1,456 research outputs found

    Providing Long-Term Participation Incentive in Participatory Sensing

    Full text link
    Providing an adequate long-term participation incentive is important for a participatory sensing system to maintain enough number of active users (sensors), so as to collect a sufficient number of data samples and support a desired level of service quality. In this work, we consider the sensor selection problem in a general time-dependent and location-aware participatory sensing system, taking the long-term user participation incentive into explicit consideration. We study the problem systematically under different information scenarios, regarding both future information and current information (realization). In particular, we propose a Lyapunov-based VCG auction policy for the on-line sensor selection, which converges asymptotically to the optimal off-line benchmark performance, even with no future information and under (current) information asymmetry. Extensive numerical results show that our proposed policy outperforms the state-of-art policies in the literature, in terms of both user participation (e.g., reducing the user dropping probability by 25% to 90%) and social performance (e.g., increasing the social welfare by 15% to 80%).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201

    A Unified And Green Platform For Smartphone Sensing

    Get PDF
    Smartphones have become key communication and entertainment devices in people\u27s daily life. Sensors on (or attached to) smartphones can enable attractive sensing applications in different domains, including environmental monitoring, social networking, healthcare, transportation, etc. Most existing smartphone sensing systems are application-specific. How to leverage smartphones\u27 sensing capability to make them become unified information providers for various applications has not yet been fully explored. This dissertation presents a unified and green platform for smartphone sensing, which has the following desirable features: 1) It can support various smartphone sensing applications; 2) It is personalizable; 2) It is energy-efficient; and 3) It can be easily extended to support new sensors. Two novel sensing applications are built and integrated into this unified platform: SOR and LIPS. SOR is a smartphone Sensing based Objective Ranking (SOR) system. Different from a few subjective online review and recommendation systems (such as Yelp and TripAdvisor), SOR ranks a target place based on data collected via smartphone sensing. LIPS is a system that learns the LIfestyles of mobile users via smartPhone Sensing (LIPS). Combining both unsupervised and supervised learning, a hybrid scheme is proposed to characterize lifestyle and predict future activities of mobile users. This dissertation also studies how to use the cloud as a coordinator to assist smartphones for sensing collaboratively with the objective of reducing sensing energy consumption. A novel probabilistic model is built to address the GPS-less energy-efficient crowd sensing problem. Provably-good approximation algorithms are presented to enable smartphones to sense collaboratively without accurate locations such that sensing coverage requirements can be met with limited energy consumption

    MODELING AND RESOURCE ALLOCATION IN MOBILE WIRELESS NETWORKS

    Get PDF
    We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational. Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications. In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency. In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods

    Mobile crowd sensing architectural frameworks: A comprehensive survey

    Get PDF
    Mobile Crowd Sensing has emerged as a new sensing paradigm, efficiently exploiting human intelligence and mobility in conjunction with advanced capabilities and proliferation of mobile devices. In order for MCS applications to reach their full potentials, a number of research challenges should be sufficiently addressed. The aim of this paper is to survey representative mobile crowd sensing applications and frameworks proposed in related research literature, analyze their distinct features and discuss on their relative merits and weaknesses, highlighting also potential solutions, in order to take a step closer to the definition of a unified MCS architectural framework

    Distributed Time-Sensitive Task Selection in Mobile Crowdsensing

    Full text link
    With the rich set of embedded sensors installed in smartphones and the large number of mobile users, we witness the emergence of many innovative commercial mobile crowdsensing applications that combine the power of mobile technology with crowdsourcing to deliver time-sensitive and location-dependent information to their customers. Motivated by these real-world applications, we consider the task selection problem for heterogeneous users with different initial locations, movement costs, movement speeds, and reputation levels. Computing the social surplus maximization task allocation turns out to be an NP-hard problem. Hence we focus on the distributed case, and propose an asynchronous and distributed task selection (ADTS) algorithm to help the users plan their task selections on their own. We prove the convergence of the algorithm, and further characterize the computation time for users' updates in the algorithm. Simulation results suggest that the ADTS scheme achieves the highest Jain's fairness index and coverage comparing with several benchmark algorithms, while yielding similar user payoff to a greedy centralized benchmark. Finally, we illustrate how mobile users coordinate under the ADTS scheme based on some practical movement time data derived from Google Maps

    Incentive Mechanism Design in Mobile Crowdsensing Systems

    Get PDF
    In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks, and mobile users equipped with mobile devices, in which the mobile users carry out sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying specialized sensing infrastructures and enable many applications that require resources and sensing modalities beyond the current mote-class sensor processes as today’s mobile devices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing devices (GPS)) integrate more computing, communication, and storage resources than traditional mote-class sensors. The current applications of MCSs include traffic congestion detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that one of the most significant characteristics of MCSs is the active involvement of mobile users to collect and share sensory data. In this dissertation, we study the incentive mechanism design in mobile crowdsensing system with consideration of economic properties. Firstly, we investigate the problem of joining sensing task assignment and scheduling in MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity, and iii) price diversity. Then, we design a distributed auction framework to allow each task owner to independently process its local auction without collecting global information in a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user one or more sub- working time durations and a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a continuous working time duration. Secondly, we focus on the design of an incentive mechanism for an MCS to minimize the social cost. The social cost represents the total cost of mobile devices when all tasks published by the MCS are finished. We first present the working process of a MCS, and then build an auction market for the MCS where the MCS platform acts as an auctioneer and users with mobile devices act as bidders. Depending on the different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern and a suboptimal auction mechanism for the discontinuous working pattern. Both of them can ensure that the bidding of users are processed in a truthful way and the utilities of users are maximized. Through rigorous theoretical analysis and comprehensive simulations, we can prove that these incentive mechanisms satisfy economic properties and can be implemented in reasonable time complexcity. Next, we discuss the importance of fairness and unconsciousness of MCS surveillance applications. Then, we propose offline and online incentive mechanisms with fair task scheduling based on the proportional share allocation rules. Furthermore, to have more sensing tasks done over time dimension, we relax the truthfulness and unconsciousness property requirements and design a (ε, μ)-unconsciousness online incentive mechanism. Real map data are used to validate these proposed incentive mechanisms through extensive simulations. Finally, future research topics are proposed to complete the dissertation

    Assignment of sensing tasks to IoT devices: Exploitation of a Social Network of Objects

    Get PDF
    The Social Internet of Things (SIoT) is a novel communication paradigm according to which the objects connected to the Internet create a dynamic social network that is mostly used to implement the following processes: route information and service requests, disseminate data, and evaluate the trust level of each member of the network. In this paper, the SIoT paradigm is applied to a scenario where geolocated sensing tasks are assigned to fixed and mobile devices, providing the following major contributions. The SIoT model is adopted to find the objects that can contribute to the application by crawling the social network through the nodes profile and trust level. A new algorithm to address the resource management issue is proposed so that sensing tasks are fairly assigned to the objects in the SIoT. To this, an energy consumption profile is created per device and task, and shared among nodes of the same category through the SIoT. The resulting solution is also implemented in the SIoT-based Lysis platform. Emulations have been performed, which showed an extension of the time needed to completely deplete the battery of the first device of more than 40% with respect to alternative approaches
    • …
    corecore