research

Families of nested completely regular codes and distance-regular graphs

Abstract

In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius ρ\rho equal to 33 or 44, and are 1/2i1/2^i-th parts, for i{1,,u}i\in\{1,\ldots,u\} of binary (respectively, extended binary) Hamming codes of length n=2m1n=2^m-1 (respectively, 2m2^m), where m=2um=2u. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter DD equal to 33 or 44 are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive

    Similar works