 
on raster plot), and shown in separate brain maps (early stage in the 
left brain and late stage in the right brain). Microelectrode arrays AMIC 
and PMIC are enlarged for better visualization of high gamma 
responses. The matching pursuit spectrograms are overlaid with line 
plots (blue) of online high gamma responses of respective electrodes 
averaged over trials. Matching pursuit spectrograms, arrows pointing 
to spectrograms, second brain image, and highlighting of early and late 
time periods on the channel raster have all been added to the 
screenshot post hoc (i.e., they are not available online). 

2.4 Visual object naming task results for Patients 2-7 (P2-P7). ESM and 
Online STFM results are overlaid on brain maps with highlighted ROIs. 
As in Figure 2.3, online results are separated into early stage (visual 
perception, left brain) and late stage (response production, right brain), 
where high gamma responses were computed by integrating across an 
early or late temporal interval. Microelectrode arrays are enlarged for 
better visualization. 

2.5 Auditory word repetition task results for Patients 2-7 (P2-P7). ESM 
and Online STFM results are overlaid on brain maps with highlighted 
ROIs. As above, online results are separated into early stage (auditory 
perception, left brain) and late stage (response production, right brain), 
where high gamma responses were computed by integrating across an 
early or late temporal window. Microelectrode arrays are enlarged for 
better visualization. 
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2.6 Single trial responses from online STFM results for Patient 1, auditory 
word repetition task. The single trial activations are shown for the 
auditory word repetition task in three separate electrodes:(A) LFT23, a 
macroelectrode in the early responding, putative stimulus perception 
cluster, (B) LFT45, a macroelectrode in the late responding, putative 
verbal response cluster, and (C) PMIC13, a microelectrode from the 
late responding cluster. The colors shown are scaled according to the 
negative log of the p-value, computed as a series of t-tests with the 
channel baseline distributions at the time of the trial. Significance 
thresholds have not been FDR corrected for multiple comparisons, as 
the single trial responses are primarily intended as an indicator of 
neural response consistency across trials. 

2.7 Microelectrodes record ECoG high gamma responses with fewer 
required trial numbers for both tasks in Patient 1. With only 7 trials 
averaged from a visual object naming task (A) or an auditory word 
repetition task (B), statistically significant high gamma responses 
appeared in the microelectrode array. Responses are either absent in 
the macroelectrodes or have lower magnitudes than the 
microelectrodes with the highest magnitude responses. A similar trend 
is seen with more trials (145 in A, 96 in B). Magnitudes of statistically 
significant high gamma responses indicated by size/shading of red 
circles. 

3.1 Functional mapping of cue-averaged task-related high gamma activity 
in training set.  (A) Reconstruction of the implanted grid location for 
Subject 1 is depicted; the electrode used for reaching (number 25) is 
highlighted in red and corresponds to the channel circled in red in the 
activation maps below, while the electrode used for grasping (number 
11) is highlighted in blue and similarly corresponds to the electrode 
circled in blue below; the central sulcus is highlighted in green.  (B) 
Reconstruction of the depth electrodes implanted in right hemisphere 
of Subject 2; electrodes used for reaching highlighted in red, electrodes 
used for grasping highlighted in blue (transparent medial view in 
inset).  (C, D) Each task map displays the spatiotemporal distribution of 
significant increases (red spectrum) or decreases (blue spectrum) in 
high gamma energy relative to pre-cue baseline in 16 ms windows for 
Subject 1. Each row corresponds to a different iEEG electrode in the 
frontoparietal grid displayed in (A).  All times are relative to cue onset.  
(E) A differential map is shown for Subject 1, which is the result of a 
Wilcoxon test between two conditions for each (channel, time) pair 
with FDR correction for comparisons across multiple time points 
within each channel.  Channel and time pairs are in the red spectrum if 
forward reach is more activated than grasp, and in the blue spectrum if 
grasp is more activated than forward reach.  The average times of 
relevant behavioral events are marked with vertical lines and labeled 
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56 
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(movement onset, MO; pressed target button, PT; released target 
button, RT; returned arm to home position, Home; released pressure 
bulb, Rest).  © 2014 IEEE. 

3.2 Schematics and photographs of experimental setup with MPL.  (top) A 
schematic of the experimental setup is shown, with Subject 1 seated 
and interacting with three behavioral sensors.  The MPL is to the front 
and right of the subject, in the same room as and in full view of the 
subject.  Traces of the behavioral sensors, high gamma power, and MPL 
commands during a three trial segment are shown as an example. (A-
C) The subject is seated on his hospital bed (not pictured, right of view), 
with his arm at rest on a lap desk with inset pushbutton or “home 
switch.”  The subject is holding but not actively grasping the squeeze 
bulb used to query grasp status.  On the subject’s hospital tray are a 
pushbutton for reach offset detection and a laptop displaying a red bar 
indicating pressure exerted on the squeeze bulb. (A) In the background, 
the MPL is at its baseline state (rest posture).  (B) The subject is 
executing a grasp movement, and (C) the subject is executing a reach 
movement.  © 2014 IEEE. 

3.3 Average change of power spectral densities (PSD) relative to baseline, 
aligned to movement onset. (A) Reach and grasp electrodes are shown 
for Subject 1, and (B) two representative electrodes are shown for 
Subject 1. The first vertical dashed line in all plots corresponds to the 
average time the audio cue began. For each trial, the baseline was 
chosen from before the onset of the cue (leftmost dashed line).  The 
solid line denotes movement onset (MO). In reach trials, the dashed 
lines after the solid line correspond to the average time of the reach 
completion (pressing target button, PT), release of the target button 
(RT), and return to home (resting on the home switch), from left to 
right. The rightmost dashed line in the grasp trials corresponds to the 
average time of grasp completion. The PSD’s were computed via 
autoregressive spectral analysis. Window size did not allow for 
accurate calculations at 0-7.5Hz, so these frequencies are not displayed.  
© 2014 IEEE. 

3.4 Limb performance accuracy metrics. (A, B) The accuracies are shown 
for reaching and grasping during trials where reach and grasp were 
executed simultaneously. (C, D) The reach and grasp accuracies are 
shown for reach and grasp only trials, respectively. The vertical dashed 
lines in A-D denote separate blocks.  Distributions are shown and 
summarized with boxplots of the peak sensitivities for grasps in 
Subject 1 (E), reaches in Subject 1 (F), grasps in Subject 2 (G), and 
reaches in Subject 2 (H).  Each distribution is comprised of the peak 
sensitivities from each trial.  Bars above the boxplots with asterisks 
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mark distributions with significantly different medians (p < 0.05, 
Wilcoxon test).  © 2014 IEEE. 

4.1 hdECoG Grid Coverage and spatial map of high gamma responses. (left) 
An oblique lateral view of the patient’s three-dimensional MRI 
reconstruction is shown. The red arrow points to the postcentral 
analogue of the primary motor cortex hand knob for reference. The red 
outline depicts the postcentral grid snippet used in Figures 4.3 and 4.7. 
The yellow outline surrounds the seven electrodes whose single trial 
responses are plotted in Figure 4.5. (right) A zoomed-in view of the 
hdECoG grid and underlying cortex is used as a background for plotting 
finger responses, or statistically significant (p < 0.05, FDR-corrected) 
increases in high gamma power relative to baseline, time-locked to 
0.19 seconds after vibration onset. This time was chosen as it 
contained the largest magnitude aggregate increase across the hdECoG 
grid. The diameter of each circle is proportional to the z-scored 
measure of high gamma power increase, and the color represents the 
finger being stimulated in accordance with the key in the bottom right. 
Electrodes excluded from analysis are blackened. The fingers with the 
largest response at a given electrode are plotted first, and therefore are 
partially occluded when multiple fingers elicited a high gamma 
response in that electrode.   

4.2 Spatial map of event-related potential amplitude and low frequency 
responses. These maps depict the z-scored absolute value of significant 
changes in amplitude (ERPs, left) or the strength of the decrease in low 
frequency power (three rightmost maps). The diameter of each circle is 
proportional to the z-scored measure of amplitude change or power 
decrease, and the color represents the finger being stimulated in 
accordance with the key in the bottom right. Electrodes excluded from 
analysis are blackened. The circle diameters are on the same relative 
scale as the high gamma plot in Figure 4.1. Since the timing of event-
related potentials varies greatly by channel, the peak amplitude change 
was used to determine circle diameters; low frequency maps were 
created for the time periods with the largest aggregate magnitude 
decrease across the entire grid. 

4.3 Finger Representation Somatotopy. (top row) The centers of mass, in 
two-dimensional electrode coordinate space, are plotted on the top 
right corner of the hdECoG grid for each feature type. Numbers 1 
through 5 designate the first digit (thumb) through the fifth digit 
(pinky). (bottom row) The electrodes with the strongest response for a 
given finger for each feature type is plotted on the corresponding brain 
snippet. The placement of the postcentral snippet within the context of 
the larger hdECoG grid is depicted in Figure 4.1. 
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4.4 Temporal profiles of spectral and amplitude representations of finger 

vibrations. (A) The high gamma traces for all electrodes with any 
significant activation in any post-stimulus time window (p < 0.05, FDR-
corrected) is averaged separately for each finger response. (B) The 
average magnitudes of all significant amplitude responses for each 
finger is shown. (C-E) The averages of all sites with significant task-
related low frequency decreases are shown for theta, mu, and beta 
bands. Colored dots correspond to: (A) the largest increase, or (C-E) 
the largest decrease for a given averaged finger response. In (B), solid 
dots correspond to the peak magnitude during stimulation, while 
empty dots denote peak magnitude after stimulation offset. Legends in 
each plot detail how many sites were used to compose each averaged 
finger response. 

4.5 Single trial high gamma and beta responses for six adjacent electrodes. 
High gamma (top) and beta (bottom) responses are shown for the 
same six adjacent electrodes, arranged along the inferior-superior axis 
of the grid (depicted in Figure 4.1). Responses from the most superior 
electrode, from the top row of the grid, are depicted in the leftmost 
sub-plot. Each row within each sub-plot is a trial, and the horizontal 
axis represents time after the onset of the stimulus. Trials have been 
reordered so that all thumb trials appear together, followed by all 
index finger trials, etc., and the transitions between finger types are 
marked with black lines. 

4.6 Time-restricted classification accuracy across feature types and 
smoothing kernel widths. The cross-validated classification accuracy in 
time windows time-locked to stimulus onset are plotted. Classification 
results are plotted for high gamma (black), smoothed amplitude (blue), 
theta (cyan), mu (magenta), and beta (red) features are shown at each 
smoothing kernel widths. Smoothing over window centers spanning 
16 ms (no smoothing for spectral features, 16 ms smoothing for ERPs), 
112 ms, and 240 ms are shown. A clear secondary peak in decoding 
accuracy emerges for smoothed amplitude feature models which is not 
apparent for the models with spectral feature inputs. 

4.7 Comparison between vibration responses and movement-related 
sensory high gamma responses. Significant activation at 0.19 seconds 
post stimulus onset (top left) and 0.03 seconds prior to peak finger 
flexion in the motor task (top right) are depicted. The diameters of the 
circles depict high gamma power increases z-scored with respect to 
the baseline period. They are on identical scales, but a different scale 
from Figures 1 and 2. The placement of the postcentral snippet within 
the context of the larger hdECoG grid is depicted in Figure 4.1. The 
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centers of mass (middle row) and representation peaks (bottom row) 
are depicted for both vibration (left) and motor (right) tasks. 
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Chapter 1 

Towards Electrocorticographic Control of 
Dexterous Upper Limb Prosthesis 
 
1.1  Abstract 

One of the most exciting and compelling areas of research and development 

is building brain-machine interfaces (BMIs) for controlling prosthetic limbs.  

Prosthetic limb technology is advancing rapidly, and the Johns Hopkins 

University/Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL) permits 

actuation with 17 degrees of freedom in 26 articulating joints.  The reciprocal 

challenge is to derive a similar number of control signals for the prosthetic limb, 

with the ultimate solution for those with upper limb loss likely involving some 

degree of direct neural control. There are many signals from the brain that can be 

leveraged, including the spiking rates of neurons in the cortex, electrocorticographic 

(ECoG) signals from the surface of the cortex , and electroencephalographic (EEG) 

signals from the scalp, and. Unlike spike recording micoelectrodes, ECoG does not 

penetrate the cortex.  ECoG also has higher spatial specificity, signal-to-noise ratio, 

and bandwidth than EEG signals. 

We have implemented an ECoG-based system for controlling the MPL.  This 

system is composed of simultaneous neural and kinematic data acquisition modules 

which can correlate the neural activity to upper limb kinematics and drive either a 

virtual arm or the MPL limb. We have implemented this system in the Johns Hopkins 
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Hospital Epilepsy Monitoring Unit, where patients are implanted with ECoG 

electrode grids for clinical seizure mapping and asked to perform various recorded 

finger or grasp movements.  We have shown that low frequency local motor 

potentials and ECoG power in the high gamma frequency (70-150 Hz) range 

correlates well with grasping parameters and they stand out as good candidate 

features for closed-loop control of the MPL. This demonstration sets the stage for 

testing dexterous neural control of the MPL with ECoG signals from human subjects. 

1.2  Introduction 

An estimated 541,000 Americans were living with some form of upper limb 

loss in 2005, and that number is projected to more than double with an aging and 

growing population by 2050 (Ziegler-Graham et al., 2008).  Loss of limb may occur 

congenitally or due to cancer, diseases of the vasculature, or trauma (Dillingham et 

al., 2002)—including industrial or farming accidents and battlefield injuries.  With 

respect to trauma, recent wars in Iraq and Afghanistan have resulted in a large 

veteran population with substantial upper limb loss. This recognition has spurred 

research on the development of advanced prosthetic limbs. One outstanding 

example has been the JHU/APL Modular Prosthetic Limb (Figure 1.1), which has 17 

controllable degrees of freedom in 26 articulating joints (Johannes et al., 2011).  

This limb has actuators to control shoulder, elbow and wrist in addition to the 

fingers and thumb, providing extensive dexterous capabilities. Such an advanced 

limb also poses a control problem.  Traditional approaches have used myoelectric 

signals from the forelimb of trans-radial amputees.  Another more recent approach 
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has been the use of peripheral nerve re-innervation of the chest, using orphaned 

muscles as a biological amplifier for nerve signals to control a prosthetic limb 

(Kuiken et al., 2004).  Despite these well-accepted approaches, there is good reason 

to believe that it is possible to achieve direct neural control of prosthetics that is 

intuitive and adaptive, involving the subject’s full sensory, motor, and cognitive 

capabilities. 

  

Figure 1.1.  MPL Photographs and Schematic.  Pictures of the JHU/APL MPL (A) 
full limb, (B) a zoomed-in picture of the hand portion of the MPL, (C) a schematic 
showing the controllable joints proximal to the palm, and (D) a schematic showing 
the controllable and passive joints of the hand.  © 2014 IEEE, included from (Fifer et 
al., 2014). 

 There are also many conditions in which control of the upper limbs is lost 

without explicit injuries to the limbs themselves.  Conditions of the central nervous 

system such as amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease) and 

traumatic events such as stroke and spinal cord injury (SCI) can disrupt the upper 

limb control pathways upstream of the peripheral nerves.  These debilitating 

conditions can leave patients completely dependent on others or occasionally 

unable to communicate at all.  One area of research with these patients is attempting 

to leverage their still-functional brains for direct control of a machine, be it a 
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prosthetic hand (Yanagisawa et al., 2011), computer cursor (McFarland et al., 2010; 

Wolpaw et al., 1991), or wheelchair (Galán et al., 2008).  These research areas are 

collectively referred to as brain-machine interfaces (BMIs).  The goal of BMIs is to 

interject a machine into the anatomical pathways of the human nervous system to 

augment, alter, or replace an end effector or lost control of it (Figure 1.2).  The term 

“end effector” is a fairly succinct way of intimating that a great deal of human 

functions are currently being targeted by the BMI community—while our lab 

focuses on replacing upper limb functionality (Acharya et al., 2010; Aggarwal et al., 

2008; Tenore et al., 2009), work is being done on text-based neural communication 

devices (Birbaumer et al., 1999), speech synthesis from neural signals (Kellis et al., 

2010), and memory augmentation (Berger et al., 2011). 

 

Figure 1.2.  A schematic of an ECoG brain-machine interface (BMI). The 
configuration depicted involves acquisition of ECoG signals from electrodes placed 
on a human brain (left and top), their computational analysis and modeling (right) 
to drive a prosthetic limb (bottom).  © 2012 IEEE. 

1.3  Neural Data Acquisition 
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 The BMI community has explored many different avenues of access to neural 

signals for BMI applications, but traditionally four modalities dominate: 1) 

electroencephalography (EEG) is the measure of neural potentials arising from the 

cortex with electrodes placed on the scalp, 2) electrocorticography (ECoG) is the 

measure of cortical potentials from the surface of the cortex, 3) local field potentials 

(LFP) are the low-pass filtered (e.g., 200 Hz) electrical potentials recorded from 

microelectrodes, and 4) single or multi-unit recordings to detect action potentials 

(or "spikes") from neighboring neurons.  Each of these modalities has a distinct set 

of strengths and weaknesses that require the experimenter to prioritize his or her 

study objectives.  The EEG signal is very desirable due to its noninvasive nature and 

has been successfully used to decode limb movements (Bradberry et al., 2010).  

However, the EEG signal is difficult to acquire due to extensive electrode 

preparation, and may be subject to movement artifacts.  EEG also does not capture 

high frequency oscillations (e.g., high gamma band, typically above 70 Hz), primarily 

due to low signal-to-noise from the large distances between neural sources and EEG 

sensors (Pfurtscheller and Cooper, 1975).  Spike recordings represent a 

fundamental unit of neural activity, and hence their use for acquiring neural 

movement-related signals and for driving a robotic limb is well known (Chapin et al., 

1999; Velliste et al., 2008).   However, microelectrodes by design penetrate the 

cortex (Figure 1.3(a)) and consequently elicit an immune response that degrades 

the signal quality over the course of months to years (Mercanzini et al., 2009; 

Williams et al., 1999).   Spike recordings are also specifically subject to micro-
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motion of the electrode recording sites, which causes individual neurons to drop in 

and out of recordings on a day-to-day basis. 

 

Figure 1.3.  Stylized and photographic examples of ECoG arrays.  (left) 
Electroencephalogram (EEG), electrocorticogram (ECoG), and microelectrode arrays 
(MEAs) are contrasted in a stylized diagram.  Notice that MEAs penetrate the pia 
mater and cortex, while the ECoG strip shown is merely subdural; EEG, by 
comparison records the signal after it has passed through the pia mater, arachnoid 
layer, dura mater, and scalp.  (right) An intraoperative photo of an ECoG grid being 
placed in a human patient.  © 2012 IEEE. 

Considering the potential strengths and weaknesses associated with these 

methods, ECoG occupies unique middle ground among these technological tradeoffs.  

There have been a few pioneering efforts to use ECoG recording for BMI purposes.  

These include control of a cursor in one and two dimensions (Leuthardt et al., 2004; 

Schalk et al., 2008b) and decoding of individual finger movements (Kubanek et al., 

2009), slow grasping motions of the hand (Acharya et al., 2010), and grasp type 

(Yanagisawa et al., 2011).  Two qualitatively different features of the ECoG signal are 

emerging from these studies.  Power in the high gamma band (>70 Hz) has been 

established as a reliable index of cortical processing, and has been correlated in 

various anatomical brain regions with selective attention (Ray et al., 2008b), speech 

(Crone et al., 2001b), auditory perception (Crone et al., 2001a), and movements 
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(Crone et al., 1998).  In addition, the recently reported local motor potential (LMP) 

(Schalk et al., 2007) is a simple moving average of the ECoG signal and has been 

used for decoding slow grasping motions of the hand (Acharya et al., 2010) and 

individual finger movements (Kubanek et al., 2009).   

ECoG electrode grids are predominantly implanted for clinical purposes in 

patients with uncontrollable epileptic seizures (Figure 1.3(b)).  The grids allow 

neurologists to map out areas of the patient’s brain which are generating seizures 

and areas that are responsible for vital functions like movement and speech (i.e., 

"eloquent cortex").  This functional map can be used to guide neurosurgeons in the 

targeted removal of the patient’s seizure focus while avoiding eloquent cortex to the 

greatest extent possible (Luders et al., 1986).  Patients are generally implanted with 

intracranial electrodes for about one week.  Before a second procedure to remove 

the electrodes and resect pathological tissue identified during monitoring, ECoG 

patients frequently volunteer for neuroscience experiments that can be carried out 

with no added medical risks. 

1.4  ECoG-Based BMI System Implementation 

The system we have developed and continue to refine (Figure 1.4) is 

designed to enable communication between and synchronization of three distinct 

nodes.  In general terms, these nodes are responsible for neural signal acquisition 

and processing, behavioral kinematic acquisition, and artificial limb actuation. 
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Figure 1.4.  ECoG System Schematic.  This schematic diagram depicts the flow of 
data and information throughout the parallel architecture described in the main text.  
Two key components of the system are neural data acquisition from Neuroscan (top 
left) and kinematic data acquisition from Optotrak and CyberGlove (top right).  Each 
of the acquisition systems is saved to its own data file and simultaneously streamed 
into a custom MATLAB framework and processed by a parallel node.  Frequency and 
amplitude features are extracted from the neural signals in real time and recorded 
with kinematics and target locations in a single composite data file (left).  
Simultaneous parallel port signals synchronize the neural and kinematic data to 
correct for clock drift for offline analysis (top).  A physical or virtual prosthetic arm 
can be used driven from one of the parallel nodes using either pure kinematic data 
or models trained from previous offline recording sessions with the same subject 
(bottom).  © 2012 IEEE. 
 

Neural signal acquisition is accomplished using Neuroscan (Compumedics; 

Charlotte, NC) SynAmps2 hardware that can be used to amplify either EEG or ECoG 

signals.  For our ECoG experiments, neural signals are sampled at 1000 Hz with a 

bandpass filter from 0.15 Hz to 200 Hz.  As shown schematically in Figure 1.4 (top 
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left), Neuroscan SCAN software streams the raw neural data samples over TCP/IP, 

where they are received by our custom MATLAB (MathWorks, Inc.; Natick, MA) code 

and processed to extract signal features relevant to human motor movements.  Raw 

neural signals are first re-referenced to a common average reference (CAR) in the 

time domain as a spatial filter (McFarland et al., 1997), to remove elements of the 

signal common to all channels.  Time and frequency domain features are then 

extracted from the CAR-filtered channel data.  Specifically, the signal power is 

extracted in five physiologically relevant frequency bands (i.e., μ band, 7-13 Hz; β 

band, 16-30 Hz; low γ band, 30-50 Hz; high γ band, 70-100 Hz and 100-150 Hz) 

using the Fast Fourier Transform (FFT) and two amplitude time windows (i.e., 512 

ms, 2048 ms) using moving average filters.  These features are extracted 

approximately every 40 ms and synchronized with streaming behavioral kinematic 

data. 

Behavioral kinematic data acquisition is accomplished using the Optotrak 

system (Northern Digital, Inc.; Ontario, Canada) and the CyberGlove (CyberGlove 

Systems, San Jose, CA), as depicted in Figure 1.4 (top right).  Optotrak is an optical 

tracking system which allows the placement of active sensing markers onto the 

experimental subject for three-dimensional tracking with sub-millimeter precision.  

The CyberGlove is a 22 degree of freedom data glove with embedded bend sensors 

for tracking the flexion and extension of all five digits and the wrist.  In our 

experimental setup, three dimensional reach trajectory is tracked with Optotrak 

sensors placed on the shoulder and wrist in a reference frame pre-calibrated to be 

aligned to the axes of the room.  The CyberGlove also enables simultaneous tracking 
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of the postures achieved by the fingers and wrist to accomplish dexterous grasp 

behaviors.  Since the CyberGlove does not rely on line-of-sight tracking, it can be 

used during arbitrarily complex grasps without risk of occlusion.  During 

experiments, our MATLAB software queries the Optotrak sensor positions and 

CyberGlove joint angles at 25 Hz. 

 Artificial limb actuation is achieved either in three-dimensional virtual or 

physical space.  JHU/APL has previously reported and demonstrated the Modular 

Prosthetic Limb (MPL), a 27 degree of freedom prosthetic arm complete with 

control of shoulder, elbow, wrist, and fingers.  This arm has been duplicated as a 

virtual model in the Musculoskeletal Modeling Software (MSMS) simulation 

environment (Davoodi et al., 2004), which has been developed at the University of 

Southern California and is freely available online.  Object cues are tracked using the 

Optotrak system and can be placed in the simulation environment for visualization 

purposes.  Depending on the experimental protocol, the subject can actuate either 

the physical or virtual arm to make contact with a physical or virtual cue. 

 While real-time feature extraction is necessary for online control of a 

physical or virtual prosthetic, the computational limitations it places on algorithm 

selection are intense.  Both the Optotrak and Neuroscan systems are capable of 

simultaneous data recording and TCP/IP streaming.  A synchronizing pulse is sent 

intermittently to both systems (top middle, Figure 1.4), which is stored alongside 

channel and marker data for offline co-registration of the data sampled at the 

highest possible rate.  This synchronized dataset allows for more sophisticated post-

hoc neural feature extraction that simply is not possible in a real-time environment. 
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 The computational resources necessary to process the incoming neural and 

kinematic data are contained within a single eight core Dell Workstation with 32 GB 

RAM, of which four are dedicated to MATLAB’s Parallel Computing Toolbox.  Each 

node in the parallel framework is denoted by cycling arrows in Figure 1.4.  The 

entire setup for these experiments needs to be mobile; development occurs in our 

research laboratory, but the testing itself occurs in the subject’s room in the 

Epilepsy Monitoring Unit of Johns Hopkins Hospital.  ECoG patients are literally 

tethered to the wall, as long cables constantly transmit neural data from their 

cortices to the hospital’s recording hardware for continuous monitoring.  Our 

workstation, along with the Optotrak and Neuroscan recording hardware, is 

contained on a single cart (Anthro; Tualatin, OR) and all of these are powered by an 

isolated power supply unit.  The cart and the Optotrak 3-camera sensor are rolled 

into the subject’s room.  A photograph of this environment including a patient 

seated in his hospital room is depicted in Figure 1.5. 
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Figure 1.5.  Patient room experimental layout.  A real object target is presented 
(from bottom right) as a cue to a patient (off-screen to the left for anonymity).  The 
patient is pointing to the target, and his motions are being tracked by Optotrak 
markers on the shoulder and hand.  The three-dimensional position of the patient’s 
hand and cue are being displayed in the MSMS simulation environment.  The virtual 
cue is yellow, indicating a successful trial.  © 2012 IEEE. 

1.5  Results 

We have used the system described to initiate research into ECoG-based 

control of a dexterous prosthetic limb.  As summarized above, this work involves 

performing experiments with subjects who have been implanted with ECoG grids 

for seizure monitoring and who volunteer for our limb trials.  In previously 

published work (Acharya et al., 2010), our lab discovered that the LMP recorded 

from subjects implanted with ECoG grids could be used to decode slow grasping 

motions of the hand with simple linear models.  A great deal of the predictive power 

of these models was achieved with only a single electrode, and the peak decoding 

accuracy was obtained with between four and six electrodes in the best performing 

subjects.  LMP signals with highest correlation to the recorded kinematics were 

selected for inclusion in the decoding models.  These signals were highly 

concentrated in areas of cortex that were shown to be involved in motor behavior 

using electrocortical stimulation mapping (ESM).  Peak decoding performance was 

achieved with as few as four electrodes in areas that can be identified 

intraoperatively as having motor involvement, meaning that these signals can be 

recorded from low-footprint ECoG grids implanted in known areas.  These results 

are very promising for the use of LMP signals for neuroprosthetic applications.  The 
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robustness of LMP as a phenomenon is validated by the high decoding accuracy 

across sessions.  

 

Figure 1.6.  Spatial distribution of single feature decoding accuracy relative to 
identified motor electrodes.  (a) Circles denote implanted electrodes that were 
included in the analysis, while darkened electrodes indicate that motor behavior 
was elicited or interrupted during electrocortical stimulation mapping (ESM).  (b) – 
(f) Single feature decoding accuracies (Pearson’s correlation r between observed 
and decoded traces) at electrode locations shown in (a) were used to reconstruct 
observed grasp aperture traces during reach-to-grasp movements.  Only positive 
correlations were considered for display purposes.  These plots show 
concentrations of good decoding electrodes in areas of cortex identified as motor by 
ESM.  (Adapted and modified from (Fifer et al., 2011)).  © 2011, 2012 IEEE. 

 

In more recent work from our lab, we investigated the neural signals 

responsible for the coordination of slightly more complex grasps (Fifer et al., 2011).  

A subject was verbally cued to reach out and grasp a series of objects with varying 

shapes and sizes.  ECoG signals were decomposed into various spectral bands.  Our 

study showed that frequency components in the high gamma band (70-100 Hz and 

100-150 Hz) provide the best performance for decoding grasp aperture.  Using a 

linear model that incorporated information from the high gamma band at multiple 
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time points, we were able to achieve very high accuracy using a single electrode that 

improved only slightly with the addition of information from other features and 

electrodes.  Figure 1.6a shows the location of the implanted grid electrodes, with 

darkened electrodes corresponding to motor brain areas as identified by ESM.  

Figures 1.6b-f show the spatial pattern of decoding accuracies used with single 

electrodes from various locations on the cortex.  Again, the highest-performing 

electrodes appear to be concentrated over areas identified as having motor 

involvement prior to experimentation.  Figure 1.7 visually depicts correspondence 

between observed and decoded grasp aperture traces using the twenty features that 

best predict grasp aperture in each cross-validation training set.  Although not 

shown here, the LMP signal recorded during this experiment performed poorly in 

decoding grasp aperture during these complex and rapid reach movements.  
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Figure 1.7.  Decoding of grasp aperture in four experimental sessions with one 
patient.  The example traces above show the fidelity of decoded grasp aperture to 
observed grasp aperture.  Predicted traces have been formed in fivefold cross-
validation with linear models trained with twenty distinct neural signal feature 
inputs.  (Adapted and modified from (Fifer et al., 2011)).  © 2011, 2012 IEEE. 

Our results not only indicate that complex movements can be decoded from a 

patient’s ECoG signal, but that both LMP (an amplitude feature) and high gamma 

band (a spectral feature) should be considered in decoding complex motor tasks.  

While it is an area of active investigation, it is our hypothesis that the LMP, as a 

slower signal, encodes information about low velocity or repetitive movements 

fairly robustly, while the high gamma band may be more useful for decoding 

movements with higher degrees of complexity or more sudden onset. 

1.6  Future Directions 
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 While our lab and the BMI research field as a whole have enjoyed success in 

neural decoding, ECoG research has its challenges and limitations.  It is important to 

emphasize that the goals of electrode implantations are solely clinical in nature—to 

treat debilitating seizures and avoid post-operative neurological impairments.  BMI 

experiments cannot interfere with these goals or add risk to the patient.  Because 

invasive monitoring is often a last resort for treating epilepsy, there are relatively 

few subjects available for neural recording specifically for BMI applications and 

demonstrations of neuroprosthetic control. These patients are in the hospital for a 

week, but the majority of their time is dedicated to mapping out seizure foci and 

eloquent cortex.  BMI researchers are often able to spend several hours with each 

ECoG subject—including setting up the experimental equipment and explaining the 

experimental protocol.  During this relatively brief time, it is necessary for 

researchers to test the instrumentation, algorithms and the operation of the closed-

loop BMI system, not to mention allow the subject to adapt to controlling the BMI.  

Additionally, placement of the grids is decided solely on the basis of the patient’s 

clinical needs.  Epilepsy and any associated structural pathology can also be 

associated with substantial cortical reorganization (Rasmussen and Milner, 1977; 

Datta et al., 2013).  These dual factors mean that every patient’s grid records from 

slightly different brain areas and that it takes time to understand the functions 

performed by the neuronal populations sampled by the implanted electrodes in 

each individual subject. To address the scarcity of subject time with ECoG, 

researchers are beginning to create models of human subject control (Cunningham 

et al., 2011). 
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One limitation of our neural decoding approach is that we have been 

studying the neural signals generated by subjects with intact limbs and relatively 

healthy motor cortices.  Patients in our target population have lost the ability to 

move their natural upper limbs, so we will need to think creatively about detecting 

innate neural control signals.  Existing literature has shown that imagining 

(Beisteiner et al., 1995; Miller et al., 2010) or watching (Iacoboni et al., 1999) a 

movement generates similar neural activity to actually performing it, which could 

be used to train first-pass neural decoding models of complex arm and hand 

movements.  In order to test these methods and their effectiveness with the end-

user, it will be useful to test patients with pre-existing motor impairments.  This has 

been done with one patient already at the University of Pittsburgh (Wang et al., 

2013), but there will be a significant need to prove the safety and efficacy of these 

studies before more widespread clinical trials can occur.  

We are making steady progress toward the dream of neural control of 

prosthetic limbs using a variety of means, but the journey is just beginning.  A few 

major challenges to achieving ECoG based control of dexterous prosthetic remains 

include: 1) improving the resolution of ECoG arrays; high resolution ECoG with 

arrays of mini- and micro-electrodes may provide better localization to the areas of 

the cortex responsible for dexterous hand and finger movements; 2) maturation of 

decoding algorithms specifically suited to ECoG signals; ECoG signals in very low 

frequency as well as high gamma bands may offer novel decoding capabilities and 

information; 3) provision of proprioceptive and touch feedback to the 

neuroprosthetic user by stimulating intact peripheral nerves or directly stimulating 
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somatosensory cortex (London et al., 2008; O’Doherty et al., 2011; Suminski et al., 

2010) may greatly facilitate natural control of an artificial limb; 4) building fully 

implanted ECoG systems—long-term cortically-controlled prosthetics will need to 

be comprised of electrodes, circuits, and telemetry interface to the limb while being 

fully implanted and powered.; 5) ethical considerations in selection of patients and 

implantation with regards to the potential risks of benefits to each individual 

patient. 
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Chapter 2 

Spatial-Temporal Functional Mapping (STFM) 
with Online Spectral Analysis of 
Electrocorticography 
 
2.1  Abstract 

Spectral analysis of electrocorticographic (ECoG) recordings has emerged as 

a potential alternative to electrocortical stimulation mapping (ESM) for epilepsy or 

brain tumor surgery patients.  However, the complex brain dynamics involved 

during language tasks present unique challenges for testing and interpretation, and 

investigators have observed less correspondence between ECoG and ESM maps for 

language tasks than for motor tasks.  Here we demonstrate the feasibility and utility 

of an online spatial-temporal functional mapping (STFM) system that exploits ECoG’s 

temporal resolution to study the evolution of neuronal population activity across all 

recording sites simultaneously.  We illustrate how this information is particularly 

useful for mapping language function.  The average sensitivity and specificity of 

online STFM across seven subjects were 69.9% and 83.5%, respectively, using ESM 

as the gold standard.  Moreover, relative to regions of interest where cortical lesions 

have most reliably caused language impairments in the literature, the sensitivity of 

STFM was significantly greater than that of ESM, while its specificity was also 

greater than that of ESM, though not significantly so.  This study supports the 

feasibility and clinical utility of online STFM for mapping human language function, 
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particularly under clinical circumstances in which time is limited and 

comprehensive ESM is impractical. 

2.2  Introduction 

Despite ongoing advances in non-invasive functional neuroimaging, 

electrocortical stimulation mapping (ESM) remains the gold standard for mapping 

cortical function at a fine spatial scale in individual patients prior to resecting 

cortical tissue for the treatment of drug-refractory epilepsy (Lesser et al., 1994; 

Penfield and Jasper, 1954) and brain tumors (Sanai et al., 2008).  The major 

advantage of this technique is that it allows clinicians to simulate the neurological 

consequences of lesioning tissue before it is permanently resected (Ojemann et al., 

1989).  However, there are important practical limitations on its clinical application. 

Chief amongst these is the risk of triggering afterdischarges and clinical seizures 

(Blume et al., 2004; Hamberger, 2007; Lesser et al., 1984) that can prevent 

comprehensive functional mapping without contributing to localization of the 

patient’s ictal onset zone.  Additionally, ESM can elicit pain that prevents mapping at 

individual sites (Lesser et al., 1985).  Lastly, because ESM is done sequentially at 

pairs of electrodes, finding the optimal stimulation current (Lesser et al., 1984; 

Pouratian et al., 2004) and then testing the effect of stimulation on different 

language tasks (Schäffler et al., 1993), it is time-consuming.  This can force clinicians 

to map only a subset of sites.  This factor may ultimately pose a particularly acute 

limitation on ESM as the number and density of ECoG electrodes used for long-term 

monitoring increases (Viventi et al., 2011; Bouchard and Chang, 2014).   
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 In addition to the practical limitations on ESM’s clinical application, there are 

a number of concerns about its accuracy and predictive value.  The neural 

populations and operations that are interrupted during stimulation are not well 

controlled, and it is difficult to rule out distant effects through diaschisis or the 

distant effects of action potentials evoked by stimulation (Hamberger, 2007; Ishitobi 

et al., 2000; Karakis et al., 2015).  Furthermore, the simulated lesion of ESM cannot 

take into account the reorganization that occurs after real permanent lesions, and if 

it is done in only a subset of electrodes, it cannot identify other cortical sites that 

could potentially assume the function of the lesioned site (i.e., assess functional 

reserve). Finally, when ESM interrupts the performance of a cognitive task such as 

word production, the effect is usually all-or-none.  The same observed effect can 

potentially result from interruption of different stages of processing or levels of 

representation that are necessary for successful task completion. 

The limitations of ESM have long motivated the investigation of passive ECoG 

recordings as a tool for mapping cortical function prior to resective surgery 

(Cervenka et al., 2013; Crone et al., 2001b, 1998; Grossman and Gotman, 2001; Sinai 

et al., 2005).  ECoG recordings cannot trigger seizures or pain, and they can be used 

to simultaneously survey task-related cortical activity in the entire set of implanted 

electrodes.  In addition, ECoG recordings yield a graded measure of task-related 

neural activity capable of resolving the activation of cortical sites at temporal scales 

comparable to the stages of processing that comprise language tasks (Edwards et al., 

2010).  Thus, the relative degree and timing of activation at a given site can be used 

to estimate its contribution to these processing stages, providing clinicians with 
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more information as they weigh the benefits and risks of removing epileptogenic 

tissue vs. sparing eloquent cortex. 

In spite of its practical and theoretical advantages over ESM, ECoG functional 

mapping has not been widely used in clinical practice.  One reason for this has been 

a lack of consensus on which signal components are most informative about task-

related neural activity.  In recent years, high gamma (~60 to 200 Hz) power changes 

have been increasingly recognized as a robust and reliable index of task-related 

activation of cortical populations of neurons (Crone et al., 2011, 2006; Jerbi et al., 

2009; Lachaux et al., 2012).  This index is highly correlated with blood oxygen level-

dependent (BOLD) responses in fMRI (Genetti et al., 2014; Khursheed et al., 2011; 

Lachaux et al., 2007a; Siero et al., 2014) and with single unit activity recorded by 

microelectrodes (Ray et al., 2008a; Manning et al., 2009).  Accordingly, it is highly 

specific with respect to the location and timing of task-related cortical activation, 

and it has been observed in nearly every cortical functional-anatomical domain in 

which it has been studied, including sensorimotor, auditory, visual, and language 

areas (Crone et al., 2011; Jerbi et al., 2009; Lachaux et al., 2012). 

Until recently, the computational demands of multi-channel ECoG recording 

and spectral analysis were such that feedback to clinicians was unacceptably 

delayed.  However, recent computing advances, including real-time data streaming 

and high performance multi-core workstations, have made it possible to provide 

online feedback.  For example, a system called BrainTV (Lachaux et al., 2007b) can 

compute and display the modulation of several frequency bands during 

unstructured behavioral tasks, allowing highly flexible investigation of the 
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functional roles of individual sites.  Another strategy for performing online mapping 

is to use a block design and characterize the difference between rest and active 

periods, most notably demonstrated in real-time by Miller et al. (Miller et al., 2007a), 

and by the SIGFRIED system (Schalk et al., 2008a) implemented within the BCI2000 

framework (Schalk et al., 2004). A recent study by Cheung and Chang also 

demonstrated a system for providing real-time computation and display of 

spectrograms (Cheung and Chang, 2012).  None of these systems, however, provides 

a trial-based framework for real-time display and statistical validation of temporally 

evolving high gamma power.  

Here we introduce and test the feasibility and utility of an online trial-based 

system for spatial-temporal functional mapping (STFM).  The STFM system enables 

visualization of the temporal evolution of functional activation at all ECoG sites 

during discrete tasks.  This system updates and displays statistically thresholded 

trial-averaged or single trial high gamma power changes relative to baseline.  The 

baseline distribution for these comparisons is collected between trials, so that the 

system can compensate for drifting arousal. This obviates the need to collect a 

separate rest interval, during which the patient’s cognitive state is less controlled.  

An intuitive display and user interface allows experimenters or clinicians to select 

times (i.e., relative to cue) for displaying the spatial map of activation or to switch 

between trial-averaged and single trial rasters. 

In a series of seven patients, we found that online STFM had sufficient 

temporal resolution to identify sites involved in distinct stages of commonly used 

language tasks.  Additionally, estimates of the system’s sensitivity and specificity 
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relative to the benchmark of ESM were the same or better than previous reports 

comparing ECoG mapping and stimulation mapping for language tasks (Bauer et al., 

2013; Cheung and Chang, 2012; Ruescher et al., 2013; Wu et al., 2010).  Moreover, 

we found that relative to regions of interest where cortical lesions most reliably 

cause language impairments, the sensitivity of STFM was significantly greater than 

that of ESM, and the specificity of STFM appeared greater than that of ESM, though 

the latter difference was not statistically significant. 

2.3  Materials and Methods 

2.3.1  Patient and Clinical Settings 

Seven English-speaking patients (see Table 2.1) with intractable epilepsy 

underwent placement of subdural electrodes in the dominant hemisphere to localize 

their ictal onset zone and to identify language and motor areas using ESM.  The 

implanted electrodes consisted of arrays (grids and/or strips) of macro electrodes 

(2.3mm exposed diameter, 1cm center-to-center spacing, Adtech, Racine, WI or PMT 

Crop, Chanhassen, MN).  In five of seven patients, the macroelectrodes were 

supplemented by 4 x 4 arrays of microelectrodes (75micron diameter, 0.9mm 

spacing, PMT Corp, Chanhassen, MN) inserted into perforations in a grid of 

macroelectrodes.  In all patients, the anatomical placement of electrodes was 

dictated solely by clinical considerations, which is for recording seizures and/or 

mapping cortical function.  Patients were admitted to the Johns Hopkins Epilepsy 

Monitoring Unit after electrode implantation for a period of 6-14 days.  All subjects 
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gave informed consent to participate in research testing under a protocol approved 

by the Institutional Review Board of the Johns Hopkins Medical Institutions. 

Patient 
Number 

Age Gender Handedness 
Hemisphere dominance 
for language, Wada test 
(Davis and Wada, 1978) 

Hemispheric 
Coverage 

Seizure onset 
zone 

1 23 F Right Left Left Anterior temporal 

2 13 F Right Left Left Amygdala 

3 55 M Right Left Left Anterior temporal 

4 22 M Right N/A Left Occipital 

5 62 M Right N/A Left Anterior temporal 

6 25 M Right N/A Left Frontal 

7 55 F Right Left Left Anterior temporal 

Table 2.1. Patient Demographic and Clinical Information 

2.3.2  Experimental Testing and Event Markers 

In this study, the STFM system performed online functional mapping during 

two distinct behavioral tasks.  In the visual object naming task, subjects were shown 

a picture stimulus on a monitor directly in front of them during each trial.  Subjects 

were instructed to speak the name of the object in the picture, or say “pass” if they 

could not recall the name.  In the auditory word repetition task, subjects were 

played an audio recording of a spoken word through insert earphones designed to 

attenuate external background noise during each trial.  Subjects were instructed to 

verbally repeat the cued word.  Subjects completed a range of 55-251 trials of visual 

object naming and 96-116 trials of auditory word repetition, where the number of 

trials was governed by the time constraints on patient testing and the set of stimuli 

used. 

We detected the onset of picture stimuli by recording the thresholded digital 

output of a photodiode mounted on the computer monitor presenting the stimuli. In 

each trial, the photodiode detected a reduction in luminance that occurred when a 
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small black square appeared at the bottom left corner of the screen during 

presentation of the visual stimulus.   In the auditory word repetition tasks, we 

detected the onset of acoustic stimuli by transmitting TTL pulse triggers 

synchronized with the onset of the auditory stimuli in a separate channel.  This was 

implemented with a high-end psychoacoustics workstation (model Z6A, Tucker-

Davis Technologies, Alachua, FL). The STFM system presented here was not 

hardcoded to receive these stimuli, but rather was designed to be flexible with 

respect to the functional tasks (and thus stimuli) used for mapping.  The only 

requirement for trial-based mapping is that temporally accurate signals marking 

behavioral events can be recorded along with ECoG to ensure synchronization of 

ECoG analysis with relevant behavioral events.  The system allows the user to adjust 

parameters for stimulus DC offset, threshold, and latency. 

2.3.3  Electrode Localization  

Electrode locations were identified in a high-resolution post-operative brain 

CT; electrode locations were then transformed onto a high-resolution pre-operative 

brain MRI by volumetrically co-registering the pre- and post-operative scans in 

Bioimage Suite (Duncan et al., 2004).  Since some of the patients studied in this 

report had electrodes implanted over their basal temporal lobes, multiple viewpoint 

snapshots were aggregated into a single image for these patients so that all 

electrodes could be visualized simultaneously.  Electrode locations were manually 

tagged on these images for subsequent display of online STFM results.  The system 
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presented here is designed to accommodate any image of the electrodes with a 

corresponding list of electrode locations for visualizing the STFM results. 

2.3.4  Data Acquisition and Analysis 

Recordings of all standard ECoG macroelectrodes were referenced to a single 

intracranial macroelectrode to minimize extracranial sources of artifact.  ECoG 

microelectrodes were referenced to a single microelectrode on the opposite side of 

the same insert, facing the dura mater.  Raw ECoG signals were recorded with a 128-

channel NeuroPort System (BlackRock Microsystems; Salt Lake City, UT) which 

amplified and sampled the data at 30 kHz with an analog third-order Butterworth 

anti-aliasing filter.  The recordings for Patient 1 were sampled at 30 kHz, but for all 

other patients, the anti-aliased 30 kHz recording was downsampled to a lower rate 

(1 kHz, Patient 5; 2 kHz, Patient 2; 10 kHz, Patients 3, 4, 6, 7).  This data was 

streamed using the built-in real-time streaming functionality of the NeuroPort 

system.  The streaming data was immediately decimated to 1 kHz online in all 

patients prior to any subsequent analysis.  

Channels with excessive amounts of noise were identified by a clinical 

neurophysiologist and excluded from analysis prior to online ECoG mapping.  The 

remaining channels were re-referenced using a common average reference (CAR) to 

remove spatial bias in the raw ECoG amplitudes.  Separate CAR blocks were used 

for: (1) all the macroelectrodes in each patient, and (2) each microelectrode array 

(in Patients 1, 3, 4, 5 and 6). 
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Figure 2.1. Online STFM Signal Processing Algorithm.  A visual schematic is 
presented to describe the online signal processing and statistical methods used.  A 
more detailed description of each step can be found in Section 2.3.  N, 𝑥̅ , and s2 
represent sample size, mean, and variance, respectively. 

2.3.5  Online Spectral Feature Extraction 

The CAR-referenced ECoG signal was analyzed for the duration of the task in 

512 ms epochs of data with 256 ms overlap (Patient 1) or 128 ms epochs of data 

with 112 ms overlap (other patients). The Fast Fourier transform (FFT) was 

computed on each window, and the resulting coefficients were then multiplied by a 

modified flat-top Gaussian window with cutoff between 67-115Hz (Patient 1) or 72-

110 Hz (other patients) to minimize noise at 60 Hz and 120 Hz. The bandpass-

filtered spectrum was converted to high gamma amplitude by zeroing the negative 
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frequency components, doubling the positive frequency components, computing the 

inverse FFT, and taking the magnitude of the result (i.e. the Hilbert transform) 

(Bruns, 2004; Canolty et al., 2007).  The right column of Figure 2.1 shows the 

spectral feature extraction process in block diagram form. The resulting high-

gamma amplitude was then log transformed to approximate a normal distribution 

and decimated to a temporal resolution of 16 ms using a moving average filter.  

Figure 2.2 shows the signal at several key points in this process. 

 

Figure 2.2.  Feature extraction algorithm illustration from auditory word 
repetition in Patient 1.  The ‘Silent’ column plots are from a macroelectrode 
(LFT33 in Figure 2.3B) that had no significant task-related high gamma response.  
The ‘Activated’ column plots are from a microelectrode (PMIC13 in Fig 3B) with a 
significant task-related high gamma response.  In (A)-(C), the units have been 
normalized so that the baseline period has zero mean and unit standard deviation.  
(A) Raw ECoG signals from the same single trial are shown after re-referencing to 
the common average reference (CAR).  (B) The high gamma amplitude feature is 
shown after it was extracted from the same single trial shown in (A) using the 
algorithm described in Figure 2.1.  (C) Post-stimulus high gamma amplitude 
averaged across all 96 trials of auditory word repetition is shown for both 
electrodes.  (D) The average post-stimulus spectrogram is shown, calculated by 
averaging the FFT coefficients time-locked to the stimulus marker in 512 ms bins 
with 256 ms overlap. Time zero is the stimulus onset of each trial.  This spectrogram 
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is not shown to the system user online, but is included here only for comparison 
with the feature output. 

2.3.6  Online Statistical Analysis 

The time series of log-transformed high-gamma amplitude estimates, 

extracted as described above, was segmented separately into baseline and task-

activated distributions.  The baseline distribution for each channel was drawn from 

64 samples of the analytic amplitude, corresponding to 1024 ms prior to stimulus 

onset (i.e., 16 ms resolution x 64 points = 1024 ms).  A separate task-activated 

distribution was estimated for each channel and time point after stimulus onset (i.e., 

3072 ms in this study, with 16 ms resolution, for 192 total time points per channel).  

The baseline and task-activated amplitude distributions were approximated as 

Gaussian, parameterized by the sample size, mean, and variance, and were updated 

after each trial according to the following equations: 
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where nold and nnew are the previous and current sample size, old and new are 

previous and current sample mean, and s2old and s2new are the previous and current 

sample standard deviations after update. 
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For trial-averaged activation maps, a two-way t-test was performed between 

the accumulated amplitude distribution from all baseline time points in each 

channel, and the accumulated amplitude distribution from each time point after 

stimulus onset in that same channel.  The threshold for significance was determined 

using the false discovery rate (FDR) correction (Benjamini and Hochberg, 1995), 

where the two-sided significance threshold of α < 0.05 was adjusted for m positively 

correlated tests, where m was the number of time points after stimulus onset.  Each 

statistically significant difference from the baseline distribution was also tagged as 

an increase or a decrease in high gamma amplitude.  Single trial results were 

computed similarly, but with a simple two-sided z-test with a threshold of α < 0.05 

uncorrected for multiple comparisons. 
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Figure 2.3.  STFM of visual object naming (A) and auditory word repetition (B) 
in Patient 1. STFM results are shown as a raster of high gamma responses on the 
left, and as brain maps of high gamma response magnitude (represented by disc size 
and color) on the right.  ESM maps (colored bars between electrodes) are also 
shown.  Color-shaded areas denote anatomical boundaries of classical language 
areas used as regions of interest (ROI) in ROI sensitivity/specificity analysis.  Color 
plots from offline matching pursuit analysis are illustrated below the brain maps for 
selected electrodes.  Each raster plot displays the spatial-temporal distribution of 
significant increases (red spectrum) or decreases (blue spectrum) in high gamma 
energy relative to pre-cue baseline in 16 ms windows. Each row corresponds to a 
different electrode as displayed on the right brain maps. All times are relative to cue 
onset (t=0s).  To highlight the spatial pattern of cortical activation at early 
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(visual/auditory perception) and late (response production) stages, high gamma 
responses are integrated across an early and late temporal window (early stage 
highlighted in red and late stage in blue on raster plot), and shown in separate brain 
maps (early stage in the left brain and late stage in the right brain). Microelectrode 
arrays AMIC and PMIC are enlarged for better visualization of high gamma 
responses.  The matching pursuit spectrograms are overlaid with line plots (blue) of 
online high gamma responses of respective electrodes averaged over trials.  
Matching pursuit spectrograms, arrows pointing to spectrograms, second brain 
image, and highlighting of early and late time periods on the channel raster have all 
been added to the screenshot post hoc (i.e., they are not available online). 

2.3.7  Raster Visualization 

Raster plots (Figure 2.3) display the magnitude of event-related changes in 

the high gamma amplitude at each time point after stimulus onset, as compared to 

the baseline.  These rasters display either trial-averaged amplitude changes (Figure 

2.3, rows represent electrodes) or single-trial amplitude changes (Figure 2.6, rows 

represent trials).  The magnitudes are thresholded for significance (p < 0.05) using 

FDR in the channel raster and are uncorrected in the trial raster.  Each trial raster 

(Fig. 6) has a row at the bottom with the FDR-corrected estimate of activation 

aggregated from all trials (identically displayed on the channel raster, Fig. 3).  A trial 

counter is displayed at the top of each raster for reference, and the rasters are 

updated after each trial.  A dropdown menu allows users to view the channel raster 

or the trial raster from any of the channels.  Supplemental Video 1 shows the 

evolution of the statistically significant high gamma responses obtained as the 

number of trials grew during a visual object naming task in Patient 1. 

2.3.8  Brain Map Visualization 

The magnitude of the high gamma response at a particular electrode and at a 

particular time is represented by the size and color of disks overlaid on ECoG 
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electrode locations in a two dimensional snapshot of the three dimensional brain 

reconstruction. This brain map can be displayed alongside the channel raster to 

show the locations and relative magnitudes of activations at any user-selectable 

time point or range of time points displayed in the channel raster.  This is designed 

to facilitate clinical interpretation of time-varying cortical activity displayed by 

STFM.  In addition, a button on the GUI can launch a short video in which the frames 

are snapshots of activation from the channel raster at sequential 16 ms time points. 

2.3.9  Offline Time-Frequency Analysis 

Offline time-frequency analysis using matching pursuits (MP) was performed 

with a custom C toolbox and Java interface (Franaszczuk and Jouny, 2004). A 1024 

ms pre-stimulus baseline period was used as a basis for statistical comparison with 

3072 ms of post-stimulus activity.  A two-way, non-parametric Wilcoxon test was 

performed between every time-frequency pair and the baseline distribution of the 

corresponding frequency.  The threshold for significance was determined similarly 

to online analysis by correcting for multiple comparisons across time and frequency 

using the FDR method to account for both time and frequency (α = 0.05).  The extent 

of modulation was displayed as a scaled color only if the activation was statistically 

significant.  

2.3.10 ECoG Maps vs. Electrical Stimulation Maps 

To investigate the degree of correspondence between STFM and ESM, the 

sensitivity and specificity of STFM was first computed using ESM as the gold 

standard.  All ESM stimulation sites were listed as either ESM positive or negative 
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and as either STFM positive or negative. A site was marked STFM+ if it exhibited 

significant task-related high gamma power increase.   A site was marked ESM+ if 

stimulation at this site inhibited language and/or inhibited or elicited movements or 

sensations in face, tongue, or mouth. At sites categorized as ESM+ by bipolar 

stimulation (stimulation between two adjacent electrodes), either electrode being 

STFM+ resulted in both electrodes being labeled as STFM+/ESM+, but only one of 

these electrodes was counted in our calculations of sensitivity and specificity.  In 

this case, we reasoned, stimulation could have interfered with neural processing at 

either or both sites.  In contrast, when pairs of electrodes were ESM- according to 

bipolar stimulation, each electrode was marked independently as either STFM+ or 

STFM-.  STFM of visual object naming was compared with ESM of picture naming, 

while STFM of auditory word repetition was compared with ESM of comprehension 

and spontaneous speech. Auditory word repetition is not part of the standard 

battery of language tests used for ESM. Sensitivity and specificity were calculated 

separately for visual object naming and auditory word repetition, using the 

following equations: 
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2.3.11 Region of Interest Analysis 

For each subject, we performed an anatomical region of interest (ROI) 

analysis to compare both ESM and STFM results to the regions where cortical 
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lesions most consistently impair language function.  Task-relevant ROIs for auditory 

word repetition included Broca's area, sensorimotor cortex, and Wernicke's area, 

whereas the task-relevant ROIs for visual object naming included those from 

auditory word repetition in addition to the middle third of basal temporal-occipital 

cortex (yellow shaded areas in Figs 3, 4, and 5).  The middle-third was adopted as a 

convenient and inclusive boundary for inclusion of higher order visual cortex 

responsible for visual object processing (Halgren et al., 1994; Nobre et al., 1994; 

Rangarajan et al., 2014; Tanji et al., 2005).  For this analysis, Wernicke’s area was 

defined as the posterior half of STG, supramarginal gyrus, and angular gyrus (blue 

shaded area in Figs 3, 4, and 5).  Broca’s area included pars triangularis and pars 

opercularis of the left inferior frontal gyrus (green shaded area in Figs 3, 4, and 5).  

Relevant sensorimotor cortex (red shaded area in Figs 3, 4, and 5) included pre- and 

postcentral gyri inferior to hand knob of central sulcus (red highlighted sulcus in 

Figs 3, 4, and 5).   

Each stimulation site (i.e. monopolar or bipolar) was classified as ESM+ 

(positive) or ESM- (negative).  Each monopolar stimulation site was either 

considered ROI+ when inside the ROIs, or ROI- when outside the ROIs; each bipolar 

stimulation site was considered ROI+ when at least one of the two electrodes, was 

inside the ROIs, and ROI- otherwise. Similarly, each monopolar stimulation site was 

considered STFM+ when the site exhibited a significant task-related high gamma 

power increase and STFM- otherwise; bipolar stimulation sites were counted only 

once and were considered STFM+ when at least one of the two electrodes was 

activated, and STFM- otherwise.  
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Using the classification of inside or outside language ROIs as a theoretical 

diagnostic standard, we calculated the sensitivities and specificities of STFM and 

ESM for all stimulation sites across all patients.  Sensitivity was calculated as the 

proportion of stimulation sites in task-relevant ROIs correctly classified as positive.  

Specificity was calculated as the proportion of stimulation sites outside task-

relevant ROIs correctly classified as negative.  Tables 2a and 2b illustrate the 

STFM+/- and ESM+/- electrode counts for ROI+ and ROI- stimulation sites. Using 

these values, we calculated the sensitivities and specificities of STFM and ESM with 

the following equations: 
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McNemar’s χ2 test (McNemar, 1947) was performed to assess the statistical 

discordance of the sensitivities (Table 2.2a) and specificities (Table 2.2b) of STFM 

and ESM relative to language ROIs. A p-value under the acceptable level (p<0.05) 

would mean that there is a statistically significant discordance of proportions of 

positive examinations between STFM and ESM among ROI+ stimulation sites. 
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Table 2.2a. Illustration of STFM vs. ESM test results among ROI+ stimulation 
sites 

 STFM+ STFM- Row total 

ESM+ 1a  1b  11 ba   

ESM- 1c  1d  11 dc   

Column total 11 ca   11 db   1n  

 

Table 2.2b. Illustration of STFM vs. ESM test results among ROI- stimulation 
sites 

 STFM+ STFM- Row total 

ESM+ 2a  2b  22 ba   

ESM- 2c  2d  22 dc   

Column total 22 ca   22 db   2n  

Table 2.2. Structure of STFM vs. ESM test results among ROI+ and ROI- 
stimulation sites 

2.4  Results 

2.4.1  Spatial-Temporal Functional Mapping can be 

Performed Online 
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Figure 2.4.  Visual object naming task results for Patients 2-7 (P2-P7). ESM and 
Online STFM results are overlaid on brain maps with highlighted ROIs.  As in Figure 
2.3, online results are separated into early stage (visual perception, left brain) and 
late stage (response production, right brain), where high gamma responses were 
computed by integrating across an early or late temporal interval. Microelectrode 
arrays are enlarged for better visualization.   



40 
 

 

Figure 2.5.  Auditory word repetition task results for Patients 2-7 (P2-P7). ESM 
and Online STFM results are overlaid on brain maps with highlighted ROIs.  As 
above, online results are separated into early stage (auditory perception, left brain) 
and late stage (response production, right brain), where high gamma responses 
were computed by integrating across an early or late temporal window. 
Microelectrode arrays are enlarged for better visualization. 

In all of our patients, our system successfully produced spatial-temporal 

functional maps (STFMs) of language function that could be reviewed online.  Trial-

based signal analyses, statistical testing, and STFM visualization were updated 

between trials.  Supplemental Figure 2.1 shows an unmodified screenshot of the 

online STFM system. Modified screenshots of online STFM for visual object naming 

and auditory word repetition tasks in Patient 1 are shown in Figure 2.3.  In each 

illustration, a screenshot of the channel raster of ECoG activation has been modified 
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to: a) highlight temporally clustered responses evident during online STFM, b) 

compare online STFM results to offline time-frequency analysis with matching 

pursuits, and c) compare online STFM to the results from electrocortical stimulation 

mapping (ESM).  ROIs are also highlighted, including Wernicke’s area, Broca’s area, 

sensorimotor cortex, and basal temporal-occipital cortex. Simplified brain maps for 

Patients 2-7 are shown in Figures 4 and 5, with online STFM and ESM results from 

visual object naming and auditory word repetition tasks, respectively. Supplemental 

Video 2 shows the frame-by-frame temporal evolution of cortical activation 

associated the visual object naming task in Patient 1. 

 

Figure 2.6. Single trial responses from online STFM results for Patient 1, 
auditory word repetition task.  The single trial activations are shown for the 
auditory word repetition task in three separate electrodes:(A) LFT23, a 
macroelectrode in the early responding, putative stimulus perception cluster, (B) 
LFT45, a macroelectrode in the late responding, putative verbal response cluster, 
and (C) PMIC13, a microelectrode from the late responding cluster.  The colors 
shown are scaled according to the negative log of the p-value, computed as a series 
of t-tests with the channel baseline distributions at the time of the trial.  Significance 
thresholds have not been FDR corrected for multiple comparisons, as the single trial 
responses are primarily intended as an indicator of neural response consistency 
across trials. 
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Task-related high gamma responses were sufficiently robust to yield 

statistically significant responses in single trials.  The online STFM system allowed 

these single-trial responses to be updated after each trial and to be displayed in a 

trial-by-time raster of ECoG activations. This provided additional insight into the 

robustness and consistency of the high gamma responses at individual ECoG 

recording sites. For example, single-trial responses are shown in Figure 2.6 for 

macroelectrodes that were activated in early and late phases (A and B, respectively) 

of the auditory word repetition task, and for a microelectrode (C) with activation 

similar to a late temporal cluster of activation in the macroelectrodes. 

Measures of ECoG high gamma responses from STFM closely corresponded 

to time-frequency analyses performed with offline matching pursuits analysis.  

Representative individual channels were chosen for display from both the early and 

late responding channel-clusters in each patient, but in general there was very high 

correspondence between the online STFM results and the envelope of high gamma 

spectral energy estimated via matching pursuits, as demonstrated in Figure 2.3.   

2.4.2  Spatial-Temporal Functional Maps are Task-Specific 

In all our patients, online STFM revealed the temporal evolution of activation 

across all ECoG recording sites.  As expected, the different components of each 

patient's cortical language networks were activated with different temporal 

envelopes, resulting in complex, cascading spatial-temporal patterns of activation.  

When the STFMs for different language tasks were compared, their differences 

appeared to reflect the contrasting processing demands of the tasks.   
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Visual object naming requires visual processing to identify the object to be 

named.  The most basic processing of the visual stimulus is expected to occur at the 

earliest post-stimulus latencies in cortex around the occipital pole, near calcarine 

cortex (as in Patient 4, Figure 2.4c).  Higher-order processing of object features, 

identity, and perhaps semantic information is expected to occur later and further 

downstream in the visual object processing stream in basal temporal-occipital 

cortex (as in Patient 1, Figure 2.3a).  To highlight the spatial pattern of cortical 

activation at early latencies in Figure 2.3, we integrated statistically significant high 

gamma responses across an early interval (a parameter that can be customized ad 

hoc in the system) and showed the locations of these responses in a separate brain 

map (highlighted in blue on channel raster and with size-and-color-scaled discs in 

the brain maps to the right of the raster).  In general, the earliest activations we 

observed during this task occurred in the aforementioned anatomical regions. 

Visual object naming also requires retrieval of lexical representations for 

identified objects and transformation of these into articulatory codes that are 

implemented by motor cortex.  Based on data from lesion analysis, psychophysics, 

and neuroimaging, these processing stages are implemented in a perisylvian frontal-

temporal network that includes Broca's area, Wernicke's area, and sensorimotor 

cortex, controlling the muscles of articulation.  To highlight these stages of task 

processing, we integrated high gamma responses across a later temporal window 

and showed the locations of these responses (highlighted blue on channel raster and 

brain maps on the right).  In general, the significant responses in this timeframe 

were greatest over ventral premotor and sensorimotor cortices, likely 
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corresponding to oral-facial representations activated in preparation for and during 

articulation.   

During articulation, we also observed activation of posterior superior 

temporal gyrus (pSTG).  This activation has been observed in previous studies 

(Crone et al., 2001a; Edwards et al., 2010; Flinker et al., 2010a) and likely 

corresponds to monitoring of self-generated acoustic speech stimuli.  Note that 

activation during this timeframe had an anatomical distribution similar to the one 

observed during the auditory word repetition task, consistent with the common 

demands of the two tasks during articulation.  In some cases, we also observed 

activation of posterior inferior frontal gyrus (Broca's area) and posterior middle and 

inferior temporal gyrus.  These activations generally occurred at latencies 

intermediate between those attributable to visual object processing and articulation, 

likely reflecting processes responsible for retrieval of lexical and phonological 

representations for the spoken responses. 

Auditory word repetition requires perceptual decoding of the auditory 

stimulus, typically occurring in posterior STG and nearby perisylvian cortices, 

followed by transformation into an articulatory code.  In all our patients the earliest 

activation, almost immediately after onset of the auditory stimulus, was localized to 

auditory association cortex in superior temporal gyrus (STG), consistent with the 

role of this cortical area in speech perception (Boatman et al., 1997; Crone et al., 

2001a; Nourski and Howard III, 2015).  A subset of these early-responding 

macroelectrodes were also activated later, albeit to a smaller degree, likely 

corresponding to self-monitoring of spoken responses, as mentioned above.  A late 
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cluster of activation occurred in ventral sensorimotor cortex during articulation of 

spoken responses.  

2.4.3  Micro-ECoG vs. Macro-ECoG Responses: Similarities 

and Differences  

The overall response patterns within micro-ECoG arrays were consistent 

with those of macroelectrodes, and both were consistent with task-related 

processing demands.  However, high gamma responses within micro-ECoG arrays 

were often more robust than those recorded from macroelectrodes.  This was most 

evident in single-trial responses, in which statistically significant responses 

occurred more consistently across time windows and across trials (Fig 6).  This 

could have been due to greater temporal and functional homogeneity in population 

responses recorded from microelectrodes than those recorded from 

macroelectrodes.  Micro-ECoG arrays sampled cortical activity from a surface area 

(2.7 mm2) only slightly larger than that of individual macroelectrodes (2.3-mm 

diameter).  One might expect that task-related cortical activation at this scale would 

be highly correlated among adjacent microelectrodes, resulting in highly uniform 

spatial-temporal patterns of activation. However, in many instances we observed a 

surprising degree of heterogeneity in the temporal and spatial patterns of activation 

at different microelectrodes within individual micro-ECoG arrays. 

For example, during auditory word repetition in Patient 1, the 

microelectrode array over ventral post-central gyrus (PMIC, Figure 2.3a) showed 

robust responses with substantial heterogeneity in their onsets and magnitudes; 
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collectively, these activations were similar to nearby macroelectrode responses, 

occurring before and during spoken responses, albeit with onset latencies about 300 

ms earlier. Activation of this region during spoken responses has been reported in 

other studies (Crone et al., 2001b) and likely reflects motor commands to and 

sensory feedback from the muscles of phonation and articulation.  The responses 

from this high-density array during auditory word repetition were also noteworthy 

in the heterogeneity of their onset latencies, which could have been attributable to 

either true differences in latencies at each electrode or an artifact of the statistical 

thresholding process in which stronger activations would appear to have earlier 

onsets.  Regardless of the true reason for the different onset times, this variation 

suggests some degree of functional-anatomic selectivity at this scale.  The 

microelectrode array over anterior middle temporal gyrus (MTG) in Patient 1 was 

inactive during auditory word repetition but showed late, temporally dispersed 

activity during visual object naming, consistent with its neighboring 

macroelectrodes.  

2.4.4  ECoG Maps vs. Electrical Stimulation Maps 

STFM results for both visual object naming and auditory word repetition 

tasks for each patient were first computed by using ESM results as the gold standard 

(Table 2.3).  The average sensitivity across tasks and patients was 69.9%, and the 

average specificity was 83.5%. 

Comparison of STFM vs. ESM 

Patient Visual Object Naming Auditory Word Repetition 
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Number Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

1 100.0 94.4 100.0 78.6 

2 33.3 69.2 100.0 78.6 

3 75.0 62.5 100.0 77.8 

4 85.7 65.0 28.6 92.9 

5 100.0 90.0 100.0 100.0 

6 0.0 90.3 50.0 90.3 

7 50.0 92.3 55.6 86.7 

Average 63.4 80.5 76.3 86.4 

Table 2.3. Sensitivity and specificity values for STFM during visual object 
naming and auditory word repetition tasks, with ESM as the gold standard. 

Tables 4a and 4b show STFM vs. ESM test results for both ROI+ and ROI- 

stimulation sites across all patients. 

Table 2.4a. STFM vs. ESM test results among ROI+ stimulation sites 

 STFM+ STFM- Row total 

ESM+ 37 9 46 

ESM- 26 24 50 

Column total 63 33 96 

 

Table 2.4b. STFM vs. ESM test results among ROI- stimulation sites 

 STFM+ STFM- Row total 

ESM+ 10 17 27 

ESM- 7 89 96 

Column total 17 106 123 

Table 2.4. STFM vs. ESM test results among ROI+ and ROI- stimulation sites, 
across all patients 
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The sensitivity and specificity of both ESM and STFM using anatomical ROIs 

as a gold standard were calculated across patients, using Equations 2.1-2.4 and 

values from Table 2.4.  The average sensitivity across tasks and patients was 63/96 

= 65.6% for STFM vs. 46/96 = 47.9% for ESM; the overall average specificity was 

106/123 = 86.2% for STFM vs. 96/123 = 78.0% for ESM.   

We used McNemar’s χ2 test (Trujillo-Ortiz et al., 2004) to determine whether 

the sensitivities and specificities of STFM mapping were statistically different from 

those of ESM mapping, assuming our ROIs as a hypothetical gold standard, with a 

significance threshold of p<0.05.  We found that the sensitivity of STFM was 

significantly greater than that of ESM (p = 0.0068), while the specificity of STFM 

appeared to be greater than that of ESM, but this difference was not statistically 

significant (p = 0.066). 

2.5  Discussion 

Results from seven patients performing a variety of language tasks 

demonstrated that the spatial-temporal functional mapping (STFM) system is fast 

and robust enough to compute maps of cortical function for online review, using 

ECoG high gamma responses that correspond well to both ESM and offline MP 

analysis results. 

The time-consuming and taxing nature of ESM motivates the development of 

a passive functional mapping alternative.  We believe that online spatial-temporal 

functional mapping (STFM) based on event-related changes in ECoG signals 

provides important opportunities for clinicians and neuroscience researchers.  The 
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clinical utility of STFM currently lies in both augmenting the findings from ESM and 

identifying the areas of potential functional significance as a guide to further 

exploration by ESM.  STFM has the advantage of being performed at all recording 

sites simultaneously.  Additionally, it can provide a graded measure of cortical 

activation that allows clinicians to estimate the relative contribution of different 

cortical sites to task performance.  A recent study performing covert ECoG mapping 

of motor cortex (Vansteensel et al., 2013) shows that information about high gamma 

activation associated with spontaneous limb movements can be captured with 

minimal demands on patient cooperation.  Our system could also be adapted to such 

a protocol using electronic sensors for detecting movement (e.g. with 

accelerometers) or speech (e.g. with microphones). 

With a larger body of evidence, it may be possible to someday make clinical 

decisions from passive functional mapping alone.  Brunner et al. (Brunner et al., 

2009)  performed a side-by-side comparison of ESM and STFM in motor cortex with 

favorable results (i.e. no false negatives, ~1% false positives).  Mapping language 

cortex presents additional challenges, however, since multiple sites over large-scale 

cortical networks are involved.  The temporal profile of activation at a given site and 

its timing relative to other sites could therefore provide insight into its function and 

contribution to a given task.  For example, semantic knowledge is likely distributed 

broadly over temporal and frontal cortices (Mesulam, 1990) .    Although some 

studies have indicated poor sensitivity and specificity of STFM in relation to ESM 

(e.g. specificity of 78% and sensitivity of 38% during visual object naming (Sinai et 

al., 2005), a recent report has suggested that in some instances it can be more 
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predictive of post-operative language impairments than ESM (Cervenka et al., 2013, 

2011).  More work will be required to correlate surgical outcomes with the location 

of resected and preserved sites identified by ESM and STFM. 

For the neuroscience researcher, STFM can provide preliminary maps of 

cortical function that allow subsequent experiments to be chosen intelligently.  This 

customization is critical to maximize the relevance of an experimental battery in a 

setting where electrodes are implanted solely according to clinical need. It also 

allows both clinicians and researchers to immediately determine whether they have 

sufficient data to demonstrate statistical significance, especially useful in time 

sensitive environments, e.g. intra-operative functional mapping.  Additional 

functions such as trial removal and single trial display allow users to better observe 

the results and optimize their experiments during testing. 

We feel that our STFM system offers advantages over real-time spectral 

feedback, as is provided in systems like BrainTV (Lachaux et al., 2007b).  These 

systems provide flexibility to rapidly hypothesize and test the functional roles of 

cortex under a particular electrode.  This flexibility allows for the exploration of 

non-traditional stimuli and enables clinical neuroscientists to perform experiments 

analogous to single unit recordings for discovering the tuning of neural signals to 

stimulus or behavioral parameters.  However, interpretation of the results requires 

an expert to simultaneously monitor the patient and the real-time spectral feedback 

to detect functional responses at individual recording sites, all while generating and 

testing hypotheses for each site. 
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Previous systems have also employed block-based online functional mapping 

schemes (Miller et al., 2007a; Schalk et al., 2008a).  Although block-based functional 

mapping is capable of providing a single metric for quantifying gross contribution to 

a task (i.e., which is desirable to be comparable to ESM), it lacks the ability to 

precisely map complex cortical activations that evolve over time.  A trial-based 

scheme allows for coarse spatial maps of task-relevance to be decomposed into 

temporal sequences of activation with greater functional anatomical discrimination 

among activated sites.  This segmentation allows activated sites to be compared by 

their relative contribution to each temporal stage of activation without having their 

estimated contributions scaled by the relative duration of each stage to which they 

contribute.   

Compared to existing ECoG functional mapping systems, our STFM system 

offers several key advantages. First, our trial-based system constructs a baseline 

distribution from the pre-cue phases of individual trials, rather than a pre-session 

block of baseline activity, as employed by previous studies (Brunner et al., 2009; 

Cheung and Chang, 2012; Lachaux et al., 2007b).  In our opinion, the pre-cue 

baseline provides the best control for active periods because it controls for 

variations in the arousal and attentiveness of the patient that are not directly 

related to the experiment.  Trial-based analyses also provide greater cognitive 

control during both the baseline and the active period.  In a block design, by contrast, 

it is difficult to ensure that a patient is continuously performing an experimental 

task during a long active period without contaminating this period with unintended 

cognitive events or brief rest periods.    
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The second major, and perhaps most important, advantage of an STFM 

system is that it can elucidate the temporal evolution of cortical activation.  This 

becomes particularly important for interpreting cortical activation during complex, 

multifaceted tasks, including most language tasks.  Without information about the 

timing of activation relative to behavior, one can only speculate about the 

contributions that different activated sites make to the different facets of these tasks. 

The timing of activation at each site allows one to make more informed hypotheses 

about the functional contribution of that site to task performance.  For example, of 

the many sites activated during a particular task, there may be sites with task-

related activation that is time-locked a) only to the cue, b) only to the behavioral 

response, or c) to both the cue and behavioral response.  The magnitude of 

activation at each site can then be more accurately understood as the degree of 

activation during certain phases of task performance.  In contrast, integration of 

activation over the entire trial, or during an active period with repeated trials, 

would emphasize electrodes with a longer temporal envelope of activation.   

The addition of timing information admittedly increases the complexity of 

interpretation over that of a single metric of activation.  To attempt to mitigate these 

difficulties, the system includes the ability to click on the channel raster to visualize 

a time-specific snapshot of brain activation. The resulting brain maps provide an 

intuitive display with labeled electrodes that are colored and sized according to the 

magnitude of activation.  In addition, these maps can be aggregated into a video to 

visualize the spatial-temporal evolution of brain activation. 
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During language testing with our STFM system, we observed rich single trial 

responses, especially in the microelectrodes (see Figure 2.4).  The signal quality of 

ECoG signals is much higher than that of scalp EEG, particularly for high gamma 

activity (Ball et al., 2008).  This allows not only better spatial sampling of activated 

neuronal populations, but also high gamma responses that are sufficiently robust to 

be detected in single-trial analyses (Flinker et al., 2010b).  Single-trial high gamma 

responses can be leveraged for a variety of purposes, including brain-computer 

interfaces (Schalk and Leuthardt, 2011) and online functional mapping (Lachaux et 

al., 2007b).  In addition, they can provide richer correlations with behavior.  For 

example, single trial responses can be used to study inter-trial variability in a given 

task; if sorted properly, single trial responses can reveal differential neural 

responses to different categories of behavioral stimuli or responses.  Variations in 

the patient's attention to a task can also be observed in single trials so that 

encouragement or further instructions can be given to improve performance and 

map accuracy.  Single trial responses can therefore be a powerful tool for the 

experimenter when it is otherwise difficult to monitor adherence to a task (e.g., 

motor imagery or imagined speech). 

ECoG vs. ESM in previous studies 

Author Year Frequency 
Band (Hz) 

Task Sensitivity 
(%) 

Specificity 
(%) 

Wu et al. 2010 75-100 Language 71.0 59.9 

Cheung et al. 2012 61-260 Motor/Speech 70.8 78.1 

Ruesher et al. 2013 60-400 Speech 18.9 96.7 

Bauer et al. 2013 69-95 Language 20.3 85.0 
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This paper 2015 70-110 Language 69.9 82.5 

Table 2.5. Comparison of sensitivity/specificity calculation for different 
studies 

Previous studies of ECoG mapping using the high gamma frequency band 

have shown comparable, if slightly lower, sensitivities and specificities relative to 

ESM (Table 2.5) (Bauer et al., 2013; Cheung and Chang, 2012; Ruescher et al., 2013; 

Wu et al., 2010).  These studies have all assumed that ESM is the gold standard for 

identifying eloquent cortex and predicting post-resection deficits.  For this, the real 

gold standard would be post-operative outcome following resection of a cortical site.  

However, this is difficult, if not impossible, to achieve in clinical practice because 

resections always include more than one site and because reorganization of function 

inevitably takes place following resection.  For these reasons and others, no other 

method has proved better than ESM to date.  However, concerns about the accuracy 

of ESM can be traced back to its inception in clinical practice (Cushing, 1908; 

Penfield and Boldrey, 1937).  It has long been recognized that cortical stimulation 

can affect function at a distance (Hamberger, 2007), and that ESM does not always 

predict post-operative language outcomes (Cervenka et al., 2013, 2011; Krauss et al., 

1996).  This concern is perhaps best illustrated in somatosensory and motor 

cortices where the effects of lesions are more predictable.  Although stimulation of 

post-central gyrus often elicits motor responses, resection of this gyrus causes 

sensory impairments and apraxia, but not weakness per se (Nii et al., 1996; Penfield 

and Boldrey, 1937).  Conversely, stimulation of pre-central gyrus can elicit somatic 

sensations.  Indeed, clinical investigators have elicited movements with stimulation 

1.5-4.7 cm anterior and 2 to 3.4 cm posterior to  the central sulcus, but resection of 
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most of this territory can be performed with little or no motor impairment (Nii et al., 

1996; Penfield and Boldrey, 1937).  Indirect evidence for distant effects of ESM can 

also be found in studies in which direct cortical stimulation has elicited both evoked 

responses (Matsumoto et al., 2007, 2004) and high gamma responses (Matsuzaki et 

al., 2013) in distant cortical regions that have putative functional connectivity with 

the stimulation site.  Because high gamma responses reflect population firing rates 

(Manning et al., 2009; Ray et al., 2008a), the latter study suggests that ESM can 

affect neuronal firing in distant populations, though the impact on cortical function 

is not known.  

Because of the potential inaccuracies of ESM for functional localization, we 

believe it is important to evaluate the accuracy of both ECoG and ESM with respect 

to an independent measure of cortical function.  This must necessarily be drawn 

from the rich literature on the effects of brain lesions (Hickok and Poeppel, 2007; 

Damasio and Geschwind, 1984; Damasio, 1991), as well as on regions typically 

activated on fMRI during experimental language tasks, albeit at far lower temporal 

resolution (Buchsbaum et al., 2001; Hickok and Poeppel, 2007; Price, 2000).  Using 

this approach we found that the sensitivity of STFM was significantly greater than 

that of ESM, while the specificity of STFM was greater than that of ESM, though not 

significantly so. In light of these findings, we believe that both ESM and passive 

ECoG mapping offer approximations of the patient's true functional anatomy and 

that more studies are needed to understand their comparative utilities in clinical 

practice. 
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Figure 2.7.  Microelectrodes record ECoG high gamma responses with fewer 
required trial numbers for both tasks in Patient 1.  With only 7 trials averaged 
from a visual object naming task (A) or an auditory word repetition task (B), 
statistically significant high gamma responses appeared in the microelectrode array. 
Responses are either absent in the macroelectrodes or have lower magnitudes than 
the microelectrodes with the highest magnitude responses. A similar trend is seen 
with more trials (145 in A, 96 in B). Magnitudes of statistically significant high 
gamma responses are indicated by size/shading of red circles. 
 

The STFM system presented here also allowed novel observations from 

microelectrode recordings in Patient 1. For example, statistically significant and 

stable high gamma responses emerged with fewer trials in activated 

microelectrodes than in neighboring activated macroelectrodes during visual object 

naming and auditory word repetition tasks (Figure 2.7).  The greater robustness of 

high gamma responses in the microelectrodes could have been due to higher 

sensitivity to high frequency activity or greater spatial selectivity for activated 
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cortical populations.  In contrast, macroelectrodes record from larger populations of 

neurons and are more likely to average activity from responding neurons with 

activity from neurons that do not respond or are inhibited.  The spatial 

heterogeneity of the microelectrode responses observed in Patient 1 could not be 

explained simply by spatially interpolating between neighboring macroelectrodes.  

These findings are consistent with previous work highlighting the macrocolumn, 

with a size on the order of surface microelectrodes, as a functional subunit of the 

cortical gray matter (Mountcastle, 1997).  ECoG functional mapping may be 

particularly useful for probing the functional role of cortex under arrays 

microelectrodes.  While it is possible to perform ESM in microelectrodes, 

stimulation parameters and subsequent interpretation of the behavioral responses 

are not well chronicled; interpretation of ECoG mapping results in microelectrodes, 

however, relies on the same principles as that of macroelectrodes.  This advantage 

of ECoG mapping over ESM is expected to be more relevant as the number and 

density of ECoG electrodes used for long-term monitoring increases, since ESM will 

become increasingly impractical and time-consuming in high-density ECoG arrays 

currently being developed for use in mapping the epileptogenic zone and in other 

clinical applications (Bouchard and Chang, 2014; Viventi et al., 2011).   

In conclusion, we have demonstrated a system that is able to compute 

spatial-temporal functional maps (STFM) online, allowing for immediate access to 

ECoG mapping results at the patient’s bedside.  This system is designed to mimic 

offline high gamma functional mapping with concessions made only as necessary to 

satisfy computing and timing constraints.  Our approach is generalizable to a variety 
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of clinical and experimental applications, as only a reliable marker of the stimulus 

and a trial-based design is required.  Although not demonstrated here, this system 

could easily be adapted to the time-pressured circumstances of an awake 

craniotomy.  At the same time, the system offers full visualization of the complex 

spatial-temporal dynamics of functional tasks of varying complexity.  We believe 

that this information will help both clinicians and researchers better understand the 

contributions that tested sites make to task performance. 
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Chapter 3 

Simultaneous Neural Control of Simple 
Reaching and Grasping with the Modular 
Prosthetic Limb Using Intracranial EEG 

 

3.1   Abstract 

Intracranial electroencephalographic (iEEG) signals from two human 

subjects were used to achieve simultaneous neural control of reaching and grasping 

movements with the Johns Hopkins University Applied Physics Lab (JHU/APL) 

Modular Prosthetic Limb (MPL), a dexterous robotic prosthetic arm.  We performed 

functional mapping of high gamma activity while the subject made reaching and 

grasping movements to identify task-selective electrodes. Independent, online 

control of reaching and grasping was then achieved using high gamma activity from 

a small subset of electrodes with a model trained on short blocks of reaching and 

grasping with no further adaptation.  Classification accuracy did not decline (p<0.05, 

one-way ANOVA) over three blocks of testing in either subject.  Mean classification 

accuracy during independently executed overt reach and grasp movements for 

(Subject 1, Subject 2) were (0.85, 0.81) and (0.80, 0.96) respectively, and during 

simultaneous execution they were (0.83, 0.88) and (0.58, 0.88) respectively.  Our 

models leveraged knowledge of the subject's individual functional neuroanatomy 

for reaching and grasping movements, allowing rapid acquisition of control in a 

time-sensitive clinical setting.  We demonstrate the potential feasibility of verifying 
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functionally meaningful iEEG-based control of the MPL prior to chronic 

implantation, during which additional capabilities of the MPL might be exploited 

with further training. 

3.2  Introduction 

 Reaching to and grasping objects is an important skill that forms the basis for 

many activities of daily living (ADLs).  It is thus an important target for brain-

machine interfaces (BMIs) being developed for patients with impaired limb function 

due to neurological lesions of motor pathways (e.g., spinal cord injury, amyotrophic 

lateral sclerosis, stroke, etc.).  Recent work has demonstrated that grasp types 

(Pistohl et al., 2012), grasp timing (Pistohl et al., 2013), hand postures (Chestek et al., 

2013), and reach parameters (Anderson et al., 2012) can be decoded from spectral 

changes in human intracranial electroencephalographic (iEEG) signals, and that 

movement-related spectral modulation of iEEG can be used for online control of 

BMIs, for example during dexterous grasping (Vinjamuri et al., 2011), when 

selecting between grasp types and elbow movement (Yanagisawa et al., 2012), or 

for three dimensional cursor control (Wang et al., 2013).  We therefore sought to 

determine whether human iEEG could be used to provide simultaneous and 

independent online control of reaching and grasping movements, thus 

demonstrating segregation of these two movement types at the spatial scale of iEEG 

macroelectrodes.  iEEG is an attractive platform for the development of BMIs 

because of the potential for better long-term signal stability than multi-unit 

recordings, as well as the availability of subjects who have accepted the risks of 
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electrode implantation for the mapping of their seizure onset zones prior to 

epileptic resection surgery (Leuthardt et al., 2006). 

 Relative to scalp EEG, iEEG provides better spatial resolution and better 

signal quality for high frequency activity (T. Ball et al., 2009; Freeman et al., 2000).  

There is substantial empirical evidence from local field potential studies in humans 

(Manning et al., 2009) and nonhuman primates (Ray et al., 2008a) that this high 

frequency activity closely tracks population firing rates.  The degree of control that 

can be achieved with the large-scale population activity recorded with iEEG 

(Leuthardt et al., 2004; Schalk et al., 2008b) is unknown, however, especially with 

chronic training beyond the time constraints of seizure monitoring.  To ensure that 

the risk of long-term electrode implantation is offset by the benefit of stable long-

term BMI use, it would be advantageous to confirm at least basic control of the 

intended prosthetic at the time of implantation.  

 Previous work in scalp EEG and iEEG has demonstrated two- and three- 

dimensional cursor control where at least one dimension is controlled by behavior 

unrelated to the task at hand (e.g., vocalization or tongue movement) (Leuthardt et 

al., 2004; McFarland et al., 2010; Schalk et al., 2008b; Wolpaw et al., 1991).  

Although it has been demonstrated that training and “operant conditioning” can be 

used to learn BMI control on the time-scale of months (Rouse et al., 2013), it is 

unclear to what extent an unnatural mapping will scale up to more complex tasks in 

more complex environments.  We therefore sought to determine whether the 

command signals for forward reaching and grasping of the Johns Hopkins University 

Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL) could be derived 
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from high frequency (70-110 Hz) neural population activity associated with 

naturalistic reaching and grasping movements, respectively.  These commands were 

interpreted by the hardware in the MPL and converted to multi-axial 

anthropomorphic movements spanning two controllable joints for forward reaching 

and 10 controllable joints for grasping. 

3.3  Methods 

 
Figure 3.1.  Functional mapping of cue-averaged task-related high gamma 
activity in training set.  (A) Reconstruction of the implanted grid location for 
Subject 1 is depicted; the electrode used for reaching (number 25) is highlighted in 
red and corresponds to the channel circled in red in the activation maps below, 
while the electrode used for grasping (number 11) is highlighted in blue and 
similarly corresponds to the electrode circled in blue below; the central sulcus is 
highlighted in green.  (B) Reconstruction of the depth electrodes implanted in right 
hemisphere of Subject 2; electrodes used for reaching highlighted in red, electrodes 
used for grasping highlighted in blue (transparent medial view in inset).  (C, D) Each 
task map displays the spatiotemporal distribution of significant increases (red 
spectrum) or decreases (blue spectrum) in high gamma energy relative to pre-cue 
baseline in 16 ms windows for Subject 1. Each row corresponds to a different iEEG 
electrode in the frontoparietal grid displayed in (A).  All times are relative to cue 
onset.  (E) A differential map is shown for Subject 1, which is the result of a 
Wilcoxon test between two conditions for each (channel, time) pair with FDR 
correction for comparisons across multiple time points within each channel.  
Channel and time pairs are in the red spectrum if forward reach is more activated 
than grasp, and in the blue spectrum if grasp is more activated than forward reach.  
The average times of relevant behavioral events are marked with vertical lines and 
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labeled (movement onset, MO; pressed target button, PT; released target button, RT; 
returned arm to home position, Home; released pressure bulb, Rest).  © 2014 IEEE. 
 

3.3.1  Subject Info 

 The subjects for this study were 55 year old (Subject 1) and 30 year old 

(Subject 2) right-handed males implanted with intracranial electrodes to map the 

ictal onset zone of medically resistant seizures prior to surgical resection.  In Subject 

1, an 8x8 grid of subdural platinum-iridium electrodes (Adtech, Racine, WI, 1.3 mm 

diameter exposed surface, 1-cm spacing) were surgically implanted over right 

frontal-parietal regions (see Figure 3.1), in addition to a 4x5 electrode grid over 

right lateral occipital cortex  and a 1x8 electrode strip stretching from right mid-

temporal regions to dorsolateral prefrontal cortex (both not shown).  Subject 2 was 

implanted with a 1x8 electrode strip (Adtech; Racine, WI; as above) across right 

frontoparietal cortex, six depth electrodes with eight platinum macrocontacts each 

(Adtech; 1.41-mm long, 6.5 mm center-to-center spacing) placed medially from the 

right premotor area to the posterior parietal lobe, and one hybrid depth with eight 

platinum macrocontacts (Adtech; 1.57 mm long, 5 mm center-to-center) and sixteen 

microcontacts (Adtech; 75 micron diameter).  Neuronavigation via the Cranial 

Navigation Application (BrainLab; Westchester, IL) was used during placement of 

the depth electrodes in Subject 1.  Anatomical reconstructions of the subjects' brains 

with the location of implanted electrodes were generated by volumetrically co-

registering the pre-surgical MRI with a post-surgical CT using BioImage (Figure 

3.1A) (Duncan et al., 2004).  Subject 1's seizures began after a bout of viral 

encephalitis with coma at 33 years of age.  His complex partial seizures were 
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typically preceded by a somatosensory aura in his left hand with spread to the face 

and subsequent shaking of the left hand, and were sometimes followed by 

secondary generalization.  Subject 2 had previously undergone chronic recording 

with partial resection of his right post-central gyrus and superior parietal lobule.  

Both patients gave informed consent for research testing, which was done in 

accordance with a protocol approved by the Institutional Review Board of the Johns 

Hopkins Medical Institutions. 

3.3.2  Neural Signal Acquisition 

 Using a NeuroPort system (BlackRock Microsystems; Salt Lake City, UT), 

iEEG signals were initially sampled at 30 KHz with an analog bandpass filter with 

cutoffs of 0.3 Hz and 7500 Hz.  The NeuroPort system then applied a digital 4th 

order Butterworth lowpass filter with a 250 Hz cutoff and downsampled to 1000 Hz.  

Artifactual channels were visually identified and excluded from all further analysis.  

Acquired iEEG signals were broadcast over UDP to an experimental workstation, 

where they could be accessed for online spectral feature extraction and model 

evaluation to drive the MPL. 
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Figure 3.2.  Schematics and photographs of experimental setup with MPL.  
(top) A schematic of the experimental setup is shown, with Subject 1 seated and 
interacting with three behavioral sensors.  The MPL is to the front and right of the 
subject, in the same room as and in full view of the subject.  Traces of the behavioral 
sensors, high gamma power, and MPL commands during a three trial segment are 
shown as an example. (A-C) The subject is seated on his hospital bed (not pictured, 
right of view), with his arm at rest on a lap desk with inset pushbutton or “home 
switch.”  The subject is holding but not actively grasping the squeeze bulb used to 
query grasp status.  On the subject’s hospital tray are a pushbutton for reach offset 
detection and a laptop displaying a red bar indicating pressure exerted on the 
squeeze bulb. (A) In the background, the MPL is at its baseline state (rest posture).  
(B) The subject is executing a grasp movement, and (C) the subject is executing a 
reach movement.  © 2014 IEEE. 

3.3.3  Experimental Procedures 

 Short offline data sets of 30 (Subject 1) or 50 (Subject 2) auditorily cued 
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trials were collected each for forward reaches and grasping movements.  Audio cues 

of "reach" or "grasp" were delivered via external speakers by E-Prime software 

(PST, Inc.; Sharpsburg, PA).  For Subject 2 only, the reach and grasp trials were 

interspersed with "Reach and Grasp" trials, of which there were also 50.  The onset 

of each trial was manually initiated by the experimenter to ensure that the 

preceding reach was completed and an additional varying delay had passed before a 

cue was given.  Behavioral states were detected using analog sensors sampled at 

1000 Hz on the same hardware as the neural data: 1) the onset and offset of each 

reaching movement were detected using a pushbutton embedded in a wooden lap 

desk, 2) the termination of each reach on a distal target was detected using a 

pushbutton, and 3) the onset and offset of each grasp were detected using a 

pneumatic squeeze bulb connected via flexible tubing to an electronic pressure 

sensor.  A detailed schematic of the experimental setup is included in Figure 3.1.  

Reaches by Subject 1 ranged in duration from 1.3 to 1.8 seconds (median = 1.4 

seconds) with response latencies ranging from 330 to 500 ms (median = 410 ms), 

while grasps (i.e., as detected by the squeeze bulb) ranged in duration from 0.6 to 

1.7 seconds (median = 0.9 seconds) with response latencies ranging from 380 to 

930 ms (median = 460 ms).  Reaches by Subject 2 ranged in duration from 1.9 to 4.8 

seconds (median = 1.7 seconds), with response latencies ranging from 450 to 1450 

ms (median = 790 ms), while grasps ranged in duration from 0.8 to 3.5 seconds 

(median = 1.0 seconds) with response latencies ranging from 640 to 2070 ms 

(median = 1010 ms). 
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3.3.4  iEEG Electrode Evaluation 

 Following collection of the reach and grasp datasets, event-related high 

gamma activations were analyzed.  The audio cue played to the subject was split and 

fed into the BlackRock system; the beginning of this cue was detected and used as a 

stimulus onset (SO) marker.  The 1024 ms prior to SO was pooled into baseline 

distributions for each channel, while the 3072 ms following the onset of the audio 

cue was used as a post-stimulus epoch.  The 1024 ms prior to SO and 3072 ms 

following SO were segmented into 128 ms windows with 112 ms overlap.  Each 

window was reduced to a single estimate of the high gamma analytic amplitude in a 

16 ms bin using a Hilbert transform with an embedded, flat-top Gaussian bandpass 

filter with cutoffs of 72 and 110 Hz.  Separate distributions were created for each 

post-stimulus 16 ms time bin and channel and referenced to the channel baseline 

distributions using two-sample t tests with significance threshold p < 0.05.  The 

thresholds for p-value significance of these tests were corrected for multiple 

comparisons within each channel using the false discovery rate (FDR) correction 

(Benjamini and Hochberg, 1995).  Any resulting significant p-values were then log10 

transformed, and any significant modulation was labeled as an increase or a 

decrease.  This resulting matrix of statistical significance measures therefore 

contained timing information about activation that was used to exclude channels 

which displayed modulation in response to the audio cue.  This entire analysis was 

performed with custom MATLAB (MathWorks, Inc.; Natick, MA) software, from 

which the results were available within the experimental session (see Figure 3.1). 
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3.3.5  BMI Model Training 

 For Subject 1, a final training set was recorded in which the verbal 

commands "reach," "grasp," and "reach and grasp" were pseudo-randomly chosen 

and played to the subject via external speakers with E-Prime;  this training set 

contained 46 trials and lasted approximately five minutes.  For Subject 2, the 150 

trials spanning approximately sixteen minutes collected for electrode evaluation 

were used as a training set.  Also for Subject 2, the initially trained model was used 

to drive a virtual version of the MPL as visual feedback during an additional 120 

trials (i.e., 40 each of "reach," "grasp," and "reach and grasp").  The iEEG and 

behavioral data recorded during this block were used as the training set for online 

testing. 

 Signals in each training set were first spatially filtered with a common 

average reference [20] of all channels not excluded by visual inspection because of 

artifact or noise.  Autoregressive power was extracted from the streamed signals 

using the Burg algorithm with model order 16 on a 400 ms window.  The logarithm 

of the spectral power from components between 71.5 and 110 Hz were then 

averaged to yield an estimate of the broadband high gamma power.  In offline data 

collection for model training purposes, feature extraction windows were overlapped 

by 300 ms.   

 In Subject 1, one electrode each was chosen for reach and grasp using 

information from the functional maps of post-stimulus activation.  The high gamma 

log-powers during movement and rest movement were compared to manually 

establish a threshold for movement classification.  In Subject 2, four channels each 



69 
 

were selected as model inputs to separate binary linear discriminant analysis (LDA) 

classifiers for reach and grasp.  In addition, transition probabilities were adjusted 

manually before the testing session to smooth the output from the classifier.  For 

this study, we used a probability of 0.95 for the probability of a rest classification if 

currently at rest (i.e., 0.05 for a movement classification), and 0.8 for the probability 

of a movement classification if currently in the movement state (i.e., 0.2 for a rest 

classification). 

3.3.6  JHU/APL Modular Prosthetic Limb 

 Developed by JHU/APL under the Defense Advanced Research Project 

Agency (DARPA) Revolutionizing Prosthetics Program, the MPL (Figure 1.1) is an 

advanced upper-body extremity prosthetic and human rehabilitation device 

(Johannes et al., 2011).  The MPL has 17 controllable degrees of freedom (DoF) and 

26 articulating DoF in total (Figure 1.1, with specifications in Table 3.1).  To 

facilitate control from neural decoded motion intent, the MPL has a custom software 

interface, VulcanX, that receives movement/motion commands locally and sends 

them over a controller area network (CAN) bus to a limb controller (LC) board in  

the hand of the MPL (Harris et al., 2011).  Three types of high-level control 

commands, passed through VulcanX, are fused together to form individual actuator 

commands by the LC:  1) Degree of Motion Control (DOM) commands, which allow 

each degree of motion to be controlled individually with position and/or velocity 

commands; 2) Endpoint Control (EP) commands, which allow the hand's position 

and orientation to be controlled in Cartesian space using a Jacobian-based algorithm 
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for computing inverse kinematics; and, 3) Reduced Order Control (ROC) commands, 

which allow pre-programmed hand grasp patterns to be actuated in a coordinated 

fashion as a single degree of freedom (Bridges et al., 2011; Fifer et al., 2012).  EP 

velocity and ROC commands were utilized to control reach and grasp, respectively, 

in this study. 

Specification Value Units Specification Value Units 

Articulating DOF 26 N/A 2-jaw pinch force 15 lbf 

Controllable DOF 17 N/A 3-jaw chuck pinch force 25 lbf 

Onboard motor controllers 17 N/A Lateral key pinch force 25 lbf 

Mass of hand and wrist 1.9 lbs Upper arm joint speed 120 deg/s 

Mass of upper arm with battery 7.6 lbs Wrist joint speed 120 deg/s 

Payload capacity (wrist active) 15 lbs Finger joint speed >540 deg/s 

Cylindrical grasp force 70 lbf Communications CAN N/A 

Table 3.1.  Summary of MPL specifications.  © 2014 IEEE. 

 The MPL software and hardware architecture consists of a distributed 

network of processors that include a Neural Fusion Unit (NFU), a Limb Controller 

(LC), 10 Small Motor Controllers (SMC), 4 Large Motor Controllers (LMC), and 3 

Wrist Motor Controllers (WMC).  The NFU is a processor capable of running on-

board neural decoding and sensory stimulation algorithms for generation of limb 

motion commands.  The LC is the main processor of the limb system and is 

responsible for receiving limb control commands, running high-level control 

algorithms, and coordinating the control of the individual motors in the system.  The 

LMC, WMC, and SMC integrated software/hardware systems, which receive real-

time data from temperature, torque, and position sensors located within each joint, 
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are responsible for providing closed-loop position, velocity and torque control of the 

brushless DC motors in the limb system.  In addition to internal polling, these joint 

sensors broadcast information to the user/experimenter along the MPL’s external 

communication CAN bus for data logging and external control processing. 

3.3.7  Online Testing 

 Once the high gamma thresholds for movement were established, 

classification outputs from the trained models of reach and grasp movements were 

simultaneously used to actuate the MPL via the VulcanX interface.  Whenever the 

classifiers predicted that the subject was reaching and/or grasping, the MPL was 

commanded to reach and/or grasp, respectively, at a set rate.  If the either reach or 

grasp classifier predicted that the subject was resting, the limb was commanded to 

return to its rest arm or hand posture, respectively, at an equal rate.  For Subject 2 

only, the return rate for reaching was adjusted to be 50% higher than the forward 

rate.  High gamma log-power calculations were performed in 400 ms windows (i.e., 

as in training) computed as quickly as possible on the streaming iEEG signals to 

provide inputs to the trained model (i.e., 11 ms for Subject 1, slowed to 32 ms for 

Subject 2 purposefully to avoid inundation of the MPL).  Both subjects completed 

three blocks of online trials by performing the same overt movements with their 

native limbs as during the training set.  In Subject 1 only, the second and third 

blocks were separated by a battery of physical and imagined movements that were 

not analyzed as a part of this study. 

3.3.8  Quantitative Evaluation of Control 
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 The physical movement blocks lasted approximately 4, 11, and 13 minutes 

for Subject 1 and 11, 15, and 10 minutes for Subject 2 (respectively).  The MPL 

VulcanX control software created a log of commands sent to the limb with 

timestamps, which was compared offline to the timestamps of salient cues and 

behavioral events recorded by the BlackRock system (e.g., subject leaves the home 

switch, subject grasps the squeeze bulb, etc.).  Trials were designated as starting 500 

ms prior to the earliest of the reach and/or grasp onsets and ending 500 ms prior to 

the onset of the next trial.  For each trial, we recorded the proportion of correct 

commands (e.g., the percentage of ‘grasp’ commands with a positive velocity when a 

physical grasp was performed) in a window of equal length to the corresponding 

physical movement duration for that trial.  To account for variable response 

latencies by the subject and an inconsistent system latency, the start of the window 

relative to the onset of the trial was selected individually for each trial to maximize 

the accuracy.  For reach-and-grasp trials, durations and latencies were selected 

separately for the reach and grasp components.  As a control, a window whose 

length equaled the average duration of the reaches or grasps was used to compute 

the peak reach or grasp command accuracy in grasp-only and reach-only trials, 

respectively.  Accuracy for each trial was computed as the average of the single trial 

sensitivity (i.e., proportion of reach or grasp commands within the selected 

movement window) and the single trial specificity (i.e., proportion of rest 

commands outside of the selected movement window).  The median reach 

command accuracies for reach-only vs. grasp-only and reach-and-grasp vs. grasp-

only and the grasp command accuracies for grasp-only vs. reach-only and grasp-
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only vs. reach-and-grasp were compared using a nonparametric two-sided Wilcoxon 

rank sum test. 

3.4  Results 

 Both subjects were able to attain a high degree of subjective control over 

reaching and grasping with the MPL across the experimental session with no model 

adaptation while moving their native limbs.  Furthermore, both subjects were able 

to achieve a level of performance throughout the experimental session that was 

qualitatively similar to the first block. 

 

Figure 3.3. Average change of power spectral densities (PSD) relative to 
baseline, aligned to movement onset. (A) Reach and grasp electrodes are shown 
for Subject 1, and (B) two representative electrodes are shown for Subject 1. The 
first vertical dashed line in all plots corresponds to the average time the audio cue 
began. For each trial, the baseline was chosen from before the onset of the cue 
(leftmost dashed line).  The solid line denotes movement onset (MO). In reach trials, 
the dashed lines after the solid line correspond to the average time of the reach 
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completion (pressing target button, PT), release of the target button (RT), and 
return to home (resting on the home switch), from left to right. The rightmost 
dashed line in the grasp trials corresponds to the average time of grasp completion. 
The PSD’s were computed via autoregressive spectral analysis. Window size did not 
allow for accurate calculations at 0-7.5Hz, so these frequencies are not displayed. 
 

We investigated the spectrogram of modulation time-locked to salient stimuli 

and behavioral events to validate our choice of the high gamma band for online 

control.  As shown in the functional mapping results (Figure 3.1), the electrodes 

used for control of the MPL exhibited robust high gamma modulation.  Figure 3.3 

shows the time-frequency response of the reaching electrode during reach-only and 

reach-and-grasp trials of the online task, as well as the grasping electrode during 

grasp-only and reach-and-grasp trials.  High gamma modulation in the reaching 

electrode occurred within the frequency range of 80-160 Hz for Subject 1, in 

contrast with the more spectrally restricted 60-120 Hz modulation in the grasping 

electrode.  Subject 2 displayed activation at a lower frequency range, centralized 

around 40-90 Hz. These frequency ranges of power modulation show that while our 

choice of 71.5-110 Hz for control may not have exactly matched the 

neurophysiological response to the task, it did capture a substantial amount of the 

power modulation for both tasks. The temporal envelope of activation was relatively 

restricted in the reaching electrode for both subjects, with mean power modulation 

peaking roughly 200 ms before the onset of movement.  Subject 2 had similarly tight 

timing in grasp-related cortical activation. In contrast, power modulation in the 

grasping electrode of Subject 1 began an average of 300 ms prior to movement 

onset and peaked more than 300 ms after movement onset.  The reach-related high 

gamma power modulation also differed from grasp-related power modulation in the 
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presence of two distinct temporal peaks, time-locked to outward reach and the 

subsequent return to rest.  Figure 3.3 (bottom row) provides verification that 

gamma power modulations in the grasp and reach electrodes were markedly lower 

during execution of reach and grasp, respectively. 

During online control in Subject 1, we observed that control of grasping was 

less reliable for reach-and-grasp trials than grasp-only trials.  Figure 3.3 (middle 

row) shows that high gamma modulation in the reaching and grasping electrodes 

during reach-and-grasp trials was qualitatively reduced relative to reach-only and 

grasp-only trials.  To evaluate this effect, log high gamma power was extracted in 

300 ms around the onset of movement.  Statistical analysis revealed that log power 

in the grasping electrode around the onset of grasp was significantly higher in 

grasp-only than in reach-and-grasp trials (p < 0.05, Wilcoxon test); the log power in 

the reaching electrode around the onset of reach was not significantly different in 

reach-only and reach-and-grasp trials, however.  Identical analyses performed in 

Subject 2 did not reveal any significant differences in movement-related power 

modulation between reach-and-grasp trials and either the reach-only or grasp-only 

trials in any of the electrodes used for control (p > 0.05, Wilcoxon test, Bonferroni-

corrected). 

To evaluate the high gamma power modulation associated with movement 

state in reach-only trials, log power was also extracted in time windows around the 

onset of stable hold and the onset of return, in addition to a baseline window 

preceding the cue.  For Subject 1, log-power in the reach electrode was significantly 

higher in the reach window and return window than in the hold window, all of 
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which were significantly higher in the baseline window (p < 0.05, one-way ANOVA 

with Tukey's honestly significant difference post-hoc).  In all four electrodes used 

for reaching control in Subject 2, median hold activity was lower than median 

reaching and returning activity; the difference was significant in three out of four 

electrodes (p < 0.05, one-way ANOVA, with Tukey's honestly significant difference 

post-hoc).  Reaching, returning, and intermediate hold windows similarly exhibited 

higher levels of high gamma activity than baseline windows in Subject 1. 

Classification accuracy for both reaching and grasping started and remained 

high throughout all three blocks of the online task.  The mean reach classification 

accuracy across all trials was 86% (Subject 1) and 82% (Subject 2) for reach-only 

trials; the reach accuracy across reach-and-grasp trials was 83% (Subject 1) and 

89% (Subject 2).  The mean grasp classification accuracy across all grasp-only trials 

was 81% (Subject 1) and 96% (Subject 2); the grasp accuracy across reach-and-

grasp trials was 55% (Subject 1) and 88% (Subject 2).  The evolution of 

classification accuracies showed no significant effect of block (p > 0.05, one-way 

ANOVA) in either subject.  The trial-by-trial reach and grasp accuracies are depicted 

in Figure 3.4.  Reach accuracies were significantly higher than chance for both 

reach-only trials and reach-and-grasp trials (p < 0.05, Wilcoxon test with Bonferroni 

correction), while grasp accuracies were significantly higher than chance for grasp-

only trials (p < 0.05, Wilcoxon test with Bonferroni correction), but not reach-and-

grasp trials in Subject 1 only (p=0.078, Wilcoxon test).  Grasp accuracies were 

significantly higher in grasp-only trials than in reach-and-grasp trials in both 

subjects (p < 0.05, Wilcoxon test).  Reach accuracies were not significantly higher in 
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reach-only trials than in reach-and-grasp trials for Subject 1 (p > 0.05, Wilcoxon 

test), although reach accuracies were higher in reach-and-grasp trials than in reach-

only trials for Subject 2 (p > 0.05, Wilcoxon test).  

 

 

Figure 3.4.  Limb performance accuracy metrics. (A, B) The accuracies are shown 
for reaching and grasping during trials where reach and grasp were executed 
simultaneously. (C, D) The reach and grasp accuracies are shown for reach and 
grasp only trials, respectively. The vertical dashed lines in A-D denote separate 
blocks.  Distributions are shown and summarized with boxplots of the peak 
sensitivities for grasps in Subject 1 (E), reaches in Subject 1 (F), grasps in Subject 2 
(G), and reaches in Subject 2 (H).  Each distribution is comprised of the peak 
sensitivities from each trial.  Bars above the boxplots with asterisks mark 
distributions with significantly different medians (p < 0.05, Wilcoxon test). 
 

To investigate whether reaching and grasping were indeed independent, 

sham sensitivities were calculated as a control; reach sensitivities were calculated 
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during grasp-only trials and grasp sensitivities were calculated during reach-only 

trials (Figure 3.4).  Since no physical reaches took place in grasp-only trials, nor 

physical grasps during reach-only trials, the average reach and grasp durations 

were used as surrogates.  Peak reach sensitivities were significantly higher in cued 

reach-only and reach-and-grasp trials than in cued grasp-only trials for both 

Subjects (p < 0.05, Wilcoxon test); reach sensitivities were significantly higher in 

reach-only trials than in reach-and-grasp trials for Subject 2 (p < 0.05, Wilcoxon 

test) but the difference was not significant in Subject 1 (p = 0.16, Wilcoxon test).  

Peak grasp sensitivities were higher in cued grasp-only and reach-and-grasp trials 

than in cued reach-only trials for both subjects (p < 0.05, Wilcoxon test); grasp 

sensitivities were significantly higher in grasp-only trials than in reach-and-grasp 

trials for Subject 1 (p < 0.05, Wilcoxon test) but the difference was not significant in 

Subject 2 (p = 0.15, Wilcoxon test). 

3.5  Discussion 

We were able to provide two human subjects with control of the MPL using a 

control scheme that exploited individual functional anatomy, i.e., the population 

responses in cortical regions used for control of each subject's native arm.  This 

allowed our subjects to achieve control without extensive training. To identify iEEG 

control sites and characterize their response selectivity, we used iEEG functional 

mapping during reaching and grasping.  By using electrodes over cortical areas that 

were differentially activated during reaching and/or grasping, we were able to 

afford the patient independent control over the reaching and grasping 
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functionalities of the MPL arm.  We showed that these two movements, when 

executed individually, elicited cortical responses in the gamma band that 

generalized to their simultaneous execution, although the same responses occurred 

with a reduced magnitude. 

Additionally, the subject’s control over the arm did not wane over the course 

of three separate blocks using thresholds derived from a short training block.  

Models were equally effective across blocks with no adaptation or re-training, 

providing evidence that control was achieved by accurately detecting the 

naturalistic circuits for reaching and grasping, not via adaptation or operant 

conditioning.  Reach and grasp commands were controlled independently, 

suggesting functional segregation of these movements at the spatial scale of 

clinically routine iEEG electrodes.  There is abundant evidence from experiments in 

non-human primates that reaching and grasping engage different networks of 

cortical areas (Rizzolatti et al., 1998).  As in non-human primates, human premotor 

cortices engaged by reaching are likely dorsal to those engaged by grasping (Filimon, 

2010).  As expected, the iEEG site activated by and used for control of reaching was 

dorsal to the site activated by and used for control of grasping.   

Our BMI used event-related high gamma power augmentation as an index of 

task-related neural activity during physical movements.  This choice was based on a 

body of literature which demonstrates that high gamma band modulation is an 

index of cortical processing in humans (Crone et al., 2001b, 1998; Miller et al., 

2007b; Ray et al., 2008b) and recent experimental evidence that high gamma power 

changes are strongly and positively correlated with the firing rates of neuronal 
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populations in close proximity to recording electrodes (Liu and Newsome, 2006; 

Manning et al., 2009; Ray et al., 2008a; Ray and Maunsell, 2011).  Our findings are 

consistent with empirical evidence that compared with power changes in other 

frequencies, high gamma power augmentation has high spatial selectivity with 

respect to task-related cortical activation, such that adjacent iEEG electrodes can 

yield signals with greater independence at higher frequencies (Flinker et al., 2010a; 

Lachaux et al., 2012).  High gamma responses are also robust enough to be detected 

in single trials (Flinker et al., 2010b), a necessary requirement for BMI applications.  

Furthermore, several studies have shown that high gamma features extracted from 

human iEEG outperform corresponding lower frequency features for offline motor 

decoding (Kubanek et al., 2009; Pistohl et al., 2013) and online BMI control (Schalk 

et al., 2008b; Yanagisawa et al., 2012, 2011). 

This study focused on the control of reach and grasp in the MPL since they 

are fundamental to upper limb use, which provides a proof of concept for the 

systems-level integration groundwork necessary for more complicated and 

dexterous tasks.  Reaching and grasping movements were decoded for actuation of 

the MPL with high accuracy and stability; furthermore, this was achieved in a 

clinical epilepsy monitoring setting under time constraints that did not allow for 

long-term training or testing.  Although this prohibited testing the long-term 

stability of MPL control, it did demonstrate the feasibility of obtaining MPL control 

within a compressed timeframe, which could have important clinical benefits.  

Specifically, it would be highly advantageous to demonstrate acceptable brain 

control of a neuroprosthetic at the time of surgical implantation in order to verify 
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the placement of electrodes and troubleshoot any technical difficulties at the time of 

the operation.  Non-invasive methods of functional mapping (e.g., fMRI) can be used 

to perform gross surgical planning, but intraoperative verification of control with 

iEEG would be extremely useful to refine the final implantation site.  This would 

help to avoid the need for re-implantation because the patient is unable to control 

the neuroprosthetic.  This would be both costly and increase surgical risk.  Although 

the total time for our experiment was longer than that of an awake craniotomy, 

most of this time was due to experimental setup and troubleshooting, and thus 

could be reduced with additional practice. 

We observed during online testing with the subject that it was fairly common 

for the MPL to exhibit a secondary reach or grasp as the subject returned to the 

resting position.  This corresponded to a burst of high gamma activity as the subject 

initiated return of his limb to the home switch or as the subject relaxed his hand 

after squeezing the bulb. This was best demonstrated in the reaching trials by post-

hoc offline analysis of the high gamma power in windows associated with reaching 

to, holding at, and returning from the distal reach target, which demonstrated a 

higher degree of modulation for reaching and returning than for the intermediate 

holding in the reaching electrode for Subject 1 and for a subset of the reaching 

electrodes in Subject 1.   

This report provides additional evidence for the potential utility of iEEG as a 

source of control signals for BMIs.  Although the participants in this study did not 

suffer from upper limb paralysis, we believe that the technique of rapid trial-

averaged spatiotemporal mapping of high gamma modulation can be used to 
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identify sites that are activated when subjects with motor impairments attempt to 

perform movements.  These patients often have residual motor function and could 

attempt to move with assistance, be moved passively, or observe upper limb 

movements in a trial-based framework.  

A large amount of decoding and BMI success has been achieved using 

command signals derived from iEEG (Leuthardt et al., 2004; Schalk et al., 2008b; 

Wang et al., 2013; Yanagisawa et al., 2012, 2011).  Although iEEG macroelectrodes 

(Leuthardt et al., 2004; Schalk et al., 2008b), iEEG microelectrodes (Chao et al., 

2010), and multi-electrode arrays (Collinger et al., 2013; Hochberg et al., 2012) have 

all been used to demonstrate effective BMI control in small populations, no large-

scale longitudinal studies have compared the tissue response and control 

performance between these classes of implants.  Much previous work has illustrated 

a significant redundancy of motor encoding at the single neuron level (Narayanan et 

al., 2005), suggesting that population activity could be useful for prosthetic control.  

Nevertheless, there is evidence from studies in motor, perceptual, and cognitive 

systems that the richness of encoding increases with improvements in spatial 

resolution (i.e., iEEG macroelectrodes exhibit coarser encoding than iEEG 

microelectrodes, and iEEG microelectrodes exhibit coarser encoding than local field 

potentials from multi-electrode arrays) (Slutzky et al., 2010).  It is possible that as 

the spatial resolution of iEEG implants improves and more comparative studies are 

done between iEEG and multi-electrode arrays, that iEEG implants for BMI control 

will be an attractive option for some patients (Thongpang et al., 2011; Viventi et al., 

2011).  In the meantime, iEEG recordings in patients undergoing epilepsy surgery 
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will continue to serve as a platform for demonstrating the degree of useful control 

that can be achieved without extensive training, prior to chronic implantation of 

iEEG electrodes for BMIs. 
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Chapter 4 

Overlapping Spatiotemporal Representations 
of Finger Vibrations in the Postcentral Gyrus at 
3 mm Scale in a Human Subject 
 
4.1  Abstract 

The somatosensory representations of individual fingers in the postcentral 

gyrus are arranged somatotopically, extending superiorly from first to fifth digit.  

Finger areas have been shown to overlap in functional magnetic resonance imaging 

(fMRI) studies, but not in electrocorticographic (ECoG) recordings of neuronal 

populations.  Addressing this question has been impossible using traditional ECoG 

grids due to insufficient spatial resolution.  Here we present the results of a fingertip 

vibration study with a human subject implanted with a high-density ECoG (hdECoG) 

grid with 3mm center-to-center spacing on the surface of the postcentral gyrus in 

putative finger areas.  Spectral and amplitude features exhibited significant task-

related changes, including the existence of event-related potentials (ERPs), power 

increases in the high gamma band (70-120 Hz), and power decreases in theta (4-8 

Hz), mu (8-12 Hz), and beta bands (14-30 Hz) .  The high gamma band exhibited the 

most somatotopically organized, yet still overlapping, responses to vibrational 

stimuli.  Despite a clear somatotopic gradient from first (inferiorly) to fifth digits 

(superiorly), over 62% (28 of 45) of sites with task-related high gamma increases 

exhibited significant responses to multiple fingers.   High gamma increases showed 
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the lowest spatial correlation across fingers, with an average Pearson’s correlation 

coefficient (r) of 0.19 between the finger responses, compared to spatial 

correlations of 0.64-0.69 for low frequency decreases.  Within the high gamma 

responses, the thumb appeared to be the most independent, with the lowest average 

spatial correlation to the other finger representations (r = 0.01, compared to 

averages of 0.23, 0.34, 0.28, and 0.10 for index, middle, ring, and little fingers).  

Vibrotactile stimuli lasted 500 ms; the high gamma responses peaked approximately 

170-210 ms after stimulus onset, and decreased steadily until 200-400 ms after 

stimulus offset.  ERPs peaked 90-220 ms after stimulus onset and 130-320 ms after 

stimulus offset.  High gamma responses exhibited clear finger selectivity in single 

trials, with finger classification accuracies peaking at 98.8% when smoothing over 

windows with centers spanning 240 ms, centered 220 ms after stimulus onset.    

Additionally, movement-related somatosensory responses generally exhibited 

larger magnitude yet less finger-specific activation than vibration responses.  This 

study provides evidence that finger representations, particularly in the high gamma 

band, are somatotopically organized yet overlap at 3 mm scale.  

4.2  Introduction 

Nearly eight decades ago, Penfield and Boldrey localized finger sensations to 

the postcentral gyrus between representations of the face (inferiorly) and the whole 

hand (superiorly), and noted a consistent ordering--from inferior to superior--of 

thumb, index finger, middle finger, ring finger, and little finger (Penfield and 

Boldrey, 1937). Recordings from nonhuman primates revealed the granularity of 
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the finger representation in primary somatosensory cortex (S1), describing four 

parallel yet distinct representations on the postcentral gyrus (Kaas et al., 1979; 

Powell and Mountcastle, 1959).  Individual neurons in these representations 

respond preferentially to either cutaneous or muscular/joint stimuli, with the 

proportions of each type varying across the four sub-areas (Kaas et al., 1979; Powell 

and Mountcastle, 1959).  In particular, neurons in Brodmann’s areas (BA) 3b and 1 

have been observed to respond robustly to cutaneous stimulation (Kaas et al., 

1979). 

Functional magnetic resonance imaging (fMRI) studies have shed light on the 

relative size and overlap of finger representations on the human postcentral gyrus.  

Many studies have observed overlapping finger sensory representations with 

distinct centers (Maldjian et al., 1999; Martuzzi et al., 2014; Nelson and Chen, 2008; 

Schweizer et al., 2008; van Westen et al., 2004). Several studies have also confirmed 

the existence of multiple parallel finger representations within the human 

postcentral gyrus, likely corresponding to BA 3a, 3b, 1, and 2 (Hluštík et al., 2001; 

Martuzzi et al., 2014; Nelson and Chen, 2008).  Although fMRI permits simultaneous 

sampling of voxels spanning the postcentral gyrus, its limited signal-to-noise ratio 

and temporal resolution makes it difficult to ascertain the cortical dynamics of 

tactile stimulation of the fingertips or observe single trial responses.  Furthermore, 

most fMRI studies of finger representation have been performed at 3T (Nelson and 

Chen, 2008; Schweizer et al., 2008; van Westen et al., 2004), or 4T (Maldjian et al., 

1999) and have presented findings aggregated across multiple subjects, blurring the 

relative spatial relationships of individual finger representations (Maldjian et al., 
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1999; Nelson and Chen, 2008; Schweizer et al., 2008; van Westen et al., 2004).  

Although a recent 7T study has provided a glimpse into finger responses within 

single subjects (Martuzzi et al., 2014), the apparent overlap between digit responses 

has not been demonstrated in electrophysiological recordings.   Since BA1 responds 

robustly to cutaneous stimulation and has been shown in cytoarchitectural studies 

to usually reside on the crown of the postcentral gyrus (Geyer et al., 2000, 1999)--

with infrequent encroachment by BA2 (Grefkes et al., 2001)—it is a prime candidate 

for electrophysiological mapping of vibrotactile representations on the cortical 

surface.   

Electrocorticography (ECoG) offers an intermediate point in the 

spatiotemporal sampling tradeoff inherent in all existing human functional mapping 

techniques. It has much greater temporal resolution than fMRI and much wider 

sampling than single or multi-unit studies with microelectrodes.  ECoG signals are 

composed of a variety of components that may reflect different neural elements and 

neurophysiological processes.  Event-related potentials (ERPs), capture phase-

locked changes in overall signal amplitude thought to reflect ascending inputs from 

the thalamus (Pfurtscheller and Lopes da Silva, 1999a).  ERPs from ECoG have 

previously been used to demonstrate somatotopic representation of finger 

sensation in humans (Sutherling et al., 1992; Woolsey et al., 1979) and as a common 

methodology confirming the similarity of human and nonhuman primate finger 

representations (Shoham and Grinvald, 2001; Woolsey et al., 1979, 1942).  In 

addition to ERPs, event-related spectral modulation in the alpha/mu (8-12 Hz), beta 

(14-30 Hz) and high gamma (70+ Hz) bands has been demonstrated across sensory 
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modalities (Crone et al., 2001a; Jacobs and Kahana, 2009; Meshulam et al., 2013; 

Pasley et al., 2012) and in sensorimotor cortex during arm (Anderson et al., 2012; 

Tonio Ball et al., 2009; Pistohl et al., 2008), hand (Acharya et al., 2010; Chestek et al., 

2013; Pistohl et al., 2012; Yanagisawa et al., 2011), and finger movements (Kubanek 

et al., 2009; Miller et al., 2009; Siero et al., 2014).  Task-related increases in high 

gamma signal power in particular have been shown to have extremely high spatial 

and temporal resolution relative to lower frequency phenomena (Crone et al., 1998; 

Jerbi et al., 2009), and have been shown to correlate well with population firing 

rates (Manning et al., 2009; Ray et al., 2008a) and fMRI BOLD (Genetti et al., 2014; 

Khursheed et al., 2011; Lachaux et al., 2007a; Siero et al., 2014). 

The spacing between finger representations on the surface of the human 

postcentral gyrus, is on the order of 1-5 mm (Martuzzi et al., 2014), which makes it 

impossible to adequately sample them with traditional clinical ECoG grids (1 cm 

center-to-center spacing).  Occasionally, however, a patient’s seizure semiology will 

involve language or motor symptoms and make him or her a candidate for 

implantation of a high-density ECoG (hdECoG) grid.  While hdECoG implantations 

occur infrequently, the high spatial and temporal resolution coupled with a high 

signal-to-noise ratio make this modality particularly valuable for probing cortical 

representations of sensation or behavior.  To date, hdECoG implants have been used 

primarily to study articulatory (Bouchard and Chang, 2014) and auditory 

(Mesgarani et al., 2014; Mesgarani and Chang, 2012) cortical representations.  We 

present evidence, in a single subject with a 3 mm spaced hdECoG grid, for 
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somatotopically ordered yet overlapping finger representations in postcentral gyrus 

at the spatial scale of neuronal populations. 

4.3  Methods 

4.3.1  Subject Info and Neural Signal Acquisition 

The subject was a 20-year old right-handed male implanted with an 8x16 

hdECoG electrode grid (Adtech; Racine, WI; 1mm diameter, 3 mm center-to-center 

spacing) over left sensorimotor cortex for mapping the seizure focus and eloquent 

cortex prior to epilepsy resection surgery.  Placement of the high-density grid was 

determined based on the semiology of the patient’s seizures, which consistently 

began with tingling in the right forearm and spread proximally to the rest of the 

right upper arm.  A previous resection had been performed eleven years prior, 

removing a medial portion of the left frontal lobe, without long-term reduction in 

seizure frequency or change in semiology.  In addition to the high-density grid, 

depth electrodes were implanted in the inferior frontal and parietal lobes and 

standard clinical macroelectrode strips were placed in the parietal cortex; signals 

from these electrodes were not analyzed as a part of this study.  The hdECoG signals 

were recorded at 1 kHz by a NeuroPort system (BlackRock Microsystems; Salt Lake 

City, UT).  Signals were initially sampled at 30 kHz with an analog bandpass filter 

with cutoffs of 0.3 Hz and 7.5 kHz, then downsampled.  Artifactual channels were 

visually identified and excluded from any subsequent analyses.  Referencing was 

done post-hoc with a common average reference.  Anatomical reconstruction of the 

hdECoG grid placement relative to the subject’s neuroanatomy was performed using 
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BioImage Suite (Duncan et al., 2004).  A preoperative MRI depicting clear structural 

anatomy was volumetrically co-registered with a postoperative CT containing the 

electrodes.  As a final step, the reconstruction was checked against intraoperative 

photos from the implantation and explantation of the high density grid.  The 

electrode locations on a two-dimensional snapshot of the reconstruction were 

manually adjusted relative to the underlying cortex via rotation, scaling, and 

translation of the grid in the GNU Image Manipulation Program (GIMP) to optimize 

the alignment between the grid and prominent gyral and sulcal landmarks present 

in both the 3D reconstruction and the intraoperative photos.  The subject gave 

informed consent for research testing, which was done in accordance with a 

protocol approved by the Institutional Review Board of the Johns Hopkins Medical 

Institutions. 

4.3.2  Experimental Tasks 

Vibrational motors (14mm, 3V coin motors) were taped to the subject’s 

fingertips, wrist (over the ulnar head), elbow, and shoulder. The subject rested his 

hand over an armrest with their fingers unsupported and pointed down. He 

watched a sporting event on television throughout the experiment. Gauze was 

placed between the fingers to prevent vibrations from spreading to neighboring 

fingers. The motors were vibrated one at a time in a pseudorandom order for 0.5 

seconds per trial. There was an intertrial interval of 1.5 seconds between vibrations 

to allow for the cortical signals to recover and a baseline to be captured. The motors 

were controlled by an Arduino Duemilanove with two Adafruit motor v2.3 shields 
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powered by a 9V battery. We conducted two consecutive blocks of 200 trials, 

resulting in each motor being vibrated 50 times.  Only vibrations of the fingertips 

were analyzed in this study. The vibration frequency of the motors was 

approximately 150 Hz. Each trial began with a pulse being sent by the Arduino to 

the analog input of the Blackrock Neuroport system for data alignment.  

To compare digit representations for passive vibration to those for 

movement-related sensory feedback, a subsequent session was performed in which 

the patient was visually cued to move individual fingers.  The subject wore a 

CyberGlove (CyberGlove Systems; San Jose, CA) to track the kinematics of their 

finger movements.  The subject was instructed to tap each finger repeatedly on 

appearance of the corresponding visual stimulus.  The session consisted of 25 

movements by each finger.  The period of peak flexion (i.e., of the first finger 

movement in the series) in each trial was used as an alignment point for subsequent 

neural feature extraction to highlight the period of maximal sensory feedback. 

4.3.3  Event-Related Potential and Spectral Estimation 

Prior to ERP estimation, hdECoG signals were forwards-backwards filtered 

with a 150-order finite impulse response (FIR) highpass filter with a cutoff 

frequency of 1 Hz.  Signal amplitudes were then baseline-normalized so that the pre-

stimulus (i.e., baseline) period of had zero mean and unit standard deviation. 

Event-related spectral modulation was also estimated in theta (4-8 Hz), mu 

(8-12 Hz), beta (14-30 Hz), and high gamma (70-120 Hz) bands.  Spectral extraction 

was done separately for each band using a two-step process to limit leakage 
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between neighboring frequency bands.  Raw signals were first bandpass filtered 

forwards and backwards with an FIR filter, and then the spectral power in 

overlapping windows was estimated using the Chronux toolbox (Bokil et al., 2010; 

“Chronux,” 2015).  The filter order was 300 for theta, mu, and beta bands and 150 

for the high gamma band; cutoff frequencies are the bounds of the ranges listed 

above.  Once filtered, the spectral power was estimated in overlapping windows of 

128 ms (high gamma), 256 ms (beta), or 512 ms (mu and theta); in all bands, 

consecutive windows were offset by 16 ms.  A multitaper method was used to 

extract spectral power, using 5 tapers and a time-bandwidth product of 3 to extract 

high gamma power; one taper and a time-bandwidth product of 1 were used for the 

lower frequencies. 

Smoothed amplitudes and spectral powers were then baseline-normalized so 

that the pre-stimulus (i.e., baseline) period of each trial had zero mean and unit 

standard deviation.  Trial-averaged spectrograms for single channels were 

generated using the high gamma multitaper approach described above, without any 

pre-filtering, so that modulation in all frequencies could be observed simultaneously. 

Smoothed amplitudes and spectral estimates were statistically compared to 

the baseline period for significance using a t test.  One window was selected from 

each baseline period so that the variance estimate of the null distribution would not 

be distorted by correlated, nearby time windows.  Time windows after stimulus 

onset were then compared to the baseline distribution of the corresponding 

channel.  Two-sided p-values were thresholded for significance using the false 
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discovery rate (FDR) correction with q = 0.05 for multiple comparison across 

channels and times. 

4.3.4  Finger Classification Analyses 

A linear discriminant analysis (LDA) was run to classify which finger was 

stimulated in each trial.  This analysis serves not only as an aggregate measure of 

digit representation separability (i.e., the degree of somatotopy), but also the timing 

of this somatotopy.  For each feature type—smoothed amplitude and theta, mu, beta, 

and high gamma power—an LDA classifier was trained for time windows with 

consistent timing relative to the onset of the vibrational stimulus.  Inputs to these 

classifiers were smoothed with varying kernel widths to assess not only the timing 

of peak classification accuracy, but also the duration of time over which this 

information was present in the neural features.  Classifiers were trained and tested 

under tenfold cross-validation, in which 90% of the trials were used to select 

channels model inputs and train a classifier to be evaluated on the remaining 10% 

of the trials.  Individual channels were selected as model inputs if they were able to 

classify finger stimuli in the training set above chance level.  Chance level in this 

context was defined as the number of trials correctly classified assuming random 

classifications (i.e., 20% for five fingers).  To reduce the chance of including channels 

whose performance was only spuriously above chance, the threshold accuracy for 

model inclusion was set as the 95% value of the binomial cumulative distribution 

function for N=225 trials (i.e., the size of the training set) and p=0.2. 
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Figure 4.1. hdECoG Grid Coverage and spatial map of high gamma responses.  
(left) An oblique lateral view of the patient’s three-dimensional MRI reconstruction 
is shown.  The red arrow points to the postcentral analogue of the primary motor 
cortex hand knob for reference.  The red outline depicts the postcentral grid snippet 
used in Figures 4.3 and 4.7.  The yellow outline surrounds the seven electrodes 
whose single trial responses are plotted in Figure 4.5.   (right) A zoomed-in view of 
the hdECoG grid and underlying cortex is used as a background for plotting finger 
responses, or statistically significant (p < 0.05, FDR-corrected) increases in high 
gamma power relative to baseline, time-locked to 0.19 seconds after vibration onset.  
This time was chosen as it contained the largest magnitude aggregate increase 
across the hdECoG grid.  The diameter of each circle is proportional to the z-scored 
measure of high gamma power increase, and the color represents the finger being 
stimulated in accordance with the key in the bottom right.  Electrodes excluded 
from analysis are blackened.  The fingers with the largest response at a given 
electrode are plotted first, and therefore are partially occluded when multiple 
fingers elicited a high gamma response in that electrode. 

4.4  Results 
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4.4.1  Somatotopy of Spectral Features and Event-Related 

Potentials 

Ordered but overlapping finger representations were observed from the high 

gamma activations across the hdECoG grid (see Figure 4.1).  A clear gradient was 

apparent from the thumb representation (inferiorly) to the pinky representation 

(superiorly).  Despite this ordering, finger representations in the high gamma band 

were not totally distinct from one another.  Of the 124 sites in the hdECoG grid, 45 

showed significantly increased high gamma power relative to baseline during at 

least one finger stimulation, and a majority (28 of 45, or 62.2%) of those sites were 

significantly activated for multiple fingers. 

Among the high gamma responses, the thumb-specific representation 

appeared to be the most independent.  The average Pearson’s correlation coefficient, 

r, between thresholded high gamma power across the grid was 0.01 between thumb 

and the other four fingers. For comparison, the average correlation between index, 

middle, ring, and little fingers and all other fingers was 0.23, 0.34, 0.28, and 0.10, 

respectively.  The little finger correlation with other fingers was low as well, though 

this was attributable to the low number of sites with significant activation during 

pinky stimulation.  Other than the poor sampling of the little finger representation, a 

comparable number of sites exhibited significant high gamma activation for each 

finger—22 sites exhibited thumb activation, 20 exhibited index finger activation, 21 

exhibited middle finger activation, and 20 exhibited ring finger activation. 
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Despite the clear somatotopy evident in the high gamma finger 

representations, lower frequency features did not exhibit the same degree of finger 

specificity in the high density grid (see Figure 4.2).  Many more sites exhibited task-

related changes in low frequency power; of the 124 sites in the grid, 91 exhibited 

significantly reduced theta power, 81 had reduced mu power, and 82 had reduced 

beta power. Of sites with significant low frequency power decreases, a higher 

portion (i.e., than high gamma) exhibited responses to multiple fingers, including 

64.8% for the theta band, 79.0% for the mu band, and 70.7% for the beta band.  The 

average correlations between different finger representations were 0.64, 0.67, and 

0.69 for theta, mu, and beta bands, respectively, compared to 0.21 for the high 

gamma band. 

We further wanted to test whether the finger representations in these 

different bands were merely centered in the same locations with different widths, or 

if the representation centers themselves differed between each band.  To test this, 

we computed the centers of mass of each finger representation for each frequency 

feature.  We plotted the centers of mass and the electrodes with peak activation (see 

Figure 4.3).  As expected, both the centers of mass and peak electrodes show a clear 

inferior-to-superior ordering from thumb to pinky for the high gamma responses.  

This pattern is not replicated with high fidelity in lower frequency features.  Of more 

interest than the tighter spacing, however, is the generally weak or nonexistent 

somatotopic ordering in the centers of mass and the peak electrodes of the low 

frequency representations.  The mu band appears to exhibit separate thumb and 

little finger representations with confused ordering in between. The representation 
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peaks in the beta band exhibit some somatotopy that is not replicated in the centers 

of mass. 

The somatotopy of event-related potentials (ERPs) for each finger was also 

analyzed (see Figure 4.3).  The representation centers and peaks for the ERPs 

showed a stronger similarity to the high gamma representation than did the low 

frequency features.  Though the centers of mass show a tighter clustering, they 

exhibit a rough inferior-to-superior digit ordering, albeit with slight confusion 

between middle and ring fingers.  Among the representation peaks, four of the five 

ERP peaks are within one electrode of their corresponding high gamma peaks.  This 

suggests that finger representations in ERPs and high gamma responses share 

similar centers, with differing extents of representation overlap.  Indeed, the 

average spatial correlation across fingers is 0.25 for event-related potentials, both 

higher than high gamma (0.19), and much lower than for low frequencies (0.64-

0.69). 

 

Figure 4.2.  Spatial map of event-related potential amplitude and low 
frequency responses.  These maps depict the z-scored absolute value of significant 
changes in amplitude (ERPs, left) or the strength of the decrease in low frequency 
power (three rightmost maps).  The diameter of each circle is proportional to the z-
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scored measure of amplitude change or power decrease, and the color represents 
the finger being stimulated in accordance with the key in the bottom right.  
Electrodes excluded from analysis are blackened.  The circle diameters are on the 
same relative scale as the high gamma plot in Figure 4.1.  Since the timing of event-
related potentials varies greatly by channel, the peak amplitude change was used to 
determine circle diameters; low frequency maps were created for the time periods 
with the largest aggregate magnitude decrease across the entire grid.  

 

Figure 4.3. Finger Representation Somatotopy.  (top row) The centers of mass, in 
two-dimensional electrode coordinate space, are plotted on the top right corner of 
the hdECoG grid for each feature type.  Numbers 1 through 5 designate the first digit 
(thumb) through the fifth digit (pinky).  (bottom row) The electrodes with the 
strongest response for a given finger for each feature type is plotted on the 
corresponding brain snippet.  The placement of the postcentral snippet within the 
context of the larger hdECoG grid is depicted in Figure 4.1. 

4.4.2  Timing of Activation 

To ascertain the temporal representation of the vibration stimuli, we 

averaged the dynamic high gamma responses for each stimulation site across all 

electrodes with any time window of significant (p < 0.05, FDR-corrected for multiple 

comparisons across channel and time windows) power increase (see Figure 4.4).  
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These traces exhibited early peaks with subsequent attenuation in response 

magnitude.  Peak activation ranged from approximately 170 ms (thumb and index 

finger) to 200 ms (middle and little fingers), with no clear somatotopic ordering to 

the differentially timed peaks between the finger stimulations.  Aggregate activation 

for index, middle, and ring fingers returned to nearly baseline levels by 

approximately 200 ms after the cessation of stimulation, though pinky and thumb 

responses do not appear to fully return to baseline until approximately 400 ms post 

offset. 

Event-related decreases in low-frequency power peaked later in the trial, 

ranging across fingers from 450-570 ms (theta), 450-570 ms (mu), and 320-450 ms 

(beta).  Averages of the event-related potential magnitudes revealed a much more 

complex pattern of timing with many minor peaks.  Furthermore, distinct 

deflections were apparent corresponding to the onset and offset of vibrational 

stimuli.  Onset peaks, defined heuristically as the maximum average magnitude 

during the stimulation period, ranged from 90-220 ms.  Peak magnitudes after 

vibration offset ranged from 130-320 ms post-offset (i.e., 630-820 ms post-onset). 
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Figure 4.4.  Temporal profiles of spectral and amplitude representations of 
finger vibrations.  (A) The high gamma traces for all electrodes with any significant 
activation in any post-stimulus time window (p < 0.05, FDR-corrected) is averaged 
separately for each finger response. (B) The average magnitudes of all significant 
amplitude responses for each finger is shown. (C-E) The averages of all sites with 
significant task-related low frequency decreases are shown for theta, mu, and beta 
bands.   Colored dots correspond to: (A) the largest increase, or (C-E) the largest 
decrease for a given averaged finger response.  In (B), solid dots correspond to the 
peak magnitude during stimulation, while empty dots denote peak magnitude after 
stimulation offset. Legends in each plot detail how many sites were used to compose 
each averaged finger response. 
 

4.4.3  Single Trial Responses 

Finger vibrations elicited robust single-trial high gamma responses which 

were highly specific to which finger was stimulated.  Figure 4.5 (top) shows single 

trial rasters of the high gamma responses, sorted by stimulation site, for seven 

adjacent electrodes.  A clear progression is observable from superior to inferior 

electrodes, with selectivity shifting from ring finger to middle finger (by the third 

electrode) to thumb by the most inferior electrode.  Similar patterns were 
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observable in each of the four columns of the high-density grid with substantial 

coverage of the postcentral gyrus.  Low frequency features exhibited robust single-

trial responses, though the selectivity of these responses was much lower. Figure 4.5 

(bottom) shows beta responses, as a representative low frequency feature, for the 

same seven electrodes as the high gamma responses in Figure 4.5 (top).  Responses 

are evident (and significant) for all five fingers in the two most superior electrodes, 

and for all fingers except pinky in the remaining five electrodes.  Thumb activation 

shifts from least active in the most superior electrode to most active in the most 

inferior electrode. 

 

Figure 4.5. Single trial high gamma and beta responses for six adjacent 
electrodes.  High gamma (top) and beta (bottom) responses are shown for the 
same six adjacent electrodes, arranged along the inferior-superior axis of the grid 
(depicted in Figure 4.1).  Responses from the most superior electrode, from the top 
row of the grid, are depicted in the leftmost sub-plot.  Each row within each sub-plot 
is a trial, and the horizontal axis represents time after the onset of the stimulus.  
Trials have been reordered so that all thumb trials appear together, followed by all 
index finger trials, etc., and the transitions between finger types are marked with 
black lines. 
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We observed an attenuation in the high gamma responses between early (i.e., 

first third) and late (i.e., last third) trials.  This attenuation was observable in a 

majority of sites with significant post-stimulus activation (51 of 82, 62.2%).  The 

degree of attenuation, averaged across significantly attenuated sites, for late trials 

ranged from approximately 29% (ring finger) to 41% (thumb) relative to peak 

activation for early trials.  These values were obtained by fitting a linear regression 

model with no constant term to the relationship between the averaged early and 

late trials high gamma responses.  Repetition effects were also observed in low-

frequency features, with 95.0%, 91.2%, and 83.3% of significantly activated 

channels in theta, mu, and beta channels exhibiting significant response adaptation.  

Smoothed amplitude responses also exhibited significant repetition effects (in 

93.3% of significantly activated sites), though no consistent pattern was evident in 

whether those effects constituted a net amplification or attenuation of the resulting 

ERP.  A separate regression analysis revealed no significant effect of the latency of 

finger-specific repetition in the smoothed amplitude or any of the frequency bands 

(p > 0.05, FDR-corrected for multiple comparisons) when also accounting for the 

overall trial number.  That is, no finger-specific repetition effects were observed, but 

rather a global adaptation to the overall task. 

4.4.4  Temporally-Restricted Decoding Analyses 

As a way to validate the robustness of the single trial responses and pinpoint 

the timing of peak finger somatotopy across the whole high-density grid, we 

performed a single-trial classification analysis in windows with fixed timing relative 
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to the onset of stimulation across trials.  We also varied the degree of smoothing to 

approximate the longevity of these representations in the grid.  We performed 

classification analysis on data that was smoothed (within trials) with window 

centers spanning 16 ms (i.e., no smoothing for spectral features, 16 ms smoothing 

for amplitude features), 112 ms, and 240 ms.  Across all smoothing widths, high 

gamma features outperformed all other feature types, with peak accuracies ranging 

from 96.0% at 240 ms post-stimulus onset without smoothing to 98.8% (at 220 ms 

post-stimulus onset) with a smoothing width of 240 ms.  Low frequency models 

performed much more poorly, peaking at roughly 50% accuracy with no smoothing 

and up to 60% with a smoothing width of 240 ms.  Smoothed amplitude models 

exhibited two peaks in classification accuracy corresponding to stimulation onset 

and offset, consistent with the temporal profile of ERPs shown above.  Within these 

peaks, smoothed amplitude models consistently outperformed the low frequency 

models.    At higher smoothing widths, the offset period provided slightly better 

decoding than the onset peak.  Smoothed amplitude model accuracies peaked at 

83.2% (at onset peak, 220 ms) and 96.4% (at offset peak, 680 ms), respectively, for 

smoothing widths of 16 ms and 336 ms, respectively.    For high gamma models, no 

secondary peak in classification was observed time-locked to the offset of vibratory 

stimulation, and thus smoothed amplitude models far outperformed high gamma 

models (and low frequency models) in the period following the cessation of the 

stimulation. 
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Figure 4.6.  Time-restricted classification accuracy across feature types and smoothing kernel 
widths.  The cross-validated classification accuracy in time windows time-locked to stimulus onset 
are plotted.  Classification results are plotted for high gamma (black), smoothed amplitude (blue), 
theta (cyan), mu (magenta), and beta (red) features are shown at each smoothing kernel widths.  
Smoothing over window centers spanning 16 ms (no smoothing for spectral features, 16 ms 
smoothing for ERPs), 112 ms, and 240 ms are shown.  A clear secondary peak in decoding accuracy 
emerges for smoothed amplitude feature models which is not apparent for the models with spectral 
feature inputs. 

4.4.5  Comparing High Gamma Responses to Vibration and 

Movement-Related Sensation 

The representations of finger vibration in the high gamma responses were 

also compared to the representations of sensory feedback during finger movement.  

To exclude motor activity to the extent possible, only data from the postcentral 

region of interest (ROI) highlighted in Figure 4.7 were considered for the 

comparison.  Furthermore, only the first 25 trials of stimulation of each finger was 
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used in this comparison to remove the effects of repetition detailed above.   Within 

this ROI, movement produced an ordered somatotopy in the postcentral gyrus, 

visible in the digit representation centers of mass.  The representations of 

movement-related sensory feedback were not identical to those of vibration, 

however, which is expected due to the different sensory modalities implicated in the 

task (i.e., proprioceptive and cutaneous feedback vs. cutaneous stimulation alone).  

In particular, the centers of mass appeared to be more tightly clustered, reflecting 

greater overlap between the finger representations.  The average spatial correlation 

between finger representations within the postcentral ROI was -0.08 for vibration 

responses vs. 0.56 for movement-related sensory responses.  Motor-related 

feedback exhibited higher aggregate activation than vibrational stimulation.  Of the 

139 (channel, finger) pairs in the postcentral ROI which were significantly activated 

during either vibration or movement, 103 had significantly higher motor responses, 

compared to only 10 with significantly higher sensory responses (p < 0.05, FDR-

corrected for multiple comparisons).  
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Figure 4.7. Comparison between vibration responses and movement-related 
sensory high gamma responses.  Significant activation at 0.19 seconds post 
stimulus onset (top left) and 0.03 seconds prior to peak finger flexion in the motor 
task (top right) are depicted.  The diameters of the circles depict high gamma power 
increases z-scored with respect to the baseline period.  They are on identical scales, 
but a different scale from Figures 1 and 2.  The placement of the postcentral snippet 
within the context of the larger hdECoG grid is depicted in Figure 4.1.  The centers of 
mass (middle row) and representation peaks (bottom row) are depicted for both 
vibration (left) and motor (right) tasks. 

4.5  Discussion 

High-density electrocorticography (hdECoG) has been used in several studies 

to investigate the organization of speech-related networks in humans (Bouchard 

and Chang, 2014; Mesgarani et al., 2014; Mesgarani and Chang, 2012), but this is the 

first study to examine the somatotopy of postcentral gyrus finger sensory 

representations in hdECoG.  The signal-to-noise ratio of hdECoG recordings is 
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sufficient to characterize and classify neural responses to vibrotactile stimuli in 

single trials.  The spatial resolution of hdECoG used here (3 mm center-to-center vs. 

1 cm for standard ECoG) was consistent with the previously reported spacing 

between digit representations in postcentral gyrus (1-5 mm, (Martuzzi et al., 2014)). 

There are several strengths and weaknesses of characterizing finger 

representations with ECoG rather than more traditional functional magnetic 

resonance imaging (fMRI).  The high temporal resolution of ECoG recordings 

relative to fMRI allows for the characterization of temporal and spectral dynamics of 

sensory responses within trials.  The signal-to-noise ratio of ECoG signals permits 

characterization of single-trial responses, facilitating investigation of between-trial 

changes in neural responses (e.g., response adaptation) and classification of 

stimulation site.  This high signal quality also permits the evaluation of spatial 

organization in individual subjects, reducing spatial blurring inherent to group 

analyses.  Understandably, ECoG recordings are rare and restricted to patients with 

medically refractory epilepsy.  The placement of grids is determined by clinical need 

and is limited to areas that could potentially contribute to seizures or to important 

brain functions.  fMRI records from the whole brain (including voxels deep in sulci 

which are not  generally accessible by surface ECoG grids) in normal subjects.  Most 

commonly, the spatial resolution of ECoG recordings is 1 cm, inferior to that of fMRI.  

Because our patient’s previous work up suggested ictal onset in primary or 

secondary somatosensory cortices, extra-operative monitoring included hdECoG 

recordings over primary sensorimotor hand area, offering an unprecedented 
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opportunity to map the electrophysiology of individual human finger 

representations  

In this study, we characterized time- and frequency-domain neural responses 

to vibrotactile stimulation.  We found that high gamma band responses most 

replicated the findings from the large body of literature on finger representations 

measured by cortical stimulation and fMRI.  Event-related potentials also exhibited 

an ordered somatotopy with weak similarity to high gamma maps.  The existence of 

somatotopy in the finger ERPs mirrors previous studies of evoked responses to 

peripheral nerve stimulation in ECoG arrays (Sutherling et al., 1992) and 

magnetoencephalography (Baumgartner et al., 1991), though we do not find totally 

distinct representations as inferred from the dipole models (Sutherling et al., 1992).  

Low frequency features, however, in the theta, mu, and beta bands contained more 

diffuse finger representations.  In addition to having a larger degree of overlap 

between finger responses, the centers of mass for individual digit representations 

lacked the canonical inferior-to-superior ordering from first to fifth digits.  This 

implies that low frequency responses to vibrotactile stimulation are not simply 

spatially blurred versions of high gamma representations.  Together with poor 

classification accuracy by low frequency models, our study suggests that finger 

representations are simply not well characterized or differentiated by low 

frequency power.  Their reliable task-related power changes point to a role in 

somatosensory processing, though that role likely corresponds to less stimulus-

specific tuning of neuronal excitability and facilitating communication between 

brain areas (Miller et al., 2012; Neuper and Pfurtscheller, 2001). 
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The short cycle duration of neural fluctuations in the high gamma band 

allows their modulation to be temporally localized with relatively high precision 

relative to lower frequency signals.  In this study, we observed that the high gamma 

responses to vibration peaked ~200 ms after stimulus onset and declined during 

the stimulus period.  This is substantially longer than reported response latencies 

from the periphery to cortex, estimated to be approximately 10-20 ms (DiCarlo and 

Johnson, 1999; Mountcastle, 1957; Woolsey et al., 1979), but it is important to note 

that we are reporting the response peaks, rather than the onset of processing.  

Spectral methods are not ideal for determining the onset of activity, since filtering 

and power estimation techniques each smooth and downsample the underlying 

phenomena.  The peak times of the high gamma responses corresponded strongly to 

the early peaks in ERP magnitude, though interestingly, ERPs associated with 

stimulus offset did not correspond to any observable peaks in the high gamma 

responses. 

High gamma responses to movement in the postcentral gyrus, receiving 

cutaneous and proprioceptive sensory feedback from the fingers, generally 

exceeded high gamma responses to passive vibrotactile stimulation.  In addition to 

being larger, movement-related sensory responses also covered more cortical area, 

yielding a much greater spatial correlation between finger representations in the 

postcentral gyrus (average r = -0.08 for vibrotactile responses, 0.56 for movements).  

While these differences make intuitive sense due to the multiple modalities of 

sensory feedback provided during a movement, it is possible that the differences 

arise from other differences between the two tasks.  For example, the tracking glove 
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likely provided a small amount of somatosensory feedback to adjacent fingers, and 

the cued movements of individual fingers likely involved obligatory movements of 

adjacent fingers.  These factors likely contributed to the observed overlap, but seem 

unlikely to fully explain it.  For example, high gamma responses to vibrotactile 

stimulation of the fifth digit occurred in only two electrodes in the top right corner 

of the grid, but high gamma responses during cued movements of this digit 

extended to electrodes spanning ~21 mm (i.e., extending to the seventh row of the 

grid). 

Consistent with studies in other sensory domains, particularly visual (Engell 

and McCarthy, 2014) and auditory (Eliades et al., 2014), we observed repetition 

suppression of the cortical responses to vibrotactile stimuli.  The effects were 

present in the high gamma and low frequency responses, as well as in the event-

related potentials.  This effect appeared to be unrelated to the latency between 

repeated stimulations at individual fingers, indicating that it consisted of a global 

adaptation to the overall task.  It is important to note that this effect, while 

significant, was insufficient to preclude high single trial decoding accuracy—over 

98% accurate stimulation site classification was achieved with 240 ms smoothing.   

This study provides electrophysiological evidence that somatotopic 

organization exists in the finger representations in human postcentral gyrus at 3 

mm scale.  Inferior to superior ordering of representations from first to fifth digits 

were most apparent in the high gamma responses.  These responses had sufficient 

signal-to-noise ratio and robust spatial patterns to allow classification of the 

stimulation site in single trials.  Despite the apparent order in the hdECoG finger 
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responses, they nonetheless overlapped.  While it is important to replicate these 

findings in more patients, our study provides evidence that this overlap is present at 

the neuronal population scale in a single subject (i.e., the overlap is not an artifact of 

spatial blurring in group analyses).  The spatial and temporal resolution of hdECoG 

make it well suited to characterizing the somatotopic organization and dynamics of 

finger vibration.  As more subjects with hdECoG grids over sensorimotor cortex 

become available, it will be important to investigate how more naturalistic, complex, 

and/or time-varying somatosensory stimuli are represented in the postcentral 

gyrus. 
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Chapter 5 

Long-Term Outlook of Electrocorticography 
for Functional Mapping and Brain-Machine 
Interface 
 
5.1   Abstract 

Electrocorticography (ECoG) has been discussed at length in this thesis, but it 

is important to note that ECoG is one of many techniques for assessing cortical 

function.  The optimal technique for a given application depends on the relative 

importance of factors including: spatial accuracy, temporal accuracy, extent of 

coverage, invasiveness, portability, etc.  Stimulation, microelectrodes, fMRI, and EEG 

are all common techniques for characterizing task-related cortical processing that 

may be used as alternatives to ECoG recording.  So, where does ECoG fit into this 

landscape?  When is ECoG the appropriate technique to use, and what is still 

unknown about ECoG’s relative utility?  These issues are explored in this chapter. 

5.2   Electrocorticography: An Evolving 

Modality 

5.2.1  Different Types and Scales of ECoG Implants  

ECoG is far from a homogeneous technique; in fact, it is closer to a family of 

recording modalities.  In general, ECoG electrodes capture signals from populations 
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of neurons at millimeter to centimeter scale.  ECoG electrodes can either be 

implanted as: (1) strips or grids of surface contacts, or (2) depth electrodes or 

stereotactic EEG (SEEG).  Grids or strips may further be subdivided into subdural or 

epidural implants.  Within each category, distinctions are often made between 

different categories of electrode size and spacing.  Surface electrodes with 3-4 mm 

spacing (vs. 1 cm spacing for traditional ECoG arrays) are an emerging modality 

referred to within this thesis as high-density ECoG (hdECoG).  Micro-ECoG 

recordings are smaller still, with common electrode spacings of approximately 1 

mm and microwire widths less than 100 microns (Kellis et al., n.d.).  Depth 

electrodes vary in their electrode spacing, and often incorporate arrays of 

microcontacts (Worrell et al., 2008) or project microelectrodes from the distal tip of 

the larger depth implant (i.e., Behnke-Fried depth electrodes, (Fried et al., 1999)).  

These high resolution depth contacts differ qualitatively from other ECoG implants 

due to their ability to record single unit activity.  Single unit recordings in humans 

made with depth electrodes will not be discussed in further detail in this chapter, 

but are given comprehensive treatment in a recent review (Cash and Hochberg, 

2015). 

 While depth electrodes are the preferred implant type for invasive seizure 

monitoring in many clinical centers, they are (in my opinion) not ideally suited to 

functional mapping or BMI applications.  In general, the dominant axis of these 

implants is orthogonal to the brain’s surface and thus the dominant plane of cortical 

motor and language representations.  In practice, this means that many recording 

sites on the depth electrode reside in the white matter and subcortical structures.  
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On the other hand, depth electrodes are rarely (if ever) implanted with regular 

spacing.  This makes depth electrodes poorly suited to cortical surface mapping, 

though they can be an important tool for probing representations of speech and 

language in structures which are typically overlooked by ECoG researchers (e.g., 

thalamus, basal ganglia, white matter, etc.).  Additionally, depth electrodes may 

sample sulcal populations which are not accessible to traditional ECoG implants.  

While depth electrodes can certainly be used for BMI purposes or functional 

mapping (e.g., BMI signals and functional maps from Subject 2 of Chapter 3 were 

obtained from depth electrodes), surface ECoG provides better coverage of clinically 

relevant cortical language and motor representations.  Throughout the remainder of 

this chapter, the term ECoG will be used almost exclusively to refer to surface 

electrodes rather than depth electrodes. 

5.2.2  ECoG Technology Developments and hdECoG 

A number of large technological advances loom on the horizon for cortical 

surface recordings with the potential to revolutionize functional mapping and ECoG-

based brain-machine interfaces.  As emphasized above, there is already a large 

variety in the scale of ECoG electrodes available for human implantation.  Higher 

density (i.e., than even micro-ECoG arrays) are currently being explored in relatively 

large, flexible arrays.  Two notable recent studies have demonstrated recordings 

from electrodes spaced by 30 microns (Khodagholy et al., 2015) and 500 microns, 

with active electronics at the electrode site (Viventi et al., 2011).  At these scales, 

neural phenomena not previously accessible at the cortical surface are being 
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observed.  NeuroGrid is capable of recording neuronal spikes (Khodagholy et al., 

2015); Viventi et al. were able to observe spiraling propagation patterns of seizures 

in their array recordings (Viventi et al., 2011).  By dramatically increasing channel 

counts with custom amplifiers, these arrays do not have to record from as limited an 

area as current micro-ECoG arrays.  The array designed by Viventi et al. is 60 x 60, 

spanning roughly 3 cm x 3 cm.  These arrays, if they can be translated to human use, 

likely represent the future of intraoperative and inpatient recordings for seizure 

mapping and thus ECoG-based functional mapping.  Time will tell whether implants 

at this scale will be ideal for long-term BMI use.  Obviously, movement of a grid with 

micron-scale spacing could cause signals of interest to move to different electrodes 

in the array.  These devices will also necessitate a new wave of amplifiers to 

accommodate the high channel counts.  Beyond simply increasing the scale of 

hardware, high channel counts will also tax software designed to perform signal 

processing and machine learning in real-time. 

Simultaneous to improvements in scale, several companies, including Ripple 

(Guillory et al., 2011) and Clinatec (Charvet et al., 2011), are developing wireless 

ECoG recording systems.  A functional wireless system for inpatient seizure and 

functional mapping would be initiate a paradigm shift in ECoG testing.  Most 

obviously, wireless technology would allow patients to move more freely 

throughout their rooms and perhaps participate in slightly more movement-

intensive activities during functional mapping.  More importantly, however, a 

wireless grid might shift the balance of clinical risks and rewards in favor of at-

home monitoring.  The lack of an infection-prone transcutaneous connector would 
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enable clinicians to remotely monitor patients on a longer time scale.  This would 

allow patients longer to remain on their seizure medications and wait long enough 

to experience several of their medically-resistant seizures.  This would also create 

more time for functional mapping and research activities, and potentially make the 

subjects more likely to consent to testing in their home environment.  Unfortunately, 

the regulatory hurdles for these systems have stagnated the proliferation of these 

systems into the marketplace.  Clinatec appears to be the closest to clinical 

deployment, as they are currently in the process of starting a clinical trial of their 

system in France. 

While wireless ECoG recording systems and arrays with dramatically smaller 

scales are being developed, arrays with 3-4 mm spacing (i.e., hdECoG arrays) 

represent a much more modest innovation, but one that has been fairly scientifically 

lucrative to date.  hdECoG arrays are implanted relatively infrequently for seizure 

mapping, though their clinical use is increasing and can be extremely useful when 

the seizure focus is likely to neighbor or reside in eloquent cortex.  Chapter 4 of this 

thesis describes the use of hdECoG in a preliminary somatosensory mapping study 

with a single subject.  In addition to my thesis work, our group enabled the subject 

from Chapter 4 to control individual finger movements of the MPL using high 

gamma activity from the hdECoG implant (Hotson et al., 2015).  Other groups have 

used hdECoG recordings to study the organization of language perception 

(Mesgarani et al., 2014) and production (Bouchard and Chang, 2014) near the 

Sylvian fissure. 
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In my opinion, hdECoG arrays are ideally spaced for functional mapping and 

BMI purposes.  Three to four millimeter spacing not only allows gyri to be sampled 

by multiple electrodes, but also appears to be commensurate with the scale of finger 

and phonetic representations along the major axes of the postcentral gyrus and the 

Sylvian fissure, respectively.  This presents a clear advantage over traditional ECoG 

arrays with centimeter spacing, which spatially alias these representations.  hdECoG 

electrodes also enjoy a clear advantage over micro-ECoG implants in that their 

impedance (i.e., higher than ECoG but lower than micro-ECoG) allows them to be 

sampled using clinical neurophysiology systems, rather than with custom research 

hardware.  In addition to reducing the barrier to entry of recording these signals, 

this distinction also allows these arrays to be implanted at the discretion of 

clinicians rather than solely for research purposes.  Perhaps more nuanced are the 

advantages of hdECoG’s intermediate scale relative to current micro-ECoG arrays.  

Micro-ECoG arrays sample the cortical surface on scales comparable to cortical 

columns (Mountcastle, 1997), but are currently so small that their surgical 

placement relative to patients’ functional anatomy is extremely variable.  In addition 

to decreasing the number of these implants which cover regions of interest, it also 

increases the difficulty of meaningfully aggregating results across multiple subjects. 

5.2.3  Features of the ECoG Signal and the Emerging 

Dominance of the High Gamma Band 

 There are a number of frequency and time domain features that can be 

extracted from the ECoG signal.  Time-domain features including event-related 
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potentials (ERPs) and slow-cortical potentials (or local motor potentials) have been 

used to infer function for decades, dating back to the pioneering evoked potential 

studies of Woolsey (Woolsey et al., 1979, 1942).  ERPs are fast deflections in the raw 

voltage recorded from ECoG electrodes and emerge in trial-averages that cancel out 

zero-mean noise. ERPs are often thought to represent phase-aligned low frequency 

afferent information delivered via the thalamus (Pfurtscheller and Lopes da Silva, 

1999b).  The sign of ERP peaks is heavily dependent on electrode referencing—

bipolar montages, distant electrode references, and common average references all 

produce different ERP shapes.  Whereas ERPs are waveforms with complex 

temporal structure that emerge from trial-averaging, some information can be 

extracted from the time domain in single trials.  The local motor potential (LMP) is 

simply the instantaneous value of the ECoG signal, which is typically extracted by 

smoothing the ECoG signal over hundreds of milliseconds [used in Chapter 4 and 

(Schalk et al., 2007)] to seconds (Acharya et al., 2010; Hotson et al., 2014).  Similarly 

to ERPs, LMPs do not exhibit any consistent sign in their deflection above/below 

zero—their correlations with behavior can be positive or negative and are affected 

by referencing. 

 Though they have not yet seen much adoption in online applications, time-

domain features of the ECoG signal are commonly used for functional mapping.  

Somatosensory evoked potentials (SEPs) are a common technique for mapping 

sensorimotor cortex (Wood et al., 1988; Woolsey et al., 1979), and for 

intraoperatively determining the boundary between pre- and postcentral gyrus, 
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which can often be difficult to localize via surface landmarks alone (Cedzich et al., 

1996).   

 Spectral features are also commonly extracted from the ECoG signal.  Low 

frequency signals historically extracted from EEG signals are also extracted from the 

ECoG signal, notably in the theta (4-8 Hz), mu (8-12 Hz), and beta (14-30 Hz) bands.  

Unlike ERPs, low frequency signals typically only decrease in power relative to 

baseline in response to a stimulus.  Low frequency power modulations occur over 

wide areas, but exhibit relatively little selectivity to stimulus or behavioral features.  

It is becoming increasingly common to examine the phase of low frequency ECoG 

oscillations, especially in relation to the timing of high frequency activity.  The phase 

of low frequency signals at single sites has been demonstrated to modulate the 

timing of population activity (Canolty et al., 2012, 2006; Miller et al., 2012).  The 

degree of coupling between high and low frequencies has been shown to be 

responsive to task parameters (Canolty et al., 2012), but to my knowledge has not 

been used explicitly for mapping or BMI purposes. 

 This thesis includes extensive use of high gamma band (70+ Hz) activity 

increases as an index of cortical activation.  Unlike low frequency features of the 

ECoG signal, high gamma activity exhibits very high selectivity to stimulus and 

behavioral variables (Lachaux et al., 2012).  High gamma features are especially 

attractive for online applications, since accurately estimating the power requires 

much smaller windows than for lower frequencies; cycles of an 80 Hz sinusoid are 

one fourth as long as cycles of 20 Hz beta oscillations and one sixteenth as long as 

cycles of 5 Hz theta oscillations. 
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Many previous systems for functional mapping and BMI with ECoG have 

taken an agnostic approach to frequency bands.  BrainTV (Lachaux et al., 2007b) 

and a recently demonstrated trial-based functional mapping (Cheung and Chang, 

2012) both provide simultaneous visualization of low and high frequency 

modulations, while SIGFRIED (Schalk et al., 2008a) combines measures of low and 

high frequency signals into a single metric of task-relatedness at each site.  Several 

past online ECoG BMI studies have pooled features from across low and high 

frequencies (Leuthardt et al., 2004; Schalk et al., 2008b; Yanagisawa et al., 2012).  It 

is unclear why these studies cast such a wide net, especially in online systems where 

computational resources are at a premium.  The development of the online 

functional mapping system (described in Chapter 2) has provided our team with a 

wealth of anecdotal experience of the superior specificity of high gamma increases.  

Although not shown, attempts to generate equivalent low frequency functional 

brain maps resulted in such wide areas of activation that they were essentially 

uninterpretable.  Alas, it was not particularly surprising in Chapter 4 that high 

frequency power exhibited a much more somatotopic representation than its lower 

frequency counterparts. 

While the neurophysiological role of low frequency power remains of 

scientific interest, it is arguably because of its poor selectivity (and thus applicability 

to functional mapping and BMIs).  In other words, why do these signal features 

exhibit such robust task-related modulation (implying a role in task-related 

processing), but yet encode so few features of the task?  Several theories have 

attempted to address this issue, including the communication through coherence 
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(CTC) hypothesis which proposes that coherent low frequency signals form a 

channel of communication between distant brain areas (Fries, 2005).  The more 

recently proposed function through biased oscillations hypothesis posits that 

cortical inhibition—and thus the amount of high gamma activity—is governed by 

the raw potential, reflecting the summed influence of shifting signal bias (i.e., LMP) 

and peaks in low frequency oscillations (Schalk, 2015).  While it is possible that the 

investigation of these theories or cross-frequency coupling will illuminate a role for 

low frequency signals in online applications, it seems that there is currently limited 

rationale for extracting these features and including them in BMI models.  In 

addition to providing very little benefit in decoding accuracy, low frequency 

features require longer spectral estimation windows, adding a feedback delay and 

potentially (depending on the flexibility of the online system) sub-optimally 

extending the extraction window of high gamma features.  While extraction of 

amplitude features is theoretically not subject to this limitation, in practice the 

amplitude achieves peak correlation with movement parameters after considerable 

smoothing (Acharya et al., 2010; Hotson et al., 2014).  Furthermore, extracting 2-3 

additional features per electrode increases the number of coefficients to be fit in 

online decoding models and/or needlessly inflates the number of statistical tests 

performed (and thus corrected for) in functional mapping systems.   
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 5.3   Alternative Techniques for Recording 

Neural Activity for Mapping and Brain-Machine 

Interface 

 Electrocorticography (ECoG) occupies an intermediate or “mesoscopic” 

spatial resolution relative to other techniques for recording human neural activity.  

Microelectrodes provide the ability to record the spiking rates of single neurons or 

local field potentials, with a total coverage area on the order of millimeters.   

Functional magnetic resonance imaging (fMRI) estimates neural activity indirectly 

and noninvasively across the whole brain by measuring the oxygenation of neural 

tissue that correlates with local metabolic needs, with spatial resolutions of ranging 

from 2 to 125 mm3 depending on study parameters.  Electroencephalography (EEG) 

is a noninvasive alternative to ECoG, measuring cortical electrical activity from the 

scalp, with a relatively poor ability to spatially localize neural activity.  In this 

section, each of these technologies will be briefly compared to ECoG, with a specific 

focus on their use in functional mapping and brain-machine interface (BMI). 

5.3.1  Microelectrodes: Spike Firing Rates and Local Field 

Potentials 

 Microelectrodes have been a favored tool of neuroscientists for decades for 

their ability to record the action potentials of individual neurons.  Single unit animal 

studies arguably form the backbone of the neurophysiological knowledge base, as 
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studies have extensively (and painstakingly) recorded the behavioral and 

environmental correlates of neurons recorded across multiple electrode insertions 

across many animals and species.  Single unit recording sessions generally involve 

the subject performing some task of interest while its skull is connected to a 

stereotactic frame for precise placement of the recording electrode.  The 

microelectrode’s placement may be performed coarsely at first to ensure that the 

recording element is in the study’s region of interest; subsequent fine manipulations 

of the placement can be used to increase the quality of the recording.  Given this 

level of precision, microelectrode recordings are the gold standard for temporal 

resolution and fidelity to the underlying neuronal circuitry.  This precision comes at 

the expense of wide area coverage, however, and limits the ability to record from 

multiple neurons simultaneously. 

As a slight compromise between precision and coverage area, implanted 

arrays of microelectrodes have become increasingly common.  Microelectrode 

arrays (MEAs) allow neurons to be recorded from tens to hundreds of insertions 

(and thus, neurons) simultaneously.  MEAs therefore provide researchers with the 

ability to differentiate task-related correlations (i.e., functional interactions) from 

task-unrelated noise in neuronal firing.  These advantages are offset somewhat by 

the reduced ability to fine-tune electrode placements and the finite lifespan of long-

term microelectrode implantations (Kelly et al., 2007).  While some studies report 

array recordings from multi-year implantations (Gilja et al., 2012; Hochberg et al., 

2012; Simeral et al., 2011) these studies are often no longer recording sorted 

neuronal spikes.  Despite these published successes, one study observed that over 
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half of MEA implants in nonhuman primates failed within a year, for a variety of 

reasons ranging from mechanical failure to meningeal reaction (Barrese et al., 2013). 

 MEAs have not been used widely to record human neural activity, though 

they are beginning to be used in select instances for recording of epileptiform 

activity (Keller et al., 2010; Schevon et al., 2008) and as a source of neural signals for 

motor brain-machine interfaces (Collinger et al., 2013; Hochberg et al., 2012, 2006).  

While seizure recordings are still predominantly performed for research purposes 

(i.e., rather than clinical seizure mapping), MEAs currently represent the gold 

standard for providing paralyzed individuals with neural control over prosthetic 

limbs.  BrainGate, a landmark clinical trial of human neuroprosthetic control with an 

MEA, began in 2004 and was led by Brown University, Massachusetts General 

Hospital, and the Department of Veterans Affairs.  BrainGate provided the first 

demonstration that a quadriplegic human patient could control of a computer 

cursor and a robotic with neuronal firing rates (Hochberg et al., 2006).  The second 

phase of this trial, BrainGate2, has grown to include Stanford University and Case 

Western Reserve University as additional sites.  The BrainGate2 team published in 

2012 an update of their progress, which included a demonstration of neural control 

over reach and grasp control by two quadriplegic individuals (Hochberg et al., 2012). 

 A parallel DARPA-funded initiative, called Revolutionizing Prosthetics, has 

provided massive gains in both prosthetic upper limb functionality and neural 

control of those limbs.  Revolutionizing Prosthetics has yielded the FDA-approved 

DEKA Arm (Resnik et al., 2014) and the more advanced, research-grade Modular 

Prosthetic Limb (MPL) designed by the JHU Applied Physics Laboratory (Bridges et 
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al., 2011; Johannes et al., 2011).  Using training and neural activity modeling 

techniques developed in nonhuman primates, researchers at the University of 

Pittsburgh were able to demonstrate seven (Collinger et al., 2013) and then ten 

(Wodlinger et al., 2015) degree of freedom neural control over the MPL using neural 

signals derived from MEAs implanted in motor cortex.  The latter study showcased 

the ability of the quadriplegic user to simultaneously control three dimensional 

reach, three dimensional wrist orientation, three dimensional hand conformation, 

and grasp aperture.  A team at the California Institute of Technology demonstrated 

an alternative strategy, whereby firing rates from posterior parietal cortex were 

observed to correlate with movement goals and complete movements in addition to 

movement trajectories (Aflalo et al., 2015).  This study provides a glimpse into a 

higher-level role for neural control of neuroprosthetic devices, where neural signals 

merely supervise the implementation of complex movements rather than directly 

controlling low-level joint angle trajectories.  This strategy is one that our team is 

actively exploring in collaboration with JHU/APL via the development of the Hybrid 

Augmented Reality and Multimodal Operation Neural Integration Environment 

(HARMONIE) (Katyal et al., 2013; McMullen et al., 2014).   

 The measurement of spike firing rates has traditionally required daily 

manual identification and differentiation of spike waveforms (i.e., “spike sorting”).  

There is a growing body of evidence in nonhuman primates, however, that unsorted 

spikes (“threshold crossings”), may be used as a surrogate measure of neuronal 

activity as chronic implantation degrades spike waveforms (Chestek et al., 2013; 

Fraser et al., 2009; Gilja et al., 2012).  The 2012 BrainGate2 study used threshold 
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crossings rather than sorted spikes, including one subject who was more than five 

years post implantation (Hochberg et al., 2012).  This study provides the strongest 

example to date of how MEAs may be used for long-term neuroprosthetic control.  

Doing so, however, requires the extraction of nontraditional features from the 

recorded signals, with a more indirect relationship to the firing of individual 

neurons. 

In addition to neuronal spiking, microelectrodes can also be used to record 

low frequency signals (i.e., relative to spiking components) signals called local field 

potentials (LFPs).  LFPs are fairly similar in spectral content to ECoG recordings, but 

are obtained from much smaller recordings sites which penetrate the cortex.  LFPs 

and spiking rates appear to be highly correlated, making LFPs a common alternative 

modality to spikes for BMI applications (Andersen et al., 2004; Flint et al., 2013).  

LFPs encode motor parameters of interest with comparable accuracy to spiking 

rates (Bansal et al., 2011; Flint et al., 2012a; Mehring et al., 2003; Mollazadeh et al., 

2011; Pesaran et al., 2002; Zhuang et al., 2010).  Interestingly, LFP signals appear to 

be more robust and stable during long-term recording than multiunit activity (Flint 

et al., 2013), and can be used as a control signal for BMIs even in the absence of 

spiking activity in the same electrode(s) (Flint et al., 2012b).  Decoding of LFP 

activity from motor cortex has consequently been receiving more attention from the 

BMI community as quadriplegic participants in the BrainGate trials have had their 

MEA implants in for several years.  

Currently, the major barriers to microelectrode array use in humans are 

regulatory.  BlackRock manufactures the only MEA which is permitted for human 
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implantation, and only under an Investigational Device Exemption (IDE) from the 

FDA.  The lack of more FDA-approved MEAs is an unfortunate byproduct of the 

small size of the cortical BMI market and their inability to serve the clinical needs of 

the larger epileptic seizure mapping market.  Pre-surgical mapping for epileptic 

resection requires implants with much wider coverage, as the existing clinical tools 

for noninvasive seizure localization are extremely inaccurate.  Seizure semiology 

and noninvasive pre-surgical seizure mapping with EEG recordings can be 

extremely imprecise—it is not uncommon to be unsure which hemisphere a 

patient’s seizures originate from—such that implants must often span lobes rather 

than millimeters.  Although seizure mapping is not a focus of this thesis, it is worth 

highlighting as an example where ECoG recordings do not merely occupy an 

arbitrary “mesoscopic” niche, but rather uniquely enable the spatiotemporal 

characterization of wide-scale cortical networks. 

5.3.2  Functional Magnetic Resonance Imaging 

Where microelectrode recordings enable the recording of single neurons 

with high temporal resolution, fMRI is currently the gold standard for whole-brain 

recordings.  Since fMRI is noninvasive and can be used to record from high numbers 

of healthy human subjects, it is ideal for localizing neural activity for novel tasks or 

behavioral variables to a given brain region or network.  Although poor temporal 

resolution makes it difficult to decompose dynamic neural recruitment during 

complex natural tasks, behaviors can be isolated using block-based experimental 
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designs or experimental manipulations which carefully vary one attribute of a 

behavior over two more tasks. 

Much of the body of literature on fMRI correlates with behavior has been 

performed at 1.5T or 3T, with effective resolutions on the order of 8-125 mm3.  

Relative to ECoG recordings, fMRI studies traditionally suffer from low signal-to-

noise ratio (SNR)—requiring aggregation of results from multiple subjects—and 

low temporal resolution.  The prevalence of higher field strength fMRI studies, 

recorded at 7T, has been increasing recently and provides higher spatial resolution 

(on the order of 1-2 mm3) and a sufficiently robust signal to map the functional 

anatomy of single subjects (Martuzzi et al., 2014; Siero et al., 2014).  It is important 

to note that fMRI measures blood oxygenation rather than neural activity.  In 

general, the correlation between neural activity and the fMRI BOLD signal (i.e., 

“neurovascular coupling”) is robust.  The coupling between neural activity and fMRI 

BOLD is not strictly linear (Ances et al., 2000; Devor et al., 2003), and the strength of 

coupling can severely break down in disease conditions like hypertension, diabetes, 

and Alzheimer’s or in the presence of vasoactive drugs or chronic stimulation 

(Pasley and Freeman, 2008).   

While fMRI is a powerful tool for neuroscience researchers, there are a 

number of structural issues that make fMRI difficult for use in seizure mapping and 

brain-machine interface.  Most obviously, the bulk and cost of fMRI machines make 

them an impossible technology to deploy for everyday brain-machine interface use.  

In the case of functional mapping, the noninvasive nature of fMRI makes it a 

nontrivial to apply study findings to surgical plans.  Even if a sufficiently high-
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resolution fMRI study is available, the cortical areas with relevant BOLD increases 

must be co-registered to the surgical entry point.  A functional map generated from 

fMRI (or any noninvasive technique) is only as useful to a surgeon as his or her 

ability to contextualize the findings within visible landmarks or neuronavigation 

displays.  In cases where functional cortex neighbors or is commingled with 

epileptogenic tissue, ECoG maps have the advantage of being trivially co-registered 

to the surgical landmarks: electrodes are in contact with the cortex at the start of the 

resection procedure.  Most importantly, fMRI is not a feasible candidate for mapping 

seizures. fMRI is extremely sensitive to movement artifact and its low temporal 

resolution would blur the distinction between the focus and secondary seizure 

zones.  Furthermore, it simply would not be feasible for patients to be scanned for 

long enough for their seizures to be mapped.  While these limitations apply to 

seizure mapping rather than functional mapping, the inpatient mapping period 

performed by ECoG provides ample opportunity for functional mapping between 

ictal events. 

5.3.3  Electroencephalography 

Since electroencephalography (EEG) provides electrophysiological 

measurements of cortical activity noninvasively, it has been widely used for both 

functional mapping and brain-machine interface.  EEG has good temporal resolution 

but extremely poor spatial resolution due to volume conduction.  This poor spatial 

resolution makes it a poor modality for functional mapping applications.  EEG is 

useful for determining the dynamics of recruitment of large brain areas during time-
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varying naturalistic tasks, but alternative modalities (e.g., fMRI) are much better 

candidates for drawing the boundaries of those brain areas. 

Relative to ECoG, EEG has low signal-to-noise ratio and low bandwidth that 

limits the ability of EEG to record activity in the high gamma (>70 Hz) range.  Some 

recent studies have reported high gamma responses in EEG (Ball et al., 2008; Darvas 

et al., 2010) with atypical recording procedures, though these findings are not 

always significant in single subjects (Ball et al., 2008).  This low signal quality in the 

high gamma band is in stark contrast to the measurements obtained for this thesis 

and throughout the large body of ECoG literature, where high gamma increases are 

widely observed to be significant and robust in single channels (and single trials) in 

single subjects.  EEG recordings are also extremely sensitive to facial muscle and 

ocular movement artifacts.  Offline studies must either use source localization (e.g., 

ICA, inverse modeling) to isolate and remove these sources of noise or diligently 

remove trials with clear contamination from non-neural sources.  For online EEG 

systems, linear source localization techniques which require trivial real-time 

processing or algorithmic bad trial removal would be required and present an 

additional challenge to implementation relative to invasive modalities. 

Despite its limitations, EEG has been used widely for BMI applications.  Single 

trial estimates of event-related synchronization (ERS) and desynchronization (ERD) 

in alpha and beta frequencies have been used to control computer cursors in one, 

two, and three dimensions (McFarland et al., 2010; Wolpaw et al., 1991; Wolpaw 

and McFarland, 2004).  Slow cortical potentials (SCPs), or the negativity/positivity 

of EEG signals can also be used to control computer cursors (Birbaumer et al., 1999).  
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These studies usually require users to train for tens to hundreds of hours until their 

neural signals robustly correlate with their attempted cursor movements.  While 

these studies serve as demonstrations of the information content of the EEG signal, 

noisy control of 1-3 continuous degrees of freedom is seldom sufficient to reliably 

complete a task.  As such, other modalities of the EEG signal are more common 

sources of BMI control signals. 

In particular, evoked potentials have been adapted in clever ways to provide 

users with a choice between multiple options on a computer screen.  For example, 

P300 Spellers strobe a grid of letters randomly and select the letter whose strobe 

timings over multiple trials correlate best with the timing of evoked EEG activity 

(Farwell and Donchin, 1988; Krusienski et al., 2008).  Other studies have strobed 

several choices on a screen at distinct frequencies, and used the dominant frequency 

of the steady-state visually evoked potential (SSVEP) in occipital EEG electrodes to 

determine which choice the user is attending to (Cheng et al., 2002; Guger et al., 

2012; Kuś et al., 2013).  These systems can be extremely robust and achieve high 

information transfer rates (especially relative to EEG systems using ERD/ERS), but 

they require the user to saccade to the target (Brunner et al., 2010), so it is unclear 

long-term if they will provide any increased performance over high-fidelity eye-

tracking.  Eye-tracking in particular is undergoing a renaissance associated with the 

increased prevalence of augmented reality and virtual reality systems. 

5.4  Functional Mapping via ECoG Recordings 

vs. Electrocortical Stimulation Mapping 



132 
 

The biggest barrier to adoption of passive ECoG mapping of brain function 

for epilepsy surgery planning is not another neural recording modality, but rather 

mapping via stimulation of ECoG electrodes.  Electrocortical stimulation mapping 

(ESM) has been employed for over a century, and has been used to provide 

fundamental insights into the organization of human cortex (Penfield and Boldrey, 

1937; others?).  This long history has led to an entrenchment of the technique—the 

availability of FDA-approved commercial electrical stimulators is extremely high 

relative to mapping systems.  Furthermore, ESM often requires less conscious 

participation by the subject; this is especially true for mapping motor function, as 

the patient need not be awake for movements to be elicited via stimulation. 

Stimulation mapping also benefits from a relative intuitiveness when 

compared to the signal processing and statistical testing required to passively 

characterize the functional recruitment of ECoG sites.  If the electrical current 

through a pair of electrodes is high enough and the stimulation site is involved in 

task processing, behavior can be elicited or interrupted.  There is effectively only 

one parameter to tune at a pair of sites (i.e., the current) and the results of 

stimulation can be easily scored—either stimulation did or did not affect the 

behavior of interest.  This ease of interpretation makes ESM a strongly favored 

technique among neurosurgeons and neurologists who have to make difficult and 

irreversible decisions about which brain regions to spare (risking seizure 

recurrence) or resect (risking functional deficits) during epilepsy surgery.   

 Despite its advantages, stimulation mapping is riddled with 

implementational difficulties ranging from patient safety issues to the fact that it 
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simply takes too long.  ESM can cause pain, afterdischarges, or full-blown seizures, 

all of which are uncomfortable or dangerous to the patient.  The risk of stimulating 

seizures in particular is problematic since these seizures exhaust and endanger the 

patient without providing any diagnostic information about the target seizure focus.  

A more practical consideration is that the tuning of the current passed through each 

electrode pair (which must be done for each electrode pair and task separately) is 

extremely time-consuming, and doomed to get worse with the increasing resolution 

of ECoG grids.  Additionally, in higher resolution grids, it is still unclear what effect 

the higher current density over smaller cortical surface areas will have on ESM 

findings. 

 Beyond the aforementioned difficulties of ESM is the central question of 

whether stimulation mapping is truly measuring local cortical function.  For 

example, does interrupting speech at one pair of sites imply that the pair itself is 

involved in language production? Or rather, might it imply that the current 

propagated to one or more sites involved in language production?  There is a 

growing body of evidence that stimulation mapping and passive ECoG mapping 

often disagree (Bauer et al., 2013; Cervenka et al., 2013, 2011; Ruescher et al., 2013), 

particularly for functional mapping of language, which likely implies that 

stimulation is not acting as locally as is generally assumed. 

 Even though many clinicians agree that passive ECoG mapping should be 

investigated as an alternative to ESM, it has been and remains very difficult to 

challenge ESM as the gold standard for functional mapping.  In addition to the 

entrenched status of stimulation mapping and general discomfort with changes in 
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the clinical standard of care, a trusted third technique is lacking for objective 

comparisons of stimulation and ECoG mapping.  Substantial evidence exists that 

ECoG (particularly in high gamma frequencies) is well correlated with functional 

measures of neural activity obtained from fMRI and microelectrode arrays, but few 

studies have compared the relative correspondence of both ECoG and stimulation 

with these techniques.  In the absence of such an independent assessment, ECoG 

mapping results are often compared to ESM by simply assuming ESM is the gold 

standard (Bauer et al., 2013; Brunner et al., 2009; Cheung and Chang, 2012; 

Ruescher et al., 2013; Wu et al., 2010).  It would obviously be impossible to query 

the relative accuracy of the two techniques (i.e., and thus ever potentially prove the 

superiority of ECoG mapping) with this assumption intact. 

Our team has begun an admittedly coarse approach to finding an 

independent identification of functional cortex via identification of regions of 

interest (ROIs), which conservatively demarcate functional anatomy.  Using this 

technique, we were able to make a preliminary case that ECoG functional mapping 

outperforms stimulation mapping.  Ultimately, however, ECoG will need to show 

superior performance in predicting post-operative deficits to truly replace ESM.  In 

addition to being an independent standard, predicting post-operative deficits is the 

ultimate goal of epilepsy surgery planning. 

The use of post-operative deficits as a gold standard is certainly not without 

its own challenges.  Aggregating databases of post-operative deficits and their 

relationships with functional mapping results is difficult since putative eloquent 

cortex as identified is preferentially spared.  This means that there would be an 
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underrepresentation of ESM-positive sites in such a database.  The net effect of such 

a sampling bias would be an overestimation of ECoG’s relative sensitivity and an 

overestimation of ESM’s relative specificity (see Table 5.1).  This could, of course, be 

overcome by simply including enough patients in the database that these factors 

could be balanced appropriately.  Beyond the issue of sampling bias is the 

complication that deficits are not truly binary: they may be incomplete or vary in 

duration (e.g., deficits may be chronic or resolve several months after surgery).  

Segmenting the database into sub-categories provides opportunities to highlight a 

role for ECoG mapping but further increases the size requirements of the cohort. 

Deficit? Truth ESM ECoG Information Gained 
Yes + + + None 
Yes + + - ECoG Sensitivity Decrease 
Yes + - + ESM Sensitivity Decrease 
Yes + - - None 
Yes - + + None 

Yes - + - 
ESM Sensitivity Increase 

(incorrect) 

Yes - - + 
ECoG Sensitivity Increase 

(incorrect) 
Yes - - - None 
No - + + None 
No - + - ESM Specificity Decrease 
No - - + ECoG Specificity Decrease 
No - - - None 

Table 5.1. Information gained from resections, ESM, and ECoG results for 
resected sites.  Grayed out rows are ESM-positive and would thus be 
underrepresented in a database of resected sites.  Each row corresponds to a 
specific set of attributes of a single resected site: (1) Did the resection cause a deficit 
in the task of interest?, (2) Is this site truly functionally related to the task of 
interest?, (3) Did ESM identify this site as task-related?, and (4) Did ECoG identify 
this site as task-related?  The last column highlights information gained (sometimes 
incorrectly) about a site with the specified set of attributes. Note: this table assumes 
that a lesion could result from the resection of another site, which is why the first 
and second columns are different.  
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5.5  The Near Future of ECoG for Functional 

Mapping and Brain-Machine Interface 

5.5.1  Extensions of this Thesis 

The online functional mapping system detailed in Chapter 2 is an extremely 

powerful tool with the potential to replace ESM or serve as a complementary 

technique for functional mapping associated with epilepsy surgery planning.  As 

detailed in section 5.4, any long-term efforts to justify the use of ECoG passive 

mapping will require evidence from studies of post-operative deficit studies.  

Another key factor will be to make the use of our team’s system as easy as possible.  

Several simple usability additions would be extremely helpful, including the 

addition of online trial-averaging with respect to response times; this is currently 

functional but rarely used for motor mapping, though not implemented for speech 

mapping.  Adding the ability to generate stimulus- or response-specific maps online 

would also be extremely useful, such that cortical representations of finger 

stimulations, finger movements, phonemes, etc. could be simultaneously displayed.  

Especially in patients whose functional anatomy may be displaced or convoluted by 

pathological epileptogenic networks, patient-specific functional landmarks like the 

location of postcentral digit representations or phonetic representations in 

Wernicke’s area may help inform placement of grids intraoperatively.  Another 

important challenge will be finding a compelling way to intraoperatively visualize 

task-related activations on the brain.  Functional mapping in inpatient settings can 
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be performed with the benefit of assuming static grid placement localized by post-

operative CT.  Intraoperative functional maps will often need to be generated for 

temporary grid placements, and will likely even spur grid movement.  In these 

conditions, the software will likely need to facilitate quick import of an intra-

operative brain photo or interface with neuronavigation software to acquire an 

anatomical scan as a template for displaying activity.  Finally, the long-term 

adoption of our system will require the software to become easier to distribute and, 

ideally, extensible to multiple different types of recording hardware.  To solve these 

issues, it would be useful to either adapt our software to a framework like BCI2000 

or grow our own community of user-developers via GitHub or a similar code-

sharing site. 

 Chapter 3 describes our lab’s efforts to control reaching and grasping 

simultaneously in two patients with epilepsy.  There are many ways to extend this 

effort, several of which our team has begun already.  The most straightforward 

improvements to our BMI control scheme involve enriching the complexity of reach 

and/or grasp control by the user.  Our team has recently demonstrated online 

control of individual finger movements using an hdECoG array (Hotson et al., 2015).  

If this degree of control could be combined with multi-axial reach decoding 

(Anderson et al., 2012; Pistohl et al., 2008), it would be an impressive piece of 

evidence supporting the viability of ECoG-based neuroprosthetics.  Additionally, as 

mentioned above, our team has recently designed and tested a framework called 

HARMONIE for integrating ECoG as a source of high-level control signals in 

cooperation with machine intelligence and non-neural control signals (e.g., eye 
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tracking) [(Katyal et al., 2013; McMullen et al., 2014)].  While initial efforts involved 

simply using ECoG signals to trigger complex autonomous movements, HARMONIE 

could surely integrate independent reaching and grasping control signals to provide 

additional low-level control to the user.  For example, context menus could be used 

to choose between grasp configurations via decoded grasp aperture and/or 

between manipulation types via decoded reach extent.  Improvements in low-level 

direct neural control via ECoG could also allow HARMONIE to release low-level 

control to the user if the preprogrammed library of movement types was 

insufficient for a given task.  Ultimately, all of these strategies need to be tested and 

validated with quadriplegic patients.  Steps toward implementation of an ECoG-

based BMI in paralyzed populations will be discussed more fully below. 

 Finally, Chapter 4 details a preliminary study of using hdECoG to map digit 

representations in the postcentral gyrus.  Interesting next topics to be investigated 

include: (1) how finger stimulations affect the phase of low frequency oscillations in 

postcentral gyrus, (2) how high gamma activity represents different intensities of 

stimulation, (3) how high gamma activity represents different dynamic patterns of 

vibration, (4) how representations of activity from multiple fingers interact during 

multi-finger vibration, and (5) how the degree of somatotopy detected in pre- and 

post-central gyri for motor and sensory finger representations, respectively, 

compare in hdECoG recordings.  Beyond these basic questions about the 

representation of fingertip vibration at hdECoG scale is a question of central 

importance to BMI—can knowledge of these representations be used to provide 

sensory feedback via cortical stimulation?  Somatosensory percepts can be elicited 
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via ECoG-scale stimulation (Johnson et al., 2013; Penfield and Boldrey, 1937), but it 

is unclear if they could ever be perceived as natural stimuli rather than paresthesias.  

The initial answers to this question will likely come from clinical ESM sessions with 

hdECoG or micro-ECoG implants placed over postcentral gyrus, and hopefully 

expanded upon if additional research stimulation sessions can be performed. 

5.5.2  Next Steps for Clinical ECoG-Based BMIs 

A huge goal of the ECoG-based BMI field is to begin to test whether ECoG is a 

viable alternative to MEAs for BMI control by quadriplegics.  The barriers to starting 

this work at any one center are immense (e.g., cost, regulatory approvals, personnel 

effort, etc.), but there are additional barriers to be overcome by the field at large.  

The first barrier is regulatory approval of ECoG implantation for long-term BMI use.  

One study in the United States to date (Wang et al., 2013) has successfully 

demonstrated the efficacy of a short-term (i.e., 30-day) ECoG implant enabling 

neuroprosthetic control by a quadriplegic individual.  Progressing from short- to 

long-term implantations is not trivial, however.  ECoG implants are designed for 

inpatient seizure mapping where there is usually no need to record for longer than 

2-3 weeks.  Some companies (e.g., NeuroPace and NeuroVista) have developed fully 

implantable ECoG systems with lower channel counts than would be ideal for BMI 

use (Davis et al., 2011; Sun et al., 2008).  Fully implantable systems pose much lower 

infection risk, however, than trans-cutaneous ECoG implants, and thus are not 

suitable regulatory predicates.  Some of this risk could be mitigated via wireless 

ECoG implants which telemeter recorded signals across the scalp.  Several 
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companies, including Ripple (Guillory et al., 2011) and Clinatec (Charvet et al., 2011), 

are developing wireless ECoG systems, though none is currently approved for 

human implantation in the United States.  While wireless implants (of both ECoG 

arrays and MEAs) would be hugely beneficial to the quadriplegic BMI field, the 

market size is so small that it may be difficult for companies to justify the costs of 

pursuing regulatory approval.  A more likely avenue is that a company will pursue 

FDA approval of a wireless ECoG system for long-term seizure monitoring.  Such a 

company would be an ideal candidate to work with BMI researchers to extend the 

FDA-approved indication of the device to neuroprosthetic control.  These industry-

university partnerships are increasingly being encouraged by funding agencies, 

including the most recent round of NIH BRAIN Initiative Funding Opportunity 

Announcements.  This is an acknowledgment of the relative regulatory and 

manufacturing expertise (and resources) concentrated in industry that have 

generally been under-utilized by university researchers. 

If ECoG implants can achieve regulatory approval for long-term implantation, 

the obvious question is whether they can outperform MEAs for neuroprosthetic 

control or become a better candidate for long-term implantation than MEAs.  ECoG 

implants have larger recording surfaces and do not penetrate the cortex, and so may 

be more resilient to degradation via biological processes over long-term 

implantations.  To my knowledge, University of Pittsburgh has performed the only 

published voluntary implantation of an ECoG grid for BMI control (Wang et al., 

2013).  While this was an important first step for the field, this study did not achieve 

control that compared favorably with that from microelectrodes at the same center 
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(Collinger et al., 2013).  This discrepancy is possibly due to the differences in 

recording modality, but it is worth noting the marked discrepancies in study 

duration (30 days vs. 13 weeks) and that the ECoG array was (presumably) 

mistakenly implanted over postcentral gyrus. 

In my opinion, the pieces are in place for another center to markedly improve 

upon the preliminary ECoG BMI demonstrated by the University of Pittsburgh.  An 

hdECoG array with 3 mm spacing centered on the hand knob of the precentral gyrus 

would likely provide the resolution necessary to differentiate finger representations 

(as in Chapter 4, but targeting motor cortex) for individual finger actuation 

simultaneous to reach control (as in Chapter 3).  Intraoperative functional mapping 

of attempted movements during an awake craniotomy would be the best way to 

ensure that the ECoG implant(s) end up in the desired location.  Wireless technology 

does not seem strictly necessary for long-term implantations, given the success of 

the BrainGate and Revolutionizing Prosthetics trials.  Nevertheless, large multi-

patient multi-site clinical studies are likely to highlight a dramatic reduction in 

surgical infection risk by eliminating the transcutaneous connector from the brain-

machine interface.  

It is still unclear what the optimal resolution is for sampling sensorimotor 

representations in the cortex.  While MEAs provide sub-millimeter precision, 

redundantly sampling cortical representations unnecessarily sacrifices coverage 

area.  Only time will tell what electrode spacing will provide the most efficient 

coverage of cortical areas containing the BMI control signals of the future.  

Nevertheless, the unfortunate truth for ECoG is that MEAs continue to set an 
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impressive standard for neuroprosthetic control, and that BMI control with MEAs 

has a decades-long head start over similar efforts with ECoG.  This timing 

disadvantage, though, is also a reason for hope.  ECoG BMI research is progressing at 

an extremely rapid pace, and should not necessarily be judged in its current state 

against current achievements by the MEA neuroprosthetics community.   
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