6,993 research outputs found

    Families of nested completely regular codes and distance-regular graphs

    Get PDF
    In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius ρ\rho equal to 33 or 44, and are 1/2i1/2^i-th parts, for i{1,,u}i\in\{1,\ldots,u\} of binary (respectively, extended binary) Hamming codes of length n=2m1n=2^m-1 (respectively, 2m2^m), where m=2um=2u. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter DD equal to 33 or 44 are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    On Self-Dual Quantum Codes, Graphs, and Boolean Functions

    Get PDF
    A short introduction to quantum error correction is given, and it is shown that zero-dimensional quantum codes can be represented as self-dual additive codes over GF(4) and also as graphs. We show that graphs representing several such codes with high minimum distance can be described as nested regular graphs having minimum regular vertex degree and containing long cycles. Two graphs correspond to equivalent quantum codes if they are related by a sequence of local complementations. We use this operation to generate orbits of graphs, and thus classify all inequivalent self-dual additive codes over GF(4) of length up to 12, where previously only all codes of length up to 9 were known. We show that these codes can be interpreted as quadratic Boolean functions, and we define non-quadratic quantum codes, corresponding to Boolean functions of higher degree. We look at various cryptographic properties of Boolean functions, in particular the propagation criteria. The new aperiodic propagation criterion (APC) and the APC distance are then defined. We show that the distance of a zero-dimensional quantum code is equal to the APC distance of the corresponding Boolean function. Orbits of Boolean functions with respect to the {I,H,N}^n transform set are generated. We also study the peak-to-average power ratio with respect to the {I,H,N}^n transform set (PAR_IHN), and prove that PAR_IHN of a quadratic Boolean function is related to the size of the maximum independent set over the corresponding orbit of graphs. A construction technique for non-quadratic Boolean functions with low PAR_IHN is proposed. It is finally shown that both PAR_IHN and APC distance can be interpreted as partial entanglement measures.Comment: Master's thesis. 105 pages, 33 figure

    New Qubit Codes from Multidimensional Circulant Graphs

    Full text link
    Two new qubit stabilizer codes with parameters [77,0,19]2[77, 0, 19]_2 and [90,0,22]2[90, 0, 22]_2 are constructed for the first time by employing additive symplectic self-dual \F_4 codes from multidimensional circulant (MDC) graphs. We completely classify MDC graph codes for lengths 4n404\le n \le 40 and show that many optimal \dsb{\ell, 0, d} qubit codes can be obtained from the MDC construction. Moreover, we prove that adjacency matrices of MDC graphs have nested block circulant structure and determine isomorphism properties of MDC graphs
    corecore