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Abstract

Smartphones have become key communication and entertainment devices

in people’s daily life. Sensors on (or attached to) smartphones can en-

able attractive sensing applications in different domains, including envi-

ronmental monitoring, social networking, healthcare, transportation, etc.

Most existing smartphone sensing systems are application-specific. How

to leverage smartphones’ sensing capability to make them become uni-

fied information providers for various applications has not yet been fully

explored.

This dissertation presents a unified and green platform for smartphone

sensing, which has the following desirable features: 1) It can support

various smartphone sensing applications; 2) It is personalizable; 2) It is

energy-efficient; and 3) It can be easily extended to support new sensors.

Two novel sensing applications are built and integrated into this unified

platform: SOR and LIPS. SOR is a smartphone Sensing based Objective

Ranking (SOR) system. Different from a few subjective online review and

recommendation systems (such as Yelp and TripAdvisor), SOR ranks a

target place based on data collected via smartphone sensing. LIPS is a

system that learns the LIfestyles of mobile users via smartPhone Sensing

(LIPS). Combining both unsupervised and supervised learning, a hybrid

scheme is proposed to characterize lifestyle and predict future activities

of mobile users.



This dissertation also studies how to use the cloud as a coordinator to as-

sist smartphones for sensing collaboratively with the objective of reducing

sensing energy consumption. A novel probabilistic model is built to ad-

dress the GPS-less energy-efficient crowd sensing problem. Provably-good

approximation algorithms are presented to enable smartphones to sense

collaboratively without accurate locations such that sensing coverage re-

quirements can be met with limited energy consumption.
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Chapter 1

Introduction

1.1 Vision

Figure 1-1: Sensing the world!

As a child, a teen or an adult, have you ever had the dream that you have certain

supernatural ability, such as clairsentience, clairaudience, or clairvoyance? This kind

of dream is commonly shared among different cultures. Mythic figures sometimes have

the superpower to perform extrasensory perception. They could receive information

far beyond what they could gain through physical senses.
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In Chinese mythology, there is a mythic figure called God ErLang, who has three

eyes. The third eye in the center of his front head is very powerful, with which he

can see wherever he wants to see. By leveraging the smartphone’s sensing ability and

cloud computing technology, we can bring every person ErLang’s third eye and the

superpower of sensing anywhere across the whole world.

This thesis explores the design, implementation and evaluation of an energy effi-

cient unified platform for smartphone sensing. Users of this platform will have the

extrasensory perception ability such that they can see, hear and sense anywhere they

want at any time (Fig. 1-1).

1.2 Background

Nowadays, Smart phones have evolved as key electronic devices for communications,

computing and entertainment, and have become an important part of people’s daily

life. People use smartphones taking pictures, recordings dialogs, browsing websites.

Most of smartphones (iPhone 5, iPhone 5S, Nexus 5, etc.) are equipped with a rich

set of embedded sensors such as camera, GPS, WiFi/3G/4G interfaces, accelerometer,

digital compass, gyroscope, microphone and so on [35]. As shown in Fig. 1-2, iPhone

5S [30] have at least 11 types of sensors.

Although not built for sensing, smartphones’ sensing ability have attracted many

research attentions in various research domains [35]. Some embedded sensors could be

directly used to collect useful information: front and back cameras on smartphones

can be used as image sensors; network interface could be used as network signal

strength sensors and coarse location sensors; GPS could be used as accurate location

sensors; Microphones could be used as acoustic sensors;

Other embedded sensors, such as: accelerometers, gyroscopes, light sensors and

proximity sensors, were originally designed to assist the phone’s display such as the
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Sensors contained in iPhone 5s

1. Cameras
2. Microphones
3. Accelerometers
4. Gyroscopes
5. Proximity Sensors
6. Ambient light Sensor
7. Moisture Sensor
8. WiFi Interface
9. Network Interface
10. Bluetooth Interface
11. Fingerprint Sensor 

Figure 1-2: Embedded sensors in iPhone 5S

screen orientation, screen brightness, and so on. These sensors could also be used

to provide useful information to help infer users’ background contexts. For example,

accelerometers could be used to infer user’s pace frequency. Moreover, in some exist-

ing projects, by analyzing features collected from multiple sensors, more interesting

information could be discovered. Such as, in Jigsaw project [43], user’s moving sta-

tus (walk, running, bicycling, etc.) could be inferred by jointly analyzing continuous

sensing readings from multiple sensors.

In recent years, a lot of third party external sensors have also been developed, such

as Jawbone up [31], Fitbit [19], Google Glass [23] and SensorDrone [63]. These ex-

ternal sensors can communicate with smartphones via Bluetooth protocol and extend

the smartphones’ sensing ability. For example, with a SensorDrone device connected,

a smartphone can sense the air pressure, brightness, temperature and humidity.

In this thesis, we propose to leverage emerging cloud computing model to build

a platform. To provide sensing applications for numerous cloud users with different

needs, the platform must be able to support various participatory sensing and oppor-

tunistic sensing applications on different smartphone platforms. Users could use this

platform to provide information and collect useful information.
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Figure 1-3: An external sensor: Sensordrone [63]

Two interesting sensing applications are built on top of the proposed platform as

examples of how to use the platform to develop sensing related applications. One is

used for objective ranking and the other for user’s lifestyle learning.

Objective ranking system: Currently, a few online review and recommendation

systems have attracted millions of users and are gaining increasing popularity. For

example, Yelp serves as an online urban guide, which provides user reviews, recom-

mendations and rankings of a large variety of local businesses including restaurants,

shops, theaters, etc. Another typical example is TripAdvisor, which has become the

world’s largest website for travelers. It provides user reviews, ratings and ranks for

hotels, restaurants, attractions in different places across the whole world. These sys-

tems usually rate and rank target places and attractions based on subjective ratings

and opinions provided by users. It is known commonly that human beings’ subjec-

tive opinions are easily biased. Since nowadays people always carry smartphones

with them, data collected via smartphone sensing can be used to evaluate a target

place. For example, for a coffee shop, based on readings from microphones, we can

know if it is quiet; based on readings from light sensors, we can know if it is bright;

based on readings from temperature sensors (on Sensordrones), we can know if it is

warm. So we design, implement and evaluate an objective ranking system, which

ranks target places based on (objective) data collected via smartphone sensing on top

of the platform. The objective of this application is not to replace the current rank-

4



ing/recommendation systems that are based on subjective user ratings but to enhance

them with objective data collected via various sensors to provide more comprehensive

and objective rankings and recommendations for users.

Users’ lifestyle learning: According to businessdictionary.com, “Lifestyle is

expressed in both work and leisure behavior patterns and (on an individual basis)

in activities, attitudes, interests, opinions, values, and allocation of income.” By

leverage the sensing ability of user’s smartphone, a comprehensive view of the context

(such as location, local weather, activities, etc.) of a mobile user over a long period of

time could be obtained. The lifestyle learning system we designed is to find out what

a mobile user likes to do (characterization) and what he/she will do next (prediction)

based on the collected sensor data. Such a lifestyle learning system can be used to

support a large variety of applications for improving life quality. For example, a

major application is to recommend local businesses to mobile users based on not only

his/her location but also his/her lifestyle. This work represents one of the first efforts

along this line, which is focused on lifestyle learning, while leaving lifestyle-aware

recommendation or lifestyle-based applications for future research.

There are primarily two smartphone sensing paradigms [64]: Participatory Sensing

and Opportunistic Sensing. In participatory sensing, mobile users actively engage in

sensing activities by manually determining how, when, what, and where to sense. In

opportunistic sensing, sensing activities are fully automated without the involvement

of mobile users.

However, a phone’s main job is not sensing after all. Performing sensing tasks may

consume a significant amount of energy of a smartphone. Therefore, without carefully

managing very limited energy resources on smartphones, users may end up with an

awkward situation after performing a few sensing tasks, in which phones run out of

energy when they are needed to make phone calls. To our best knowledge, funda-

mental energy-efficient resource management problems have not been well studied for

5



smartphone sensing. Furthermore, unlike a traditional sensor network which is usu-

ally operated by a single organization, smartphones and their sensors are owned and

controlled by different individual users. Hence, the mobility is totally uncontrollable

and hard to predict. As shown in one of our research publications [65], in case of some

sensing tasks need multiple smartphones to participate, significant data redundancies

will exist if each smartphone senses independently. In this thesis we will present

how to efficiently schedule sensing tasks to save total energy consumption. Moreover,

most smartphone sensing applications are location-dependent. If energy-hungry GPS

is turned on during the whole sensing procedure, the battery may be drained very

quickly. So a GPS-free collaborative sensing tasks scheduling could significantly save

the total energy consumption, which will be presented in this thesis.

We will review some existing research results in the related field in Section 1.3.

1.3 Related Work

Research effort has been made to apply smartphone sensing in multiple domains:

environmental monitoring, transportation, healthcare, social network, etc. For exam-

ple:

Environment monitoring: a smartphone sensing application, called PEIR (Per-

sonal Environmental Impact Report) [53], was developed to use location data sampled

from smartphones to calculate personalized estimates of environmental impact and

exposure. Ear-Phone [59] is a smartphone based urban noise monitoring system.

NoiseTube [46] has the similar functionality. In addition, www.sensorly.com is a web-

site which offers free access to 100% community powered coverage maps for various

wireless networks (3G/4G/WiFi). Their mapping crowd collects data every day us-

ing a free application on smartphones, which produces a true picture of the carriers’

coverage. Lu et al. proposed SoundSense in [42], a scalable framework for modeling

6



sound events on smartphones, which uses a combination of supervised and unsuper-

vised learning techniques to classify both general sound types (e.g., music, voice) and

discover novel sound events. SoundSense was implemented on the iPhone and repre-

sents the first sound sensing system specifically designed to work on resource limited

smartphones.

Traffic monitoring: Since users also carry smartphones when they driving.

Smart phone based traffic monitoring systems have been developed. For example,

CalTel [29] uses smartphones to collect traffic information, WiFi information on the

road. Nericell [51] is a smartphone sensing based road condition and traffic monitor-

ing system, which uses various sensors on a smartphone to detect potholes, bumps,

braking and honking. Another system is VTrack [69], a mobile sensing system which

tracks the traffic delays and congestions. In VTrack, drivers’ smartphones are used to

provide spatio-temporal samples to monitor traffic delays. Specifically, VTrack uses

WiFi signals to estimate the driver’s locations, along with a hidden Markov model

based map matching method, to identify the road segments and the time spent on

these segments.

Personal health monitoring: UbiFit Garden [9] is a smartphone sensing system

jointly developed by Intel and University of Washington, which uses small inexpen-

sive on-body sensors and machine learning techniques on activity modeling to infer

people’s activities throughout everyday life. This system captures levels of physi-

cal activity and relates this information to personal health goals when presenting

feedback to the user for encouraging physical activity. DietSense system [60] is a

smartphone based diet monitoring system, which captures images automatically dur-

ing mealtime. Users could keep track their diets while professions performing analysis.

BALANCE [14] is another smartphone sensing system which monitors people’s eating

and activity behaviors and encourage healthier lifestyles. BALANCE automatically

detects the user’s caloric expenditure via sensor data from a Mobile Sensing Platform

7



unit worn on the hip. HealthSense [66] is a patient monitoring system which aims to

provide professionals more information than he/she can manually interpret. Health-

Sense transmits sensor data from the patient to a server for analysis via machine

learning techniques. In another project [36], Lee et al. connected the ZigBee-based

built-in blood glucometer to smartphones. The measured blood glucose could be

transmitted directly to the web. Leijdekkers and Gay [38], developed a heart attack

self-test system. In this system, electrocardiogram sensors are wirelessly connected

with a smartphone, which can collect a mobile user’s symptoms and send them to

a smartphone application. The mobile application can then analyze the streaming

data to detect the onset of a heart attack. If the application assesses that the user

is at risk, it will urge him/her to call the emergency application immediately. If the

user has a cardiac arrest, the application will automatically determine his/her current

location and alert the ambulance application.

Social network: Smart phone sensing could provide more information to social

networks besides text, image and videos. As its name suggests, Micro-blogs [20] is a

smartphone sensing system developed for social networks. This system let users post

geotagged blog entries and enhance them with sensing data (e.g., audio records, pic-

tures, accelerometer data, or WiFi coverage) captured via their smartphones; query

and browse information via a digital map application; and send requests to smart-

phones in the region of interest. By applying machine learning algorithm to collected

sensing data(e.g. acceleration, audio samples, pictures, neighboring devices, and lo-

cation) captured by the smartphone, CenceMe system [49] can derive user’s personal

sensing presence (e.g., walking, in conversation, at the gym) and share this informa-

tion through social networks.

General-purpose smartphone sensing systems have also been introduced by a few

recent works. In [41], the Bubble-Sensing framework was proposed to bind sensing

tasks to a specific physical locations of interest. This framework can be used for both

8



opportunistic and participatory sensing. Mobile users are selected to collect informa-

tion, such as background noise and photo. A “bubble” task can be bound to the loca-

tion of interest and remains active for a period. This sensing framework could be used

to keep a living documentary of places of interest. Cornelius et al. introduced Anony-

Sense in [11], which is a privacy-aware system for smartphone sensing. Designed for

community-oriented information applications, AnonySense distributes sensing tasks

among a set of anonymous mobile devices, and collect verified yet anonymous sensing

results. The proposed system aims at addressing the privacy concerns in large-scale

sensing applications.

In [12], Das et al. presented a Platform for Remote Sensing using Smartphones

(PRISM). PRISM enables third-party applications to be packaged as executable bi-

naries and push them automatically to an appropriate set of phones. The smartphone

end of PRISM will then execute the received executable file.

Sensing scheduling and coordination have been studied in the context of smart-

phone sensing recently. A protocol, Aquiba [68], was proposed to exploit opportunis-

tic collaboration of pedestrians for smartphone sensing. In [72], several mechanisms

were introduced for automated mapping of urban areas that provide a virtual sensor

abstraction to applications. Spatial and temporal coverage metrics were also pre-

sented for measuring the quality of acquired data. In a recent work [65], Sheng et al.

presented optimal algorithms and practical heuristic algorithms for energy-efficient

collaborative sensing scheduling problems.

There are several drawbacks of application-specific solution:

1) Most existing smartphone sensing systems, such as systems presented in [9,20,36,

38,42,50,51,53,59,69] are application-specific. Significant overhead exists in sensing

application development, since some functionalities are needed to be developed

repeatedly, such as how to communicate with backend server.

2) There will be a large set of sensing applications, which brings maintenance diffi-
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culty. Users need to install different applications for different use cases, which is

really inconvenient.

3) Even though PRISM [12] is a general-purpose mobile sensing platform, the sens-

ing tasks delivered to smartphones are packaged as executable binaries, which

are platform-dependent (Windows Mobile only) and may cause security issues.

AnonySense [11] uses a customized, yet very limitedly-used Lisp dialect for im-

plementation. Therefore, its applicability is very limited.

4) Energy-efficiency has not been addressed by these related works. It is hard to

coordinate multiple sensing apps running on one smartphone, which make the

sensing not energy efficient.

On energy-efficient collaborative sensing scheduling, only few recent works are re-

lated. In [72], the authors introduced mechanisms for automated mapping of urban

areas that provide a virtual sensor abstraction to applications. They also proposed

spatial and temporal coverage metrics for measuring the quality of acquired data.

In [68], the authors proposed a protocol, Aquiba, that exploits opportunistic collab-

oration of pedestrians. Its performance was studied via simulations. Collaborative

sensing has been well studied for mobile sensor networks. In [79], Zhou et al. con-

sidered how to deploy mobile sensors into an existing sensor network to enhance its

connectivity and coverage, and presented a dynamic programming based algorithm

under the assumption that each sensor is equipped with GPS. Several distributed

algorithms were presented for a sensing coverage problem in [78], which do not need

any location and distance information. In [61], Saipulla et al. explored the funda-

mental limits of sensor mobility on barrier coverage and presented a sensor mobility

scheme that constructs the maximum number of barriers with minimum sensor mov-

ing distance.

However, these existing research works have certain drawbacks: 1) Closely re-
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lated works [68, 72] presented heuristic algorithms that cannot provide performance

guarantees. 2) The algorithms presented in [61,78,79] for mobile sensor networks (in

which sensor mobility can be controlled to achieve certain sensing coverage) cannot

be applied here because the mobility of smartphones is usually uncontrollable.

1.4 Contributions

In this section, the contributions of this thesis will be clearly presented.

First, the design and implementation of a unified platform is presented. The

proposed system is general enough such that various opportunistic and participatory

sensing applications(which may even involve a large variety of sensors) could run on

top of it. The overhead to launch a new sensing application is very little, since the

proposed platform can be easily and quickly reconfigured. Old inefficient algorithms

or policies could be easily replaced with new ones. Energy-efficiency is taken into

consideration during the platform design. The data could be shared among multiple

running applications.

Then, two smartphone sensing applications are built on top of the platform :

1)SOR: SOR stands for “Sensing based Objective Ranking system”. Different from

a few online review and recommendation systems (such as Yelp and TripAdvisor)

which usually rate and rank places and attractions based on subjective ratings pro-

vided by users, SOR ranks a target place based on data collected via smartphone

sensing. 2)LIPS: LIPS is the abbreviation for “Lifestyle learning via smartPhone

Sensing”. Combining both unsupervised and supervised learning, this general system

can characterize and predict users’ lifestyle.

How to leverage cloud-assisted collaborative sensing to reduce sensing energy con-

sumption for smartphone sensing applications is also studied in this thesis. By solving

the modeled minimum energy sensing scheduling problem, it is shown that signif-
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icant energy savings can be potentially achieved by using collaborative sensing in

smartphone sensing applications. Since GPS is really energy consuming and accu-

rate location information is not always available, this thesis also solved the GPS-less

energy-efficient sensing scheduling problem for mobile crowd sensing. A probabilistic

model for sensing coverage without accurate location information (provided by GPS)

is proposed. A GPS-less energy-efficient protocol for sensing scheduling based on the

probabilistic coverage model is proposed for the real use.

The contribution of this thesis could be summarized as follow:

1) A unified platform is designed and implemented. The architecture of the pro-

posed system not only can be easily adjusted to meet the new sensing needs, but also

can be easily extended to meet the new sensing technology.

2) A mobile sensing based objective ranking application is developed on top of the

unified platform. An online scheduling algorithm is proposed and used to schedule

sensing activities for coverage maximization, which has a constant approximation

ratio of 1/2. A personalizable ranking algorithm is developed and used to rank target

places based on various sensor readings and user preferences. The SOR system is

validated and evaluated via both field tests (using real hiking trails and coffee shops

in Syracuse, NY as target places) and simulation.

3) A mobile sensing based lifestyle learning application (LIPS) is built on top of

the unified platform. A hybrid scheme, combining both unsupervised and supervised

learning, for lifestyle learning is proposed. The system first characterizes the lifestyle

of a mobile user using Places of Interest (PoIs). Then based on discovered PoIs, LIPS

could predict user’s future activities using a supervised classification algorithm. In

addition, an adaptive sampling algorithm for improving energy efficiency is proposed

for this system. LIPS has been validated and evaluated via extensive field tests.

4) This thesis also studied how to leverage cloud-assisted collaborative sensing

to reduce energy consumption for smartphone sensing applications. By assuming
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the moving trajectory of each mobile user is known in advance, a polynomial-time

algorithm is proposed to obtain minimum energy sensing schedules, which can be used

to show potential energy savings that can be brought by collaborative sensing and

can serve as a benchmark for performance evaluation. This thesis also presented an

algorithm to achieve a good trade-off between total energy consumption and fairness.

Under realistic assumptions, two practical and effective heuristic algorithms: the

prediction-based algorithm and the function-based algorithm are proposed. It has

been shown by simulation results based on real energy consumption and location data

that compared to traditional sensing without collaborations, collaborative sensing

significantly reduces energy consumption, and the proposed function-based algorithm

performs well in terms of both total energy consumption and fairness.

5) This thesis proposed a probabilistic model for sensing coverage without accu-

rate location information. Based on that and under a strong assumption that the

moving trajectories of mobile users are known in advance, a (1 − 1
e
)-approximation

algorithm is proposed to minimize the energy consumption, and a 1
2
-approximation

algorithm is proposed to minimize energy consumption while taking fairness into con-

sideration. Both algorithms could be solved in polynomial time respectively. Under

realistic assumptions, a GPS-less and energy-efficient protocol for sensing scheduling

is proposed based on the proposed approximation algorithms. It has been shown

by simulation results that the proposed protocol significantly outperforms a baseline

method in terms of coverage probability. Experimental results from a field test are

also presented to validate the proposed protocol.

1.5 Outline Of This Thesis

The rest of this thesis is organized as follows:

In Chapter 2, the design and implementation details of the unified platform are
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presented. In this chapter, first we will give an overview of the unified platform’s

architecture and analyze its performance requirements in Section 2.2. Then the im-

plementation details of our proposed solutions to address these needs is presented in

Section 2.3 and Section 2.4 for mobile frontend and backend, respectively.

In Chapter 3, a Sensing based Objective Ranking system(SOR) is presented. In

this chapter, how to implement this application on top of the proposed unified plat-

form is presented in Section 3.2. The scheduling and ranking algorithms are presented

in Section 3.3 and Section 3.4 respectively. The experimental and simulation results

are presented and analyzed in Section 3.5.

The design, implementation and validation details of a lifestyle learning applica-

tion are presented in Chapter 4. The implementation details of the proposed ap-

plication are presented in Section 4.2. The proposed learning scheme and adaptive

sampling algorithm are presented in Section 4.3 and Section 4.4 respectively. We eval-

uate the LIPS via field test and the results are presented and analyzed in Section 4.5.

The study of energy-efficient collaborative sensing will be presented in Chapter 5.

With accurate location information available, we present the flow based scheduling

algorithm in Section 5.2.2. A practical GPS-less collaborative sensing scheduling

algorithm is presented in Section 5.3.2.

The conclusions of this thesis and future works are presented in Chapter 6.

14



Chapter 2

System Design Of A Unified

Platform

2.1 Overview

In this chapter, we will present the design and implementation of a unified platform.

As we presented in last chapter (Chapter 1), in the field of smartphone sensing,

the contributions of most existing works focus on how to apply mobile sensing in a

particular domain rather than propose a general system design.

This application-specific system design will bring several drawbacks:

1) Significant overhead exists in sensing application development.

2) There will be a large set of sensing applications, which brings maintenance diffi-

culty.

3) Users need to install different applications for different use cases, which brings

inconvenience to users.

4) Energy efficiency has not been addressed by these related works. It is hard to

coordinate multiple sensing applications running on one smartphone, which makes
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the sensing not energy efficient.

Recently, efforts have been made to develop general systems to support various

smartphone sensing applications, however the existing systems have several draw-

backs as we analyzed in Section 1.3: 1) PRISM [12] uses executable binaries to

deliver sensing tasks to smartphones, which is platform-dependent (Windows Mobile

only) and may cause security issues. 2) AnonySense [11] uses a customized yet very

limitedly-used Lisp dialect for implementation. 3) Energy efficiency has not been well

addressed by any of them.

To address the listed drawbacks, in this chapter, we propose a cloud coordinated

unified (instead of application-specific) platform, as illustrated in Fig. 2-1. The fol-

lowing important issues need to be addressed in the unified platform:

1) The platform must be flexible enough such that it can support various opportunistic

and participatory sensing applications. Since different sensing applications may

involve different sensors, the platform must be able to collect data from the sensors

and meet each application’s accuracy requirement.

2) The platform must be able to be extended to new sensors that may connected to

the smartphones. The platform must be designed that new sensing applications

can be easily developed and quickly deployed.

3) New sensing policies which specify the sensing data type, sensing accuracy and

sensing conditions can be easily adjusted without affecting other sensing applica-

tions running on the same platform.

4) The server side should be able to easily adjust the task distribution and coor-

dinate algorithms. New backend functional modules (data analysis modules or

data handling modules) should be easily deployed without affecting the existing

modules.

16



5) Minimizing sensing energy consumption should be taken into consideration during

system design.

As illustrated in Fig. 2-1, the proposed platform consists of two parts: Mobile fron-

tend and Cloud Backend. The mobile frontend is implemented on each smartphone

as an application, which can manage all sensors connected to that phone and admin-

istrate the sensing tasks locally. The cloud backend contains two types of functional

modules: online modules and offline modules. Online modules are those modules used

to handle the requests which need real-time response, such as users’ authentications,

sensing data upload and task distributions. Offline modules includes database and

some modules used to handle computational expensive data processing tasks. Offline

modules do not communicate with frontend directly. The processing results will be

either stored back to database or be forwarded to online modules for further handling.

The Online and Offline modules can be mapped to Multiple sensing servers (which

can be physical servers or virtual-machine-powered servers) to scale up the system.

Cloud Backend

Online Modules

Mobile
Frontend

Offline Modules

Figure 2-1: Unified platform overview

The rest of this chapter is organized as follows: we will present system architecture

overview in Section 2.2. The implementation details of mobile frontend and cloud

backend are presented in Section 2.3 and Section 2.4 correspondingly.

17



2.2 System Design

In the previous section, we analyzed the existing systems’ drawbacks and proposed a

cloud coordinated unified mobile platform as shown in Fig. 2-1.

In this section, we will present the overview of the system architecture and the

technical details of the system.

Sensing 
Server

Database 
Server

Web 
Server

Load 
Balancer

Mobile Phones

Cloud User

Sensing request Sensed data

Sensing task Sensed data

Sensing 
Server

Sensing 
Server

Sensing 
Server

Figure 2-2: A cloud coordinated unified platform
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A typical cloud coordinated unified platform is plotted in Fig 2-2. The differences

between Fig. 2-1 and Fig 2-2 are: 1) Online-modules and off-line modules are plotted

together into a cloud; 2) Detailed function components are plotted in Fig 2-2.

When a cloud user initiates a sensing request through a web front-end from either

a smartphone or a computer (desktop/laptop), the request will be handled by one of

the sensing servers to process the request. Sensing server will calculate and select a

subset of smartphones that are able to fulfill the sensing tasks. For example, sensing

server may select a subset of smartphones located close to the target places. Sensing

server will dispatch sensing tasks to the selected smartphones and collect sensing

data when tasks are fulfilled by these smartphones. The sensed data will then be

stored in the database and analyzed. Analytic results will be returned to the cloud

user who requests the application. An interesting feature of such a system is that a

smartphone user (or simply mobile user) can be not only a cloud (application) user

who can request sensing applications from the cloud but also an application provider

who fulfills sensing tasks according to sensing requests from other mobile users. A

load balancer could be used to balance the traffic when system is scaled up. Multiple

sensing servers can be deployed to handle sensing requests from different locations.

The following functionalities should be supported by the cloud coordinated unified

platform:

1) It needs to provide an interface for collecting sensing request information from

cloud users, which can be accessed via a mobile device or a regular computer.

2) It needs to generate new sensing tasks in a standard format based on the sensing

request (e.g., what sensors to use, what data to collect, what is the area of interest,

how many readings to collect, etc.) collected from the web interface.

3) It needs to maintain important information of a list of smartphones that are avail-

able for participating in sensing tasks, including locations, available sensors, resid-
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ual energy, etc.

4) It needs to provide an interface between a sensing server and smartphones for

pushing sensing tasks to smartphones and collecting sensed data from them.

5) It needs to schedule sensing activities of the set of smartphones recruited for each

sensing task using a scheduling algorithm or policy.

6) An application needs to be deployed on each smartphone to operate its sensors

to perform the requested sensing actions, collect sensed data and send them to a

sensing server.

7) It should be able to obtain sensed data from smartphones, store some useful infor-

mation to the database (for future use) and/or return data reports to users.

DataBase

Caches
Phones 

Administrator
Tasks 

Monitor

Tasks 
Scheduler

Data 
Handler

Online Modules

Data 
Analyzer

Task
Generator

Offline Modules

Sensor 
Manager

Task
Manager

Moble Frontend

Preferences
ManagerSensor 

Manager
Task

Manager

Moble Frontend

Preferences
ManagerSensors 

Manager
Tasks

Manager

Moble Frontend

Preferences
Manager

Figure 2-3: The software architecture

Next, we present the software architecture of the proposed platform, which consists

of the following modules (Fig. 2-3).
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1) Task Generator: It generates a new sensing task in a standard format based on

application need. Task Generator contains a pool of sensing task templates for

different use cases. Experienced users could also upload their own sensing tasks to

the Task Generator for future use. Sensing tasks are a set of scripts which describe

what/how to sense, what is the area of interest, etc.

2) Data Analyzer: It contains a set of analytic functions to process the collected

sensing data.

3) Data Handler: It acts as a representative for the persistent database or in-

memory data server (explained later). All reads/writes to the database or in-

memory data server go through this module.

4) Tasks Scheduler: It schedules sensing activities of a set of smartphones for each

sensing task according to a given sensing scheduling protocol. Scheduling protocols

are application specific, and detailed discussion will be presented in the following

chapters.

5) Phones Administrator: It maintains important information of a list of smart-

phones that are available for undertaking sensing tasks, including locations, avail-

able sensors, etc.

6) Tasks Monitor: It monitors the progresses of running tasks and serves as an

interface between a sensing server and smartphones by pushing sensing tasks to

smartphones and collecting sensed data from them.

7) Sensor Manager: It operates sensors on a smartphone to take the required sens-

ing actions. Since sensors on modern smartphones usually work in an asynchronous

manner, after sensing actions are taken, it notifies the Task Runner when sensed

data are ready.
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8) Tasks Manager: It manages the life cycle of received tasks, interprets each sens-

ing task and fulfills this task by instructing the Sensor Manager to operate sensors,

gathering sensed data, and uploading the data to a sensing server.

9) Preferences Manager: It manages each smartphones unique preferences for pri-

vacy protection.

The proposed system has the following desirable features:

1) The frontend’s architecture is so scalable that various embedded and external sen-

sors can be easily integrated into it.

2) The frontend is energy efficient.

3) The frontend’s design takes concurrency into concern that multiple sensing tasks

could run on it.

4) the communication protocol is designed to enhance the communication efficiency

and security.

5) Backend server’s modularized design makes it easier to be customized. More func-

tionality could be easily added to the backend without changing the existing func-

tionalities.

2.2.1 Technical Details

In this subsection, we will explain the issues met in the design and implementation

of this platform in details. We need to make sure that all the key issues described

above will be well addressed by our design and implementation.

First, to create a unified platform, scripts (instead of binary codes [12]) are used

to describe every sensing task, which can be pushed to smartphones for execution. A

mobile application was developed to execute scripts with the help of an interpreter

and manage all available sensors. Essentially, the Task Generator can be implemented
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as a script generator which generates scripts to specify sensing tasks based on task’s

type. Our platform also allow experienced users to submit scripts for their own sensing

tasks to the Task Generator directly.

This design choice has the following advantages:

1) Scripting languages can enable dynamic and flexible loading of programs on smart-

phones. By using a scripting language, we can integrate an interpreter into the

mobile application, and download and interpret scripts on-the-fly. In this way, the

flexibility and speed of loading sensing tasks can be significantly boosted.

2) Scripting languages can enable portability for our system. Mobile devices may use

different CPU architectures, such as ARM, MIPS, Sparc, x86, each having its own

instruction set and Application Binary Interface (ABI), which is different from

those of others. Moreover, if binaries are used, we have to deal with the 32bit VS.

64bit problem. With a scripting language, sensing tasks described using scripts can

run on different hardware platforms, which can effectively increase the population

of sensing crowd.

3) Scripting languages can also enhance security. The original scripts can be en-

crypted and signed by our sensing servers, which will prove they are indeed deliv-

ered from our trusted servers. Furthermore, binary codes can introduce potential

security issues. Inspecting the potential security problem in binary package is much

harder than doing that for scripts written in plain text, a scripting language can

eliminate these potential problems by running scripts in a sandbox and only allow-

ing them to use white-listed APIs such that they only interact with the hardware

through trusted codes.

Lua [44] is the scripting language we chose in our platform. Lua is a powerful,

fast, lightweight, and embeddable scripting language. It combines simple procedural

syntax with powerful data description constructs based on associative arrays and
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extensible semantics, which is exactly what we need for specifying sensing tasks. Lua

interpreter is integrated into the sensing platform to interpret the sensing scripts

written in Lua at run time. We enrich Lua library with self-defined sensing related

functions, Lua interpreter can only interact with smartphone through the defined

functions. We will give detailed discussion of sensing script in Section 2.3.

When designing the Cloud backend system, modularity was taken into account.

Modularity plays a key role in designing a reconfigurable and reliable system. Every

major functionality of this platform is implemented as an independent module with

well-defined interfaces to interact with other components. We used Python [57] with

Django [16] Framework to build the sensing server. Django is a high-level Python Web

framework that encourages rapid development and clean, pragmatic design. With the

help of Django, we can implement components as separate modules, each of them can

be used to handle requests sent to it independently. Users could specify their choice

of how to combine existing modules.

In addition, with the module-based design, it is very easy to reconfigure a single

part of the system for specific purposes. This can even be done on a per-application

basis. For example, in order to improve energy-efficiency, efficient algorithms can

be developed for mobile phone scheduling on the server side with the objective of

minimizing and balancing power consumption. This will be discussed in greater detail

in Chapter 5. Furthermore, machine learning based data modeler and predictor can

also be developed as an add-on module for data analysis. We will introduce this kind

of add-on in Chapter 4.

Availability and security need to be ensured for data storage. We selected a

mature relational database, PostgreSQL [56] as the persistent storage solution for our

platform. PostgreSQL has more than 15 years of active development and a proven

architecture that has earned it a strong reputation for reliability, data integrity and

correctness. Choosing PostgreSQL to store sensed data can give us high confidence
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on the availability and safety of our data.

With all these considerations, we believe our platform has addressed our design

goals. It can be used to fulfill all kinds of sensing applications with a large scale of

users.

In the following sections, we will present the implementation details of the mobile

frontend and cloud backend.

2.3 Mobile Frontend Implementations

In this section, we present the design and implementation details of the mobile fron-

tend in Cloud coordinated platform. As illustrated in Fig. 2-4, the mobile frontend

contains the following modules: Message Handler, Task Manager, Local Database,

Script Interpreter, Sensor Manager and Sensor Providers. The mobile frontend is

implemented as a mobile application that runs on each mobile user’s smartphone.

The Message Handler serves as an interface for communications between the mo-

bile frontend and a sensing server. HTTP is used as the communication protocol.

All the communications between frontend and backend are serialized to binary data,

according to our own defined communication protocol. The communication is also

encrypted. Binary data is stored in the message body of an HTTP message. In

this way, we can minimize traffic load and enhance security since the third party

system does not know how to decode it). The Message Handler is responsible for

encoding/decoding the message body.

The other functionalities of the Message Handler include: 1) it dispatches an in-

coming message to the intended sensing application currently running on top of the

platform. The applications Register contains a set of mappings. Each mapping maps

an incoming server’s key to a receiving application. Message Handler uses this to de-

cide how to distribute the incoming messages. 2) It encodes data obtained from sen-
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sors in a message and sends it to a sensing server. 3)It can communicate with a Google

server. This is useful when a sensing server loses track of a particular smartphone, it

can ask the mobile device to ping it via a Google Cloud Messaging server. 4) It can

prevent a smartphone from going to sleep during communications with a server, which

is implemented by using the Android system API powerManager.newWakeupLock().

Every time when a sensing server needs a smartphone to undertake a sensing

task, it will include all necessary information (e.g., when to sense, how to sense,

etc.) in an HTTP message, which will then be sent to the Message Handler on

the mobile frontend. Message handler dispatches decoded messages to the signed

application, based on the applications register information. How to sense, i.e., what

data to acquire, is described using the Lua [44] scripting language. As introduced in

Section 2.2.1, Lua is a powerful, fast, lightweight, and embeddable scripting language.

It combines simple procedural syntax with powerful data description constructs based

on associative arrays and extensible semantics, which make it quite fit for sensing

task description. Sample Lua scripts (with comments) are presented in Fig. 2-5.

Note that those functions such as get light readings() and get location() in

the scripts are functions defined by us and will be mapped to the callback functions

(for asynchronous data fetching).

Figure 2-5: Sensing script
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Multiple Sensing applications could run on top of the sensing platform. These ap-

plications are independent of each other and have their own Application Manager and

Preferences Manager. Application Manager contains the setting of the application,

such as the default sensing script of the application and default uploading server’s IP

address. If the application is a periodic application, (such as LIPS application which

we will present in Chapter 4) the application manager will also set the task period

and trigger the sensing task periodically by sending the stored sensing script to Task

Manager.

The Preferences Manager enables a mobile user to setup his/her preferences for

each application. For example, a user could indicate he/she doesn’t want to use the

limited data plan for transmitting/receiving sensing data. If so, data uploading occurs

only when WiFi connection is available. When WiFi connection is not available, local

database is used to store sensor data acquired by the task instance. The task manager

will upload the sensing results when a stable WiFi connection is available. Another

example is: the user might indicate a certain time period that he/she isn’t willing to

provide sensing data due to privacy concerns.

The Task Manager manages the data collection procedure, which has four func-

tionalities: 1) tracking all these task instances. 2) triggering task instance to collect

data from sensors; 3) handling failures (such as rebooting a failed sampling task in-

stance); 4) encapsulating sensor data and notifying the message handler to upload

them to the cloud backend.

After receiving a sensing message, each incoming task will be served by a task

instance, which will be hosted by a thread. The Task Manager will manage all the

sensing instances. A task instance sends the corresponding Lua scripts to the Script

Interpreter for translation. The interpreter can interpret both Lua’s own functions

and the functions we defined for data acquisition. The script interpreter tells the task

instance which Java function to call to obtain data from sensors since the Android
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system cannot recognize Lua scripts. Note that security can be enforced here by only

allowing a white list of security-ensured functions to be called. A task instance is

a self-contained component, which maintains its own status (e.g., running, waiting

for data, etc.), calls proper API functions to acquire data from sensors, and manages

data collected from sensors. The mobile frontend is a multi-tasking system, where

concurrency is well supported. At one time, there can be multiple sensing task in-

stances running on the frontend. Those task instances can acquire data from one or

multiple sensors simultaneously.

Sensors in mobile frontend are managed by the Sensor Manager and providers.

We create a provider for one or multiple related sensors. A provider is basically a

software component which actually operates a “sensor” using APIs provided by the

android system or a third party to collect data. Note that the definition of “sensor”

here has a much broader meaning, which refers to data sources that can provide

context information of a mobile user. Therefore a sensor could be: 1) an embedded

sensor (such as GPS, accelerometer, digital compass, etc.) on a mobile phone; 2) a

application that can provide context information (such as local weather) to mobile

users via APIs; 3) an external sensor (such as Fitbit [19], SensorDrone [63], etc.) that

can be connected to a smartphone via its network interface (such as Bluetooth); 4) a

restful network application which could provide useful information, such as weather

information and maps information.

Data acquisition from a sensor is done asynchronously so that an operation will

not block or be blocked by others. When a sampling task instance requests data, the

sensor manager directs the call to the corresponding provider to actually acquire data

from sensors. Moreover, the sensor manager can cancel data acquisition if timeout.

Note that each Provider maintains a data buffer which buffers data collected from

its sensor and can even share them with multiple different tasks. In this way, energy

consumed for sensing can be reduced.
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We summarize sensors supported by the current implementation, their type (em-

bedded or external) and the corresponding information that can be obtained from

them in Table 2.1

Table 2.1: Sensors supported by mobile frontend
Sensor Type Usage Unit

2G/3G/4G interface Embedded signal strength dBm
Accelerometer Embedded Acceleration m/s2

Gyroscope Embedded Orientation rad/s
Light sensor Embedded light level Lux

Magnetic Field Sensor Embedded Magnetic field level Micro-Tesla
Microphone Embedded relative sound Level value in [0, 32767]

Proximity sensor Embedded Proximity distance cm
WiFi interface Embedded signal strength dBm

The architecture of the mobile frontend is scalable because new sensing application

can be easily developed and integrated into it. To support a new application, the

developers only need to: 1) import the application’s application Manager module,

which contains the basic settings; 2) register the application in applications Register.

Also various sensors can be easily integrated into it, which is achieved by Sensor

Manager and Providers. If we want to make mobile frontend to support a new sen-

sor (embedded or external), we only need to create a Provider for that sensor. The

provider needs to be registered with the Sensor Manager via the Provider Register,

which keeps a list of currently supported sensors and the corresponding data acqui-

sition functions we defined (such as get light readings() and get location()).

When a task instance requests data by calling such a data acquisition function, the

Sensor Manager directs the call to the corresponding Provider to actually acquire

data from sensors.

In this section we have presented the implementation details of mobile frontend.

Implementation of cloud backend is presented in the next section.
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2.4 Cloud Backend Implementations

In this section, we present the system architecture of the cloud backend for the unified

platform, and discuss related implementation details.

The architecture of cloud backend is depicted in Fig. 2-6, which consists of online

modules and offline modules. In our design, the online modules are designed to be

light-weighted and can provide immediate responses to the mobile frontend. Online

modules support a set of applications for the mobile frontend, including login, raw

data handling, messaging, task monitoring, etc. The offline modules are designed to

handle computational-intensive and time-consuming workload. The offline modules

can be physically separated and run on powerful servers. This design ensures that

online requests from the mobile frontend are not delayed by the time-consuming

processes, which include data statistical analysis, machine learning model building

and query information from third-party applications, etc. The system design makes

it easy to scale up the system horizontally since more computing power could be

added to support offline learning without affecting the online part.

As illustrated in Fig. 2-6, A sensing server consists of User Manager, Sensing Tasks

Monitor, Sensing Data handler, Data Pre-processor, Machine Learning Modules, ap-

plication Modules, REST Information Providers, Database and Memory Caches.

The Message Handler in the sensing server is quite similar to its counterpart

in the mobile frontend. It communicates with the mobile frontend using HTTP

and dispatches incoming message to different components. Modules Register helps

Message Handler to dispatch messages to appropriate online modules.

User Manager handles system login, user authentication and user information

update. User Manager maintains the currently available users’ information. Those

information could be used as input for other modules, such as scheduling modules,

which we will present for each application.

Here, a sensing task is defined as a procedure of acquiring data from sensors for
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a target place. The Sensing Tasks Monitor keeps tracking all necessary information

related to sensing tasks, including its initiator (who initiates the sensing task), the

Lua scripts defining the corresponding data acquisition procedure (See Fig. 2-5 for

an example), and its running status(initiated, running, finished or failed).

If the received message includes sensed data, the message will be handled by

Sensing Data Handler. The Sensing Data Handler will validate the collected sensor

data: if the data doesn’t comply with the corresponding sensing script (i.e. a required

feature, such as location, is missing), they will be discarded; If the collected data is

valid, sensing data handler will notify the Data Pre-processor when raw sensor data

are ready.

In cloud backend, we choose the PostgreSQL [56] for storing data, which is an

open-source Object Relational Database Management System (ORDBMS) with an

emphasis on extensibility and standards compliance. To improve the performance,

Memory Caches are used to cache the recent readings from the database.

Next, we introduce the offline modules. The Data Pre-processor decodes the

binary raw data. Moreover, it also processes raw data to generate more meaningful

data for various sensing features (temperature, humidity, roughness of road surface,

etc), which will then be stored into the database to serve as input for other data

analytic modules. The processed data are called feature data, which are usually

statistics (average, variance, etc) of raw data.

The Machine Learning Modules contains frequently used machine learning algo-

rithms for both supervised learning and unsupervised learning. applications Modules

are a set of modules for different applications. We will present these modules in great

detail for different applications.

REST Information Providers are a set of modules that collect useful information

to enrich the sensing data. For example, the weather information could be obtained

from weather.com by providing geo-location information. Also the place information
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of an actual place (such as restaurant, coffee shop, etc.) could be retrieved from third-

parties’ APIs, such as Google’s Place API [25], Microsoft Bing [5], HERE Maps [28]

and MapQuest [47].

Since the cloud backend is designed following the module-based design idea, more

online modules and offline modules could be easily added to enrich the functionalities.

The added online modules and offline modules of the new application will not affect

other applications’ modules. All other applications’ modules can be kept with no

modification.
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Chapter 3

Application I: Smartphone Sensing

Based Objective Ranking (SOR)

3.1 Overview

In this chapter, we will present the design and implementation of SOR system. SOR

is a Sensing based Objective Ranking system, built on top of the proposed unified

platform.

Currently, a few online review and recommendation systems have attracted mil-

lions of users and are gaining increasing popularity. For example, Yelp serves as an

online urban guide, which provides user reviews, recommendations and rankings of a

large variety of local businesses including restaurants, shops, theaters, etc. Another

typical example is TripAdvisor, which has become the world’s largest website for trav-

elers. It provides user reviews, ratings and ranks for hotels, restaurants, attractions

in different places across the whole world. These systems usually rate and rank target

places and attractions based on subjective ratings and opinions provided by users.

As we presented in the former chapters, most of modern smartphones are equipped

with a rich set of embedded sensors. Moreover, external sensors can also be connected
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to a smartphone via its network interface. SensorDrone [63] is a portable and wear-

able multi-sensor that can turn a smartphone into an environmental monitor. This

small device is equipped with 10 different sensors, including multiple gas sensors, a

non-contact thermometer, a humidity sensor, a temperature sensor, a light sensor, a

color sensor and a pressure sensor. It can even be connected to more sensors via an

expansion connector.

So data collected via smartphone sensing can be used to evaluate a target place.

For example, for a coffee shop, based on readings from microphones, we can know if

it is quiet; based on readings from light sensors, we can know if it is bright; based on

readings from temperature sensors (on SensorDrones), we can know if it is warm.

In this chapter, we present design, implementation and evaluation of an ob-

jective ranking system, which ranks target places based on (objective) data col-

lected via smartphone sensing. Our objective is not to replace the current rank-

ing/recommendation systems that are based on subjective user ratings but to enhance

them with objective data collected via various sensors to provide more comprehensive

and objective rankings and recommendations for users.

It is quite challenging to design such an objective ranking system. First, in order

to provide a comprehensive view for target places, the system needs to leverage a large

variety of embedded and external sensors to collect various data. Different types of

places need different sets of sensors to collect the appropriate information for future

ranking. Second, a mobile user may participate at any time. The system needs to

schedule sensing activities properly to ensure a good coverage over a given scheduling

period. It is certainly not desirable to have sensor readings clustered on certain short

periods of time. In addition, the system needs to be able to rank a target place based

on various sensed data.

In this chapter, the term “mobile user” refers to a person who participates in

sensing activities and contributes sensed data; while the term “user” refers to a
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person who uses SOR to find out rankings and recommendations. A person can

certainly be both user and mobile user. In our design, we carefully address these

challenges. SOR has the following desirable features: 1) it is easy to use because an

easy 2D barcode scan triggers a sensing procedure, which is then automatically done

without user involvement; 2) since the system is built on the unified platform we

designed, its architecture is so scalable that various embedded and external sensors

can be easily integrated into it; 3) an online scheduling algorithm is proposed and

used to schedule sensing activities for coverage maximization, which has a constant

approximation ratio of 1/2; 4) a personalizable ranking algorithm is developed and

used to rank target places based on various sensor readings and user preferences.

We summarize our contributions as follows:

1) We design and implement an objective ranking application based on mobile phone

sensing, which is the first of its kind.

2) We develop theoretically well-founded and practically efficient scheduling and rank-

ing for the proposed system.

3) We justify effectiveness of the proposed system and algorithms via both field tests

(using real hiking trails and coffee shops in Syracuse, NY as target places) and

simulation.

Note that the proposed system, ranking algorithm and sensed data can be in-

tegrated into existing subjective ranking and recommendation systems to provide a

more comprehensive and objective view of target places for users. However, due to

space limitation, this chapter is only focused on smartphone sensing and ranking

based on objective data collected by smartphones.

The rest of the chapter is organized as follows: We present the software architec-

ture and implementation details of the proposed system in Section 3.2. The proposed

scheduling and ranking algorithms are presented in Section 3.3 and Section 3.4 re-
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spectively. Experimental and simulation results are presented and analyzed in Sec-

tion 3.5.

3.2 Design And Implementation Of SOR

In this section, we discuss the design and implementation details of SOR application,

which is built on top of the unified platform. The proposed smartphone Sensing based

Objective Ranking (SOR) system is illustrated in Fig. 3-1.

In order to use it, the following components must be deployed properly: 1) Mobile

sensing frontend : the mobile frontend which we presented in Section 2.3 needs to be

installed on each participating smartphone. 2) Cloud backend : the cloud backend

which we presented in Section 2.4 needs to be deployed to collect sensed data from

smartphones. 3) 2D barcode: A 2D barcode needs to be deployed in a target place to

trigger a sensing procedure.

TaskTaskTask

TaskTaskData

(1) Participation
 via scan (2) Sensing tasks (3)Sensed data

Mobile App

Mobile user

Sensing Servers

Figure 3-1: The workflow of SOR system

The workflow of SOR is as follows:
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1) If a mobile user decides to participate, he/she opens the mobile application and

scans the 2D barcode in the target place, which will send a notification (with

information about the target place contained in the barcode) to a sensing server

and trigger a sensing procedure.

2) A sensing server detects the incoming participation request, calculates a sensing

schedule and sends the corresponding sensing tasks to the mobile phone.

3) The mobile application operates sensors to sense according to the provided schedule

and sends sensed data back to a sensing server.

4) The sensing server collects and processes sensed data from smartphones, and stores

them into a database.

5) A ranking program ranks the target place based on data collected from smart-

phones and user preferences.

We extend the mobile frontend of the proposed unified platform, which presented

in Section 2.3, to support SOR application. As highlighted with orange in Fig. 3-

2, two new modules, SOR Module and SensorDrone Provider, are integrated into

the platform. Of course, new application module and new provider are need to be

registered in applications Register and Providers Register accordingly. The rest of

the parts works with no modification. For simplicity, we didn’t plot the details of

these modules with no modification, such as Existing Sensing applications, Existing

Sensors Providers, Tasks Manager, Providers Manager. Reader could refer Section 2.3

for implementation details.

The SOR module contains the following functionalities: 1) communicate with the

camera on smartphone and get picture from it; 2) interpret a picture containing

QR code to a string; 3) communicate with SOR backend server by sending message

through Message Handler; 4) trigger data acquisition tasks and report sensing results

back to cloud backend; 5) store user’s preferences and protect user’s privacy.
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Figure 3-2: Mobile frontend of SOR

The SensorDrone Provider wraps the official APIs of SensorDrone, and perform

data collection from SensorDrone asynchronously. SensorDrone provider has a local

cache which enables data sharing among tasks with same data requirements. After

integrating SensorDrone Provider into the platform, more sensors are supported by

mobile frontend, as show in Table 3.1:

Similarly, the backend for SOR application is also built on top of the sensing

platform’s cloud backend, as illustrated in Fig. 3-3. The Existing Online Modules

and Existing Offline Modules in the figure are those modules with no modifications,

include: User Info Manager, Sensing Tasks manager, Sensing Data Handler and Data
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Table 3.1: Sensors supported by SensorDrone provider
Sensor Type Usage Unit

Air pressure sensor External(SensorDrone) Air pressure m/s2

Altitude sensor External(SensorDrone) Altitude Feet
Gyroscope Embedded Orientation rad/s

Humidity sensor External (SensorDrone) Relative humidity Ratio
Light sensor External(SensorDrone) light level Lux

Temperature sensor External(SensorDrone) Temperature Fahrenheit

Pre-processor. Detailed introduction is giving in Section 2.4
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Figure 3-3: Cloud backend of SOR

The added-on modules for SOR application is highlighted in orange color. Those
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modules include: SOR Application Manager, SOR Participation Manager and Per-

sonalizable Ranker.

The SOR Application Manager manages all necessary information related to each

SOR application. Here, an application is defined as a procedure of acquiring data

from sensors for a target place, which may include multiple sensing tasks. The SOR

Application Manager handles the SOR applications’ information including its AppID,

its creator (which could be the owner/manager/operator of the corresponding target

place), the Lua sensing scripts defining the corresponding data acquisition procedure

and the progress status of the application.

The SOR Participation Manager keeps track of a list of sensing tasks and their in-

formation, including participating userID, the corresponding token, the corresponding

application, the location of the target place, the sensing budget and its status (such

as running, waiting for sensing schedule, finished, error, etc.). Note that the sensing

budget is an integer number specifying how many times the corresponding mobile

user can perform data acquisition task defined by the corresponding Lua scripts. Ini-

tially, it is set to the maximum number of times the mobile user is willing to acquire

data from its sensors and it is updated at runtime. Every time when a mobile user

scans a 2D barcode, the Participation Manager will first verify whether the user is

actually in the target place by acquiring its location and comparing it against the

location stored in the Application Manager, and then create a task for it if the user

is considered as a truthful user. Moreover, a mobile user’s status in the Participation

Manager will be changed to “finished” if according to his/her location, he/she leaves

the target place.

For each application, the SOR Task Scheduler applies an online algorithm to cal-

culate a sensing schedule (that specifies when to sense for each participating user)

for a scheduling period based on runtime tasks’ information (such as current partici-

pating users, their sensing budgets, etc.) provided by Sensing Tasks Manager. Task
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Scheduler will select a suitable subset of users to fulfill the sensing tasks. The Tasks

Scheduler will also distribute the calculated schedules along with the correspond-

ing Lua scripts to participating mobile phones, and store them into the database.

The scheduling algorithms are varying among different sensing applications. We will

describe the proposed scheduling algorithm in greater detail in Section 3.3.

In the Existing Offline Modules, The Data Pre-processor processes the data and

stores useful information into corresponding tables in the database for various sensing

features (temperature, humidity, roughness of road surface, etc.). These features

data will then be served as input for the Personalizable Ranker. The processed data

is called feature data, which are usually statistics (average, variance, etc.) of raw

data. The Personalizable Ranker leverages a personalizable ranking algorithm to rank

target places according to feature data and user preferences. Both data processing

and personalizable ranking will be discussed in Section 3.4.

3.3 Scheduling Algorithm

In this section, we will our sensing model, and then present the online scheduling

algorithm used in the SOR system.

In our sensing model, we use a set T of N time instants to divide the time

domain within a sensing scheduling period [tS, tE] into small time intervals with equal

durations. The measurements are scheduled to be taken only at these time instants.

Of course, the larger the N , the more accurate the measurement, however, the higher

the sensing cost (such as energy consumption). If a sensing feature is measured at

time ti, then we say time instant tj can be estimated by using the data collected at

time ti with a probability of p(ti, tj). Note that we aim to come up with a general

sensing model, in which any method or distribution model can be used to obtain this

probability according to application needs. In our implementation, we chose to use a
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bell-shaped probability distribution N (µ, σ), such that the closer tj is to ti, the more

likely that the sensor reading at tj stays the same as that at ti. This is consistent

with most sensing features, such as temperature, humidity, accelerometer, wireless

signal strength, etc. Moveover, different variances σ can be used to model different

sensing features. A large σ can be used for those sensing features whose readings do

not change drastically over time (such as temperature, humidity, etc.), while a small

σ can be used for those whose readings may change quickly (such as acceleration,

orientation, wireless signal strength, etc.). This model has been adopted in a few

related works such as [40].

A sensing schedule can be given as a set Φ of time instants. Since samplings are

independent from each other, the probability that time instant tj can be covered by

the given sensing schedule Φ is:

p(tj,Φ) = 1−
∏
ti∈Φ

(1− p(ti, tj)). (3.1)

Suppose that we are given a set T of equally spaced instants within a scheduling

period [tS, tE] as well as the duration a mobile user k participating in sensing activities

[tSk , t
E
k ], then Tk ⊆ T is a subset of time instants in T that falls in [tSk , t

E
k ]. A sensing

schedule of user k, Φk, is a subset of time instants in Tk. In addition, every mobile

user k has a sensing budget NB
k , which is the number of times he/she is willing to

sense during a scheduling period. We are interested in solving the following problem:

max
{Φ1,··· ,ΦK}

∑
tj∈T

K∑
k=1

p(tj,Φk) (3.2)

Subject to:

|Φk| ≤ NB
k , k ∈ {1, · · · , K}. (3.3)

The scheduling problem is to maximize the total sensing coverage probability by

selecting a sensing schedule Φk for each participating mobile user k, with a cardinality

44



no more than the given budget NB
k . The goal here is to spread measurements across

the whole sensing period and in the meanwhile, ensure fairness by preventing certain

mobile users from being abused.

We construct a collection of subsets of the ground set T, Λ = {Ψ : Ψ ⊆

T, |Ψ
∩

Tk| ≤ NB
k , k ∈ {1, 2, · · · , K}}. Next, we show that (T,Λ) is a matroid.

Definition 1 (Matroid [21]) A pair (Q,Z) consisting of a ground set Q and a

collection Z of subsets of Q is a matroid if:

1) ∅ ∈ Z;

2) If X ∈ Z and Y ⊂ X, then Y ∈ Z;

3) for all X, Y ∈ Z, if |X| > |Y | then there exists some x ∈ X \ Y such that

Y
∪
{x} ∈ Z.

Theorem 1 (T,Λ) is a matroid.

It is easy to see that ∅ ∈ Λ. Suppose that Ψ1 ∈ Λ. According to the definition

of Λ, Ψ1 satisfies the constraint |Ψ1

∩
Tk| ≤ NB

k , k ∈ {1, · · · , K}. And if Ψ2 ⊂ Ψ1

then we have |Ψ2

∩
Tk| ≤ |Ψ1

∩
Tk| ≤ NB

k , k ∈ {1, · · · , K}. So Ψ2 ∈ Λ.

We prove that condition 2) is also satisfied by contradiction. Suppose that Ψ1 ∈

Λ,Ψ2 ∈ Λ, and |Ψ1| > |Ψ2|, but there does not even exist any element x such that

x ∈ Ψ1 \Ψ2 and Ψ2

∪
{x} ∈ Λ. If this statement is NOT true, then Ψ2

∪
{xk} >

NB
k , ∀xk ∈ {Ψ1\Ψ2}

∩
Tk, k ∈ {1, · · · , K}. This means for any k, if {Ψ1\Ψ2}

∩
Tk ̸=

∅, then |Ψ2

∩
Tk| = NB

k . So |Ψ1

∩
Tk| ≤ |Ψ2

∩
Tk|,∀{Ψ1 \ Ψ2}

∩
Tk ̸= ∅, k ∈

{1, · · · , K}. And since {Ψ1 \Ψ2} ⊂ Ψ1, and all the elements in Ψ1

∩
Ψ2 are shared

by both Ψ1 and Ψ2, |Ψ1| ≤ |Ψ2|, which is in contradiction to our assumption. This

completes our proof.
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The scheduling problem can be re-formulated as:

max
Ψ∈Λ

∑
tj∈T

p(tj,Ψ). (3.4)

This scheduling problem falls in a class of problems of maximizing a sub-modular set

function over a matroid [21] because its objective function f(Ψ) =
∑

tj∈T p(tj,Ψ) has

been shown to be a non-negative, monotone and sub-modular function in [74] and we

show that (T,Λ) is a matroid in Theorem 1. We present a simple greedy algorithm

to solve it in the following.

Algorithm 1 The sensing scheduling algorithm

Input: T Λ;
Output: Ψ;

1: Ψ0 := ∅; l := 1;
2: while ∃x ∈ T \Ψl−1 s.t. Ψl−1

∪
{x} ∈ Λ do

3: x∗ := argmaxx′∈T\Ψl−1
f(Ψl−1

∪
{x′})− f(Ψl−1);

4: Ψl := Ψl−1

∪
{x∗};

5: l := l + 1;
6: end while
7: return Ψl;

The basic idea of the proposed algorithm is to keep adding the time instant,

that can result in the maximum incremental coverage until no mobile users can be

scheduled to sense more without violating their budget constraints, into the solution.

The running time of this algorithm is O(|T|2 ·g(|Λ|)), where g(|Λ|) is the running time

for testing whether Ψl−1

∪
{s} ∈ Λ or not. In our algorithm, this can be quickly done

in constant time by maintaining a counter for each mobile user and checking if its

value exceeds the given budget. So the overall time complexity is O(|T|2) = O(N2).

Hence the proposed algorithm is time efficient.

In addition, according to Theorem 1, the scheduling problem is to maximize a

non-decreasing sub-modular set function over a matroid. It has been shown in [21],
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that a simple greedy algorithm (similar to that shown above) gives a 1
2
-approximation

for a class of such problems. Therefore, Algorithm 1 is a 1
2
-approximation algorithm

for the scheduling problem (3.4).

3.4 Data Processing And Personalizable Ranking

In this section, we discuss how raw data collected from mobile frontend are processed

and fed to the ranking algorithm as input to calculate ranks for a target place.

3.4.1 Data Processing

In SOR, for a target place, data collected by sensors of certain type in a given schedul-

ing period are stored as a set of 3-tuples (t,∆t,d). t is the timestamp, whereas, ∆t

is a short period of time (typically several seconds). Note that SOR takes multiple

(instead of one) readings within [t, t+∆t] to ensure high sensing quality. The number

of readings to be taken during this period can be specific in the Lua scripts. d is the

corresponding set of readings.

Ranking is conducted based on values of a set of humanly understandable features,

such as temperature, WiFi signal strength, roughness of road surface. For a target

place, raw data need to be processed to calculate a value for each feature, which will

then be used by the ranking algorithm as input. Note that the methods for calculating

these values from raw data may vary with features. For example, for temperature,

we take an average over all temperature sensors’ readings; however, for roughness of

road surface, we take an average of standard deviations of accelerometers’ readings

within ∆t. Readings from different types of sensors may be combined to generate

the value for a feature too. SOR calculates these statistics (feature data) and stores

them into the database. When they are needed for ranking, they are read from the

database into a matrix H =< hij >, i ∈ {1, · · · , N}, j ∈ {1, · · · ,M}, where N and
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M are the numbers of target places and features respectively. For simplicity, we focus

on places belonging to a certain category (such as coffee shop, hiking trail, etc) here.

SOR can certainly deal with multiple categories by using multiple such matrices.

However, data in H cannot be directly used for ranking since the purpose of

ranking is to recommend suitable places for individual users. If ranking is done on

the absolute temperature, then a very hot (or cold) place may be ranked one of top

places, which is certainly not preferred by most people. Hence, our personalizable

ranking algorithm will further process these values based on user preferences, which

will be discussed next.

3.4.2 Personalizable Ranking Algorithm

In this section, we present a personalizable ranking algorithm based on user prefer-

ences. Our algorithm uses the same sensed data as input for all users but can produce

different rankings for different users based on their preferences. The input of the al-

gorithm includes: 1) H =< hij >, i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} (read from the

database); 2) U =< uj >, j ∈ {1, · · · ,M}, where uj is the value preferred by the

user on feature j; 3) W =< wj >, j ∈ {1, · · · ,M}, where wj is the weight given by

the user on feature j to express his/her emphasis; We outline the proposed algorithm

in the following and then explain every step in details.

Algorithm 2 Personalizable Ranking Algorithm

1: Process H =< hij > further and store results to a new matrix Γ =< γij >
according to user preferences by γij := |hij − uj|, i ∈ {1, · · · , N}, j ∈ {1, · · · ,M};

2: Sort the target places in Γ =< γij > on a column by column basis to produce an
individual ranking Rj for every feature j;

3: Aggregate individual rankings to output a final ranking based on W =< wj >
, j ∈ {1, · · · ,M} using a min-cost flow based algorithm (described below).

In the first step, the algorithm calculates the distances between numbers in H

and the values preferred by a user and then store them into another N ×M matrix
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Γ =< γij >. For example, suppose that the temperature (suppose it is the jth feature)

in target place i is hij, then γij := |hij−uj|, where uj is the temperature preferred by

the user. If the user does not input a desirable temperature, the system provides a

default value, e.g. 73◦F, based on common sense. Moreover, for some features (such

WiFi signal strength), if it is always the larger (the smaller) the better, then a very

large (small) default value is always used as the preferred value.

In the second step, for all target places belonging to a category (such as coffee

shop or hiking trail), the algorithm produces a ranking Rj (i.e a sorted list) on each

feature j by sorting all the target places in ascending order of the corresponding

feature values on the column by column basis. We call such rankings individual

rankings in the following.

In the third step, the algorithm aggregates individual rankings produced (based

on a single feature) in the second step to generate the final ranking. In order to do it,

we need a metric measuring distance between two rankings. In SOR, the Kemeney

distance [32, 33] is chosen for this purpose. It has been shown in [17] that Kemeney

distance based ranking aggregation has good spam resistance, compared to other

ranking algorithms. This method has been widely and successfully used for ranking

in various applications such as webpage ranking, consensus and etc.

Suppose that an index function π(i,R) returns the index of item i (target place i

in our case) in ranking R.

Definition 2 (Kemeney Distance [32,33]) The Kemeney distance between two

rankings R1 and R2,

dK(R1,R2) =
N∑
i=1

N∑
i′=1

1(sgn((π(i,R1)− π(i′,R1))

∗(π(i,R2)− π(i′,R2))) < 0),

(3.5)

where 1(·) is the indicator function and sgn(·) is the sign function.
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Intuitively, the Kemeney distance counts the number of pairwise violations be-

tween two rankings. For example, given two rankings of three items {A,B,C}:

R1 : A,B,C

R2 : B,C,A

(3.6)

then the Kemeney distance between them is dK(R1,R2) = 2, since there are two

pairwise violations, (A,B) and (A,C).

The Kemeney distance based method can aggregate multiple individual rankings

to produce a single ranking. In SOR, we enhance personalizable ranking further by

allowing users to assign different weights to emphasize (or de-emphasize) different

features. This leads to a more complicated weighted ranking problem, which has not

been well studied. Specifically, let Ω be a collection of M individual rankings on all

features Ω = {Rj : j ∈ {1, · · · ,M}}. We come up with a new metric, called weighted

K-ranking distance, to evaluate the quality of a ranking based on user preferences.

Definition 3 (Weighted K-Ranking Distance) The weighted K-ranking distance

from a ranking R to a collection of individual rankings Ω is:

κK(R,Ω) =
M∑
j=1

wj ∗ dK(R,Rj), (3.7)

where wj is the weight assigned to feature j by the user.

The ranking problem is to find a ranking R∗ such that its weighted ranking distance

to Ω is minimized among all rankings, i.e.,

R∗ = argmin
R

κK(R,Ω). (3.8)
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Unfortunately, as showed by [17], computing such an optimal (aggregated) ranking

R∗ is NP-hard, even for the unweighted case with |Ω| = 4. So we need to have an

effective heuristic algorithm.

Spearman’s footrule distance [15], df (·), has been widely used to approximate the

Kemeney distance:

df (R1,R2) =
N∑
i=1

|π(i,R1)− π(i,R2)|, (3.9)

where R1 and R2 are two rankings as discussed above. The footrule distance has the

following property [15]:

dK(R1,R2) ≤ df (R1,R2) ≤ 2dK(R1,R2). (3.10)

Similarly, we define the weighted f-ranking distance as:

κf (R,Ω) =
M∑
j=1

wj ∗ df (R,Rj). (3.11)

Instead of solving the original ranking problem defined above, we can solve a footrule

distance based ranking problem:

R∗ = argmin
R

κf (R,Ω). (3.12)

It has been shown in [17] that the unweighted of the footrule distance based ranking

problem could be transferred to a minimum cost perfect matching problem, which

can be solved efficiently in polynomial time.

Next, we show that our weighted version can be efficiently solved by constructing

an auxiliary flow graph and using a min-cost flow based algorithm. First, we construct

a flow graph to assist computation G(V
∪

V′ ∪{s, z},E). In this graph, each vertex

51



vi ∈ V corresponds to a target place i and each vertex vi′ ∈ V′ corresponds to a rank.

There is a directed edge e ∈ E from each vi ∈ V to every vi′ ∈ V′, whose cost is set

to
∑

Rj∈Ωwj ∗ |π(i,Rj)− i′| and capacity is set to 1. Note that for a target place i,

the cost here basically gives the sum of distances to all individual rankings (suppose

that its final rank is i′). Moreover, to complete a flow graph, we introduce a virtual

source s, which has a directed edge to each vi ∈ V with a cost of 0 and a capacity of

1. And, there is a virtual sink z, which has a directed edge coming from each vi′ ∈ V ′

with a cost of 0 and a capacity of 1 too.

The importance of the flow graph lies in the fact that a min-cost s− z flow with

an amount of N on the graph gives a ranking that minimizes the weighted f-ranking

distance. It is known that the min-cost flow in such a flow graph (whose link capacities

are all 1) can be efficiently found by a linear programming based algorithm [2], which

is guaranteed to generate an integer flow since the corresponding co-efficient matrix is

totally unimodular. Moreover, it can be easily shown that the optimal solution to our

footrule distance based ranking problem is a 1
2
-approximate solution to the original

(Kemeney distance based) problem due to the property (3.10) described above.

3.5 Validation And Performance Evaluation

We validated and evaluated SOR via both field tests and simulation. Specifically, we

field-tested two kinds of places, hiking trails and coffee shops, in or around the city

of Syracuse; and we evaluated the performance of the proposed scheduling algorithm

via simulation.

3.5.1 Field Tests For Hiking Trails

In the first sets of field tests, we collected data from three hiking trails in or around

Syracuse, namely, the Green Lake Trail [26] (in the Green Lake State Park), the Long
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Trail and the Cliff Trail(both of them are in the Clark Reservation [7]) The field tests

were conducted during 11:00AM-2:00PM Nov. 17, 2013. In each test, there were 7

participating smartphones, which are all Google’s Nexus4 smartphones.

For hiking trails, we collected data of 5 sensing features that hikers usually care

about most (listed below). We used the following methods to process sensed data

to produce values for each feature: 1) temperature: it is an average of all tempera-

ture sensor readings; 2) humidity: it is an average of all humidity sensor readings;

3) roughness of road surface: it is an average of the standard deviations of all ac-

celerometer’s readings within ∆t (a short sampling period described in section 3.4);

4) curvature: it is calculated based on GPS locations using the method presented

in [39]; 5) altitude change: it is the standard deviation of averages of all altitude

sensor readings within ∆t. The feature data are presented in Figure 3-4.

In order to justify effectiveness of personalizable ranking in SOR, we came up with

three virtual hikers, namely, Alice, Bob and Chris, whose preferences are described

using hiker profiles shown in Fig. 3-5. Note that a user can express his/her preferences

by setting preferred feature values and weights. The weight can be set to an integer

in {0, 1, 2, 3, 4, 5} with ‘0’ meaning that he/she doesn’t care and ‘5’ indicating he/she

really cares. For example, Alice is assumed to be an experienced hiker who prefers

difficult trails. So she sets all the preferred values for the roughness, curvature and

altitude change to MAX (a relatively large integer pre-configured in SOR), and sets

all their weights to 5. We then present the rankings of the three target hiking trails

computed by SOR via smartphone sensing for three hikers in Table 3.2.

To validate these ranking results, we established the ground truths using pictures

taken during field tests and real user comments collected from Internet via Google

(mainly from www.cnyhiking.com, www.outdoorexperiencereview.com www.hikespeak.com,

nysparks.com, etc), which are shown in Fig. 3-6 and Fig. 3-7 respectively. Note that

in the table, we also summarize user comments as key opinions for quick references.
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Figure 3-4: Feature data for hiking trails
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(a) Alice’s profile (b) Bob’s profile

(c) Chris’s profile

Figure 3-5: Hiker profiles

Table 3.2: Rankings of hiking trails computed by SOR
User No. 1 No. 2 No. 3
Alice Cliff Trail Long Trail Green Lake Trail
Bob Long Trail Cliff Trail Green Lake Trail
Chris Green Lake Trail Long Trail Cliff Trail
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From these ground truths, we can see that the Cliff Trail is rocky so it is indeed a

difficult trail. The other two trails are flat and fairly easy, especially the Green Lake

trail (according to a real user comment “...This trail is almost entirely flat” ). In

addition, the Green Lake Trail is around a lake (see its picture) so it is supposed to

be humid and a little cooler. According to rankings produced for Alice (an experi-

enced hiker who prefers difficult trails), Cliff Trail is ranked No. 1, followed by the

Long Rail (which is a little more difficult than the Green Lake Trail). Similarly, for

Bob (a beginner who likes dry and even trails), the Long Trail is recommended as

the top choice, followed by the Cliff trail, which is difficult but drier than the Green

Lake Trail. Since Bob cares more about humidity than difficulty (according to the

corresponding weights), so Cliff Trail is ranked higher than Green Lake Trail. For

Chris (a beginner who likes jogging near a lake/sea/river), the Green Lake Trails is

certainly recommended as the first choice. We can conclude that data collected and

processed by SOR can well capture characteristics of target places, and personalizable

rankings produced by SOR can well match user preferences.

Figure 3-6: Ground truth 1: pictures of the target hiking trails

3.5.2 Field Tests For Coffee Shops

In the second sets of field tests, we collected data from three coffee shops in Syracuse,

namely, the Tim Hortons (985 East Brighton Avenue Syracuse, NY 13205), the Barns

& Noble (B&N) Cafe (3454 E. Erie Blvd, Syracuse, NY, 13214) and a Starbucks (177
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Figure 3-7: Ground truth 2: real user comments for the target hiking trails

Marshall St, Syracuse, NY 13210). The field tests were conducted during 11:00AM-

2:00PM Nov. 15, 2013. In each test, there were 12 participating smartphones, which

are all Google’s Nexus4 smartphones.

For coffee shops, we collected data of 4 sensing features that customers usually care

about most: 1) temperature (temperature sensor on the Sensordrone), 2) brightness

(light sensor on the Sensordrone), 3) WiFi signal strength (WiFi interface), and 4)

background noise level (microphone). For all these four features, we took averages of

all corresponding sensor readings. The feature data are presented in Figure 3-8.

Similarly, we came up with two virtual customers, namely, David and Emma,

whose preferences are described using customer profiles (with preferred values and

weights) shown in Fig. 3-9. We then present the rankings of the three target coffee

shops computed by SOR for both customers in Table 3.3.

Table 3.3: Rankings of coffee shops computed by SOR
User No. 1 No. 2 No. 3
David Starbucks B&N Cafe Tim Hortons
Emma B&N Cafe Tim Hortons Starbucks

Again, we compare the ranking results with ground truths, which are pictures
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Figure 3-9: Customer profiles
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taken during field tests and real user comments collected from Internet via Google

(mainly from Yelp and Foursquare), shown in Fig. 3-10 and Fig. 3-11 respectively.

Figure 3-10: Ground truth 1: pictures of the target coffee shops

Figure 3-11: Ground truth 2: real user comments for the target coffee shops

From the ground truths, we can see that the Starbucks is crowded, noisy and dark.

While the other two coffee shops are quiet and bright. The Tim Hortons is a little

colder than the B&N Cafe, however, very bright due to a big window (See Fig. 3-10).

David is a social person who likes to hang out with friends in coffee shops so he prefers

a not-so-bright and warm place but does not really care about noise. According to

the ranking produced for him, the Starbucks is ranked No. 1, followed by the B&N

Cafe (since it is not as bright as the Tim Hortons). For Emma (a student who likes

to read and study in relatively warm coffee shops), the B&N is recommended as the

top choice, followed by the Tim Hortons which is a little colder than B&N Cafe. In

the coffee shop case, we can make the same conclusion as the hiking trail case.
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3.5.3 Simulation For The Sensing Scheduling Algorithm

We evaluated performance of the proposed sensing scheduling algorithm in large cases

via simulation. In the simulation, the duration of sensing scheduling period was set

to 3 hours, which is divided by 1080 time instants. The arrival (leaving) times of

mobile users were randomly generated, following a uniform distribution between 0 (the

corresponding arrival time) and 10800s. We used a bell-shaped Gaussian distribution

(with µ = 0 and σ = 10s) to model coverage, as discussed in section 3.3. A simple

scheduling algorithm served as the baseline: a smartphone starts to sense every 10s

since its arrival for NB
k times, where NB

k is the corresponding budget. The average

coverage probability was used as performance metric, which is the sum of coverage

probabilities (objective function) divided by the total number of time instants in the

scheduling period (i.e., 1080). In the first simulation scenario, we changed the number

of mobile users from 10 to 50 with a step size of 5 and the budgets of all mobile users

were fixed to 17. In the second scenario, we changed the budget from 15 to 25 with

a step size of 1 and the numbers of mobile users were fixed to 40. We presented the

results in Fig. 3-12. Note that every number in the figure is an average over 10 runs.

From the figure, we can see that on average, our scheduling algorithm outperforms

the baseline algorithm by 65% in terms of average coverage probability. From Fig. 3-

12(a), we can see that when 55 users participate in sensing, our algorithm leads to

almost 100% coverage. In order to achieve an average coverage probability of 80%,

our scheduling algorithm need no more than 40 users (with a budget of 17) while

the baseline algorithm can only reach an average coverage probability of 50% with

40 users. Similar observations can be made from Fig. 3-12(b). No matter which

method is used, the average coverage probability always increases with the number of

mobile users and budget as expected. In addition, we observe that the variance of the

coverage probability given by our scheduling algorithm is always less than that given

by the baseline algorithm, which means our algorithm is more stable and is suitable
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Figure 3-12: Performance of the sensing scheduling algorithm

for various situations.
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Chapter 4

Application II: LI festyle Learning

Via Phone Sensing (LIPS)

4.1 Overview

As analyzed in the previous chapters, the sensors of a smartphone can easily detect

the context (such as location, local weather, activities, etc.) of its mobile user. How-

ever, how to leverage this unique capability for learning lifestyles of mobile users and

making their life better has not yet been fully exploited. One of the early efforts

in this regard is that some urban guide mobile applications (such as Yelp [77] and

Urbanspoon [70]) have used locations (collected by smartphones) to recommend local

businesses (such as restaurants, bars, local applications, etc.) to mobile users. We

believe that with smartphones and their sensors, we can do much better and do much

more than this.

Some related works are focusing on analyzing location data collected by GPS. In

the project TraClass [37], Lee etc. studied how to predict moving objects’ types by

analyzing their trajectories and other features. They proposed to generate a hierarchy

of features by partitioning trajectories and exploring different types of clustering.
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In [22], the authors proposed a sequential pattern mining paradigm that can be used

to analyze the trajectories of moving objects. In [76], the authors proposed a data

mining framework to retrieve association patterns from raw individual GPS data.

Note that all these works leveraged only location and time information for analysis

without using other features (such as moving states, weather, etc. ) that can be

collected via smartphone sensing.

In this chapter, we present the design, implementation and evaluation of a sensing

application, LIPS, which can learn LIfestyles of mobile users via smartPhone Sensing

(LIPS). According to businessdictionary.com, “Lifestyle is expressed in both work

and leisure behavior patterns and (on an individual basis) in activities, attitudes,

interests, opinions, values, and allocation of income.” By leverage multiple sensors

on a smartphone, we can obtain a comprehensive view of a mobile user’s context (such

as location, local weather, activities, etc.) over a long period. Based on those context

information, we aim to find out what a mobile user likes to do (characterization) and

what he/she will do next (prediction) based on the collected sensor data. Such a

lifestyle learning application can be used to support a large variety of applications

for improving life quality. For example, a major application is to recommend local

businesses to mobile users based on not only his/her location but also his/her lifestyle.

This work represents one of the first efforts along this line, which is focused on lifestyle

learning, while leaving lifestyle-aware recommendation or lifestyle-based applications

for future research.

LIPS is built on top of the platform. Both mobile frontend and cloud backend

need to be extended with new application modules. The LIPS frontend application

module on the mobile frontend reports the context information collected by sensors of

the smartphone to the learning application module on the backend server periodically.

Based on this information, the learning application module builds models for lifestyles

of mobile users.
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Combining both unsupervised and supervised learning, we propose a hybrid scheme

for lifestyle learning, which consists of two parts: characterization and prediction.

Specifically, we present a two-stage algorithm to characterize the lifestyle of a mo-

bile user using Places of Interest (PoIs), which leverages two different algorithms for

coarse-grained and fine-grained clustering in two stages respectively. Based on dis-

covered PoIs, we present a supervised learning based algorithm to build a model for

predicting the future activities of a mobile user.

In addition, operating smartphone sensors (such as GPS) could be energy consum-

ing. Note that even though some sensors (such as accelerometer) are always active, a

thread needs to be spawned to collect its readings, which will prevent the smartphone

enter sleep mode and affect the energy consumption too. A phone’s main job is not

sensing after all. Extensive smartphone sensing may drain its battery quickly, leav-

ing it dead when it is needed to perform its regular duties such as phone calls, web

surfing, etc. To enable green lifestyle learning, we present an adaptive sampling algo-

rithm, which adaptively control the sampling rate according to discovered PoIs and

the lifestyle model. To the best of our knowledge, we are the first to build a smart-

phone sensing based system to learn and analyze lifestyles of mobile users based on

various context information (collected from smartphones).

We build a novel smartphone sensing based application for lifestyle learning,

and propose practical and effective solutions to fundamental problems (learning and

energy-efficient sampling). Specifically, we summarize our contributions in the fol-

lowing:

• We present design and implementation of LIPS application, which learns lifestyles

of mobile users via smartphone sensing.

• We present an effective hybrid scheme for lifestyle learning, which combines

both unsupervised and supervised learning.
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• We present an energy-efficient sampling algorithm, which leverages the discov-

ered PoIs and the lifestyle model for adaptively controlling the sample rate.

• We performed extensive field tests to validate and evaluate LIPS. The exper-

imental results well justify the effectiveness and efficiency of LIPS on lifestyle

learning.

The rest of the chapter is organized as follows: We present the software archi-

tecture and implementation details of the proposed LIPS application in Section 4.2.

The proposed learning scheme and adaptive sampling algorithm are presented in Sec-

tion 4.3 and Section 4.4 respectively. Experimental results are presented and analyzed

in Section 4.5.

4.2 Design and implementation of LIPS

In this section, we present the design and implementation of LIPS application.

Similar to SOR application, LIPS also consists of two parts: mobile frontend

application modules and cloud backend application modules.

The mobile frontend applications modules is developed and integrated into the

unified platform, that runs on each mobile user’s smartphone. The cloud backend

modules is integrated into backend server,which runs in the cloud. We can simply

deploy multiple learning servers and load balancers if we need to serve a large number

of mobile users from different locations.

In our design, backend application modules are composed of online modules and

offline modules. The online modules are designed to be light-weighted, which pro-

vides immediate online responses to the mobile frontend, including notification, user

request handling and updating, etc. However, lifestyle learning involves compute-

intensive and time-consuming workload, which includes running the clustering-based
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characterization algorithm (Section 4.3.1) and the supervised learning based predic-

tion algorithm (Section 4.3.2) on collected sensor data. In our design, a set of the

offline modules are designed and deployed to handle this compute-expensive workload

in an offline manner on powerful servers. This design ensures that online requests

from the mobile frontend are not delayed by the time-consuming learning process.

Frontend

1

Online Modules

2

Registration

3

Sensing
Sensor sample

4
Change the sampling rate

Sensor sample

6

Sensing script

Query

Prediction

Offline Modules

Model

Sensor sample

5

Lifestyle 
learning

7

Figure 4-1: The workflow of LIPS

We illustrate how the mobile frontend modules, the online modules and the offline

modules interact with each other and how LIPS works in Figure 4-1, which are further

described as follows:

1) A mobile user registers for the lifestyle learning application by sending his/her

personal information along with his/her preferences (e.g. only allowing coarse

locations rather than fine locations) to the online modules.

2) The online modules accepts (or rejects) the registration request and sends sensing

scripts according to user preferences to the mobile frontend.

3) The mobile frontend collects the mobile user’s context information using smart-

phone sensors periodically and sends sensor data to the online modules, which

then stores them into a database. The mobile frontend adaptively adjusts its sam-
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pling rate to trade off energy efficiency and learning performance (will give detailed

introduction in Section 4.4).

4) The offline modules periodically pulls sensor samples from the database.

5) The offline modules discovers PoIs and builds the lifestyle model for activity pre-

diction on a daily basis according to received sensor samples. And, it updates the

online modules with PoIs and lifestyle model.

6) The mobile frontend periodically sends a query with the current context informa-

tion (Section 4.3) to the online modules. This query can also be sent in an ad-hoc

manner.

7) The online modules replies with the prediction results (Section 4.3.2).

In order to support LIPS application, two types of modules need to be added

to the mobile frontend of platform: LIPS application module and providers. Add-

on modules are highlighted with orange color in fig. 4-2. The functionality of other

modules (in green color) have been introduced in details in Section. 2.3.

Similar to the SOR application module, LIPS application is independent of other

sensing application modules and needs to be registered in applications Register. In

LIPS application module, the local Preferences Manager enables the platform user

to setup his/her own preferences. For example, a user could indicate he/she doesn’t

want to use his/her limited and expensive data plan for transmitting/receiving sensor

data for lifestyle learning. If so, sensor data will be uploaded to the learning server

only whenever WiFi connection is available. Another example is: the user might

indicate a certain time period that he/she isn’t willing to provide data to the learning

server due to privacy concerns.

The Sampling application Manager manages the data collection procedure, which

has four functionalities: 1) updating and storing sensing scripts; 2) triggering sam-

pling task instances to collect data from sensors periodically; 3) handling failures
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Figure 4-2: The architecture of the mobile frontend

(such as rebooting a failed sampling task instance); 4) Encapsulating sensor data

and notifying the Message Handler to upload them to the learning server. Note that

data uploading occurs only when network connection is available. Otherwise, The

Sampling Task Manager will store results into the local database.

There are two ways to run periodic tasks on Android, 1) Using the Handler class

to set a Runnable task. The handler will execute the Runnable task after a given

delay. 2) Setting a system level alarm. The alarm will be triggered at a certain time

and broadcast a message. The alarm listener (that has been registered to this alarm
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beforehand) invokes a Runnable task when the message is received. Since the former

method cannot wake up the Android system from sleep, the scheduled sampling tasks

may not be executed on time when the Android system is sleeping, which will lead

to inaccuracy on lifestyle learning. In LIPS, we employ the second method, i.e.,

the system level alarm, to implement periodic sampling. And Sampling application

Manager manages the LIPS application related alarms. With the sampling alarm

triggered, the Sampling Task Manager will create a sampling task instance, which

contains a time-stamp, a sensing script, and a data buffer. A sampling task instance

sends the corresponding Lua scripts to the Script Interpreter for translation. The

interpreter can interpret both Lua’s own functions and the functions we defined for

data acquisition, as we have introduced in Section 2.3.

The add-one providers of the platform are: Moving State Provider,Weather Provider

and AppInfo Provider. A Provider is basically a software component which actually

operates a “sensor” using APIs provided by the Android system or a third party to

collect data. Please note that, “sensor” here has a much broader meaning, which

refers to data source that can provide context information of a mobile user. There-

fore a sensor could be: 1) an embedded sensor (such as GPS, accelerometer, digital

compass, etc.) on a smartphone; 2) a application that can provide context informa-

tion (such as local weather) to mobile users via APIs; or 3) an external sensor (such

as Fitbit [19], SensorDrone [63], etc.) that can be connected to a smartphone via its

network interface (such as Bluetooth).

The Weather Provider uses REST APIs to communicate Weather.com with re-

mote servers and get the weather information for current location. The Moving State

Provider wraps the APIs provided by Google Play application. It monitors user’s

Moving State On-foot, Driving, Bicycling, Still, Unknown, manages the information

collection life cycle Initiated, Data Ready, Finished, Timeout and shares the results.

AppInfo Provider use Android system APIs collect system related information. The
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Data acquisition is done asynchronously so that an operation will not block or be

blocked by others. When a sampling task instance requests data, the Sensor Man-

ager directs the call to the corresponding Provider to actually acquire data from

sensors. Moreover, the Sensor Manager can cancel data acquisition if timeout.

The backend of LIPS application is built on top of the platform’s cloud backend,

as illustrated in fig. 4-3. The add-on modules are divided into two types: online

modules and offline modules. The online modules are: LIPS Sensing Script Manager,

LIPS Sensing Controller and LIPS Sensing Script Manager. The offline modules are

PoI Discover, Lifestyle Modeler and Place Information Provider. Online and offline

modules are connected by a database for data exchange.

First, we introduce the online modules.

In order to learn lifestyle, the mobile frontend needs to collect readings from mul-

tiple sensors periodically. Lua [44] is used to specify what sensor data to acquire and

how frequent to sample. The LIPS Sensing Script Manager generates a sensing script

when accepting a registration request from a mobile user, and sends it to the mobile

frontend for execution. The Sensing Script Manager can change sensing activities

of the mobile frontend by updating its sensing script. For example, the sampling

period of the mobile frontend is set to 5min by default, the Sensing Script Manager

can slow down sampling by sending a new script specifying a longer sampling period

(e.g., 10min) to the mobile frontend. We will discuss how to adaptively adjust the

sampling rate at runtime for energy saving in Section 4.4. By changing the sensing

scripts, the server is able to modify the sensing types (e.g. location, temperature,

weather condition) and sensing frequency for each user at runtime. If sensing scripts

are changed for a user, Sensing Script Manager will send that specific user a notifi-

cation to ask the user to connect to the online application and update the changed

sensing scripts.

The LIPS Sensing Controller performs the following duties: 1) validating collected
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Figure 4-3: The architecture of the learning server

sensor data: if the data don’t comply with the corresponding sensing script (i.e. a

required feature, such as location, is missing), they will be discarded; 2) notifying

the Data Pre-processor when raw sensor data are ready; Updating users’ sampling

profile (e.g. when the sampling data is reported, how many samplings the user has

provided). 3) adjusting the sampling rate of the mobile frontend adaptively (Sec-
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tion 4.4); 4) collecting some statistics about collected sensor samples, e.g., counting

how many valid samples have been received. 4) Profile information will be explored

to determine when machine learning should be performed and when sampling rate

should be adjusted.

The LIPS User Activity Predictor handles the prediction query from the mobile

front end by predicting the user’s future activities based on his/her current states

and the lifestyle model learned from historical data (Section 4.3.2).

Next, we introduce the offline modules. The PoI Discover uses the output of

Data Pre-processor(introduced in Section 2.4) to analyze each user’s feature data

and discover his/her Places of Interest (PoIs), which will be described in details in

Section 4.3.1). The Lifestyle Modeler builds a model for predicting future activities of

a mobile user based on discovered PoIs using a supervised learning algorithm, which

will be introduced in details in Section 4.3.2). The Place Information Provider is used

to retrieve the actual place (such as restaurant, coffee shop, etc.) information given

the location of a PoI, which will be used for building the lifestyle model. In our system,

we use Google’s Place API [25] to obtain such information. The other location/map

applications can also be used to serve this purpose, such as Bing Maps [5], HERE

Maps and MapQuest [47].

4.3 Lifestyle Learning

In this section, we will discuss how to learn the lifestyle of a mobile user in details.

From the definition of lifestyle presented above, we know that lifestyle reflects an

individual’s preferences, and it can be expressed in both work and leisure activity

patterns.

For example, the lifestyle of a mobile user, say Alice, could be given as a set

of activities: 1) Alice normally goes to work from home at around 9:00AM every
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weekday; 2) Alice has her lunch in the restaurants near her workplace at around

12:30PM every weekday; 3) Alice usually leaves work and go home at around 6:00PM;

4) Alice usually does grocery shopping on Saturday; 5) Alice goes to a movie theater

every Saturday; 6) Alice goes shopping in a local shopping mall every Saturday; and

7) Alice goes to library every Sunday afternoon.

As described above, the goal of lifestyle learning is to find out what a mobile use

likes to do (characterization) and what he/she will do next (prediction).

Mobile phones are usually carried by their users almost all the time, which make

them a perfect device for providing useful context information to learn the lifestyle

of mobile users. In LIPS, sensor samples are collected periodically by the mobile

frontend for lifestyle learning. A sensor sample s is defined by a 3-tuple (t, l,D),

where t is the timestamp, l is the location, and D is a set of raw sensor readings that

are used to produce feature data (described below).

In LIPS, a list of features are extracted from a sensor sample, which are then used

as input for discovering of PoIs of a mobile user (Section 4.3.1) and for predicting

his/her activities (Section 4.3.2):

1) Day and Time: the day (Monday, Tuesday, etc.) and the time at the sampling

instant. Note that both features are very important since the period of many

people’s lifestyles is one week and usually their activities in a day are highly time-

dependent.

2) Location and Speed: the location and the moving speed at the sampling instant,

which are obtained via either GPS (fine) or Google’s Location applications (coarse)

according to user’s preferences.

3) Moving State: {On-foot, Driving, Bicycling, Still, Unknown}, which can be ob-

tained by calling the activitity recognition API [1] in the Google Play applications.

4) Step Frequency : the numbers of steps per second (if on-foot). Each sensor sample
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includes 10 continuous accelerometer readings, which are then used to estimate the

step frequency using the method introduced in [10].

5) Weather Condition: {Sunny, Cloudy, Raining, Snowing}, which can be obtained

by calling the REST Weather Channel API [71]. (e.g. NOAA Weather application

API, Weather Channel API and WeatherBug API).

6) Local Temperature: the outdoor temperature at the sampling instant and location,

which can be obtained by calling the REST Weather Channel API [71] too.

7) User State: {Active, Inactive}, which shows whether or not the user is actively

using the smartphone. This can be obtained by using the Android system API to

check if any app is launched in the past sampling period.

We select these features to build the lifestyle model because we believe they may

all have a significant impact on a mobile user’s activities. For example, a mobile user

usually goes to a restaurant on Saturday night, however, if the weather happens to

be pretty bad (e.g., snowing), he/she may decide not to go out.

4.3.1 Lifestyle Characterization With Places Of Interests

In order to learn lifestyle of a mobile user, we first need to know which places he/she

likes to go, which, however, is hard to tell simply based on a set of collected sensor

samples since some of them may be taken when he/she moves from one place to

another. We characterize the lifestyle of a user using PoIs. A PoI is a place that a

mobile user has visited, which could be a grocery store, a shopping mall, a restaurant,

etc. Discovering PoIs for a mobile user is the first step of lifestyle learning.

In an example illustrated by Fig. 4-4(a), a mobile user entered a commercial

district. He first spent some time in a shop with goods on sale. Then he walked into

a gift shop. A popular ice cream shop caught his attention on his way to the movie

theater. He bought an ice cream, which caused him to be late for his movie. So he
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Figure 4-4: Problems associated with the PoI discovery

ran to the theater from ice cream shop. Each red dot in this figure is the location of

the user at a sampling instant. If the user stays at the same place for more than one

sampling period, we will have more than one red dots in that location. The user’s

moving speed determines spacial sparsity of samples: generally the faster the user

moves, the more sparse the samples we will have in the spacial domain. To analyze

the lifestyle of a user, we need to discover his/her PoIs. In this example, PoIs are

marked in the figure: 1) A (shop with goods on sale); 2) B (gift shop); 3) C (ice

cream shop); and 4) D (movie theater).

From the example above and the field-test, we can see that sensor samples have the

following two properties: 1) The set of collected sensor samples contains both samples

related to PoIs, and samples corresponding to movements between PoIs, which may

not be relevant. 2) The number of PoIs are not known beforehand.

Intuitively, we should apply a clustering algorithm to find clusters based on col-

lected samples, which can then be used to identify desired PoIs. However, we find
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most existing clustering algorithms are not suitable for our problem due to the fol-

lowing reasons: 1) Those clustering algorithms, in which the number of clusters is

required as input, are not suitable, since the number of PoIs are not known before-

hand. 2) A naive approach, in which clusters are determined simply based on the

amount of time a user stays in an area, is not applicable since a user may stay on

certain part of a road for a long time due to traffic jam. 3) Clustering simply based

on locations without taking time into consideration, may lead to many false PoIs. As

shown in Fig. 4-4(b), samples collected over several days overlap (yellow, green and

red dots mark samples collected in different days). In such a scenario, areas A, B, C

and D are likely to be discovered incorrectly as PoIs. 4) It is not reasonable to de-

termine whether a place is a PoI or not simply based on a moving speed threshold.In

Fig. 4-4(c), the user jogs around a lake with samples evenly distributed around it. By

just setting up a fixed speed threshold for clustering, the lake may not be discovered

as a PoI.

In summary, clustering should be done according to multiple relevant features

rather than a single feature.

Based on our observations, we design a two-stage algorithm to discover PoIs from

a set of sensor samples, which is illustrated in Fig. 4-5. As described above, instead

of directly using raw sensor data, we extract useful information from collected sen-

sor samples to produce feature data as input. We choose the DBSCAN [18] and

MeanShift [8] algorithms for coarse-grained and fine-grained clustering in the first

and second stage respectively.
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In the first stage, our main goal is to filter out those samples related to movements

between two PoIs rather than actual PoIs. For each collected sample s ∈ S, we

extract its timestamp, location, moving state and moving speed to build a feature

tuple f = (t, l, a, v) ∈ F. We feed those feature tuples into the DBSCAN algorithm

to produce a set of clusters. DBSCAN is a density-based clustering algorithm, which

ensures that the output clusters are areas of high density while outside of the clusters

are areas of low density [18]. This is desirable for our problem since DBSCAN can

efficiently filter out those sparsely distributed samples related to movements between

two PoIs. Moreover, we perform clustering based on multiple features, which avoids

the potential issues related to single feature based clustering described above.

Specifically, we first perform DBSCAN based on the feature tuples to discover

a set C of clusters C = {C1, · · · ,CN} from F. Then for each cluster Cj ∈ C,

apply DBSCAN again to further divide this cluster into a set of sub-clusters Cj =

{Cj,1, · · · ,Cj,M}. Note that for most cases, one round of DBSCAN is sufficient, i.e.,

the second round of DBSCAN will not be able to divide each Cj ∈ C further into

multiple smaller clusters. However, the second round of DBSCAN is necessary in

some cases. For example, if a mobile user visits places in two different cities, only two

clusters (each corresponds to a city) will be returned after the first round because

DBSCAN does clustering based on the density of samples. This is obviously too

coarse so clustering needs to be done again to improve granularity.

After clustering using the DBSCAN algorithm, we can have a set of clusters of

feature tuples. However, since DBSCAN is not a centroid-based clustering algorithm,

it does not return cluster centers, which are needed by us. In addition, we find that if

multiple PoIs are close to each other (e.g., multiple PoIs in a plaza), the related feature

tuples may be put into the same cluster. So we still need to do fine-grained clustering

following the first stage. In the second stage, we use the MeanShift algorithm on each

cluster found in the first stage. In this stage, only locations are used for clustering.
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The MeanShift algorithm uses a similar idea for clustering but can return cluster

centers (if each cluster has a convex shape) [8]. These cluster centers will then be

returned as the set of PoIs.

We formally present our PoI discovery algorithm as Algorithm 3, in which the

first stage starts from Step 3, and the second stage starts from Step 8. We use c′i and

r′i to denote the center and the corresponding radius of cluster C′
i respectively.

Algorithm 3 The PoI Discovery Algorithm

Input: The set of feature tuples F;
Output: The set of PoIs P;

1: P← ∅;
2: C← ∅;
3: {C1, · · · ,CN} ← DBSCAN(F);
4: for Cj ∈ {C1, · · · ,CN} do
5: {Cj,1, · · · ,Cj,M} ← DBSCAN(Cj);
6: C← C

∪
{Cj,1, · · · ,Cj,M};

7: end for
8: for Ci,j ∈ C do
9: F′ ← ∅;
10: for f = (t, l, a, v) ∈ Ci,j do
11: F′ ← F′ ∪{l};
12: end for
13: {C′

1, · · · ,C′
n} ← MeanShift(F′);

14: P← P
∪
{(c′1, r′1), · · · , (c′n, r′n)};

15: end for
16: return P

The output of this algorithm is a set P of PoIs (with center locations and radii).

Obviously, these locations cannot be directly used to predict activities of the mobile

users. In LIPS, the Place Information Provider uses the Google Place API [24] to

find the actual places according to these locations.

4.3.2 Lifestyle Modeling For Activity Prediction

In this section, we describe how to predict a mobile user’s activities in the next T

hours according to the discovered PoIs. Note that PoIs tell us exactly which places the
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mobile user visited. For a mobile user, PoIs p and p′ may be two different restaurants

he/she usually goes to, but they both correspond to the same activity “dining”. So

we are actually interested in knowing what kind of activities a mobile user will do in

the near future (rather than exactly which place he/she will visit) such that we can

provide related and useful information (such as recommendation) to him/her.

In LIPS, we define a set of activities: mall shopping, dining, grocery shopping,

outdoor recreation, indoor recreation, movie, gas station, car wash, exercise, laundry,

library, and schooling. This set can certainly be expanded according to the new PoIs

and needs. In addition, we need to map PoIs to activities. We again use Google Place

API to find the type of each PoI. For example, given a hiking trail, it will return its

type as “park”. In LIPS, We then create a table to map each type to certain activity.

For example, if the type of a PoI is “park”, its corresponding activity is “outdoor

recreation”.

In order to build a lifestyle model for future activity prediction. We need to have a

training set, in which each item is a feature-activity tuple (f ;π). f = (d, t, l, a, v, w, c, u),

where d is the day (Monday, Tuesday, etc.), t is the time, l is the location, a is the

moving state, v is the moving speed, w is the weather condition, c is the outdoor tem-

perature, u is the user state (active or not); and π is the associated activity. Note that

here the feature tuple includes all features discussed in the beginning of this section,

which is different from that introduced in the previous section. In addition, we aim

to predict the activities in the next Ts to Te hours so when building the training set,

the activities need to be the activities discovered in that future period. For example,

suppose a feature tuple of a mobile user, Alice, at 11:00AM is f , and we want to pre-

dict her activities in the next 1 to 2 hours (i.e., between 12:00PM and 1:00PM), and

her activity during that period turned out be “dining” according to some collected

samples, then we will add a feature-activity tuple (f , “dining”) into the training set.

Of course, if there were more than one activity, say “dining” and “indoor recreation”
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during that period, we will add both (f , “dining”) and (f , “indoor-recreation”) into

the training set.

After the training set is built, any supervised classification algorithm [27] can be

used here to make prediction. We tested a few of them extensively with the collected

sensor data and found that Support Vector Machines (SVM) [27] turns out to be the

most effective one. Moreover, it is known that SVM is usually very effective in the

high-dimensional spaces (many features), fast and memory-efficient. So in LIPS, we

employ SVM to predict future activities of a mobile user. SVM can return a model

such that when given a feature tuple (as shown above) of a mobile user, it can return

the probability of each possible activity he/she may perform in the future.

4.4 Lifestyle-aware adaptive sampling

Energy resource of a smartphone is very limited. Therefore, it is crucial to carefully

manage its energy usages on sensing; otherwise, LIPS may drain its battery quickly.

A simple and practical approach for saving energy is to adaptively adjust the sampling

rate.

On one hand, if the sampling rate is reduced (i.e., sampling period is increased),

energy spent for sensor data acquisition and communications can certainly be reduced.

Moreover, the smartphone system will have a much higher chance to enter the sleep

mode, which is known to consume much less energy than the active mode does. On

the other hand, reducing the sampling rate may lead to less samples, which will have a

negative impact on the performance of PoI discovery and activity prediction. Hence,

we need to develop an effective algorithm that adaptively adjusts the sampling rate

to trade off energy efficiency and learning performance.

We consider the following three cases when we try to make a decision on whether

or not to reduce the sampling rate: 1) If the user is at some place, which is not one
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of discovered PoIs, the sampling rate should not be reduced since otherwise there

may not be sufficient samples for discovering this possibly new PoI. 2) If the user is

at one of discovered PoIs and the activity prediction is stable (explained below), the

sampling rate can be reduced. 3) If the user is at one of discovered PoIs, but the

prediction result is not stable, the sampling rate should not be reduced.

In our adaptive sampling algorithm, we make sure that the sampling period falls

in the range of [Tmin, Tmax]. We set the initial sampling period to Tmin. Tmin and Tmax

were set to 5min and 20min respectively in our implementation. Every time (say at

time t) when a new feature tuple is collected, the algorithm checks whether or not its

location lt falls in the radius of any discovered PoI. If so, the algorithm further employs

the developed activity prediction model M(·) (described above) to predict his/her

future activities and stores the results to Πt. Then the algorithm compares Πt with

the previous results to see if there is any significant change. If yes, the sampling period

is doubled, otherwise it remains the same as before. Here πmax
t (πmax

t−T ) and pmax
t (pmax

t−T )

denote the most likely activity and the corresponding probability predicted according

to the current sample ft (the previous sample ft−T ), respectively. α is a threshold,

which is used to define the condition that triggers adjustment of the sampling period.

The larger the α is, the more likely the sampling period will be increased. For all

the other cases, the algorithm stays with the minimum sampling period (i.e. 5min

in our implementation). We formally present our adaptively sampling algorithm as

Algorithm 4. Note that the feature tuple (sample) ft−T collected at the last sampling

instant t− T and the corresponding prediction results Πt−T are given as input.

Note that since the PoI discovery algorithm depends on the density of sensor

samples, we need to duplicate sensor samples to maintain the sample density if the

sampling rate is reduced by the adaptive sampling algorithm.
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Algorithm 4 Lifestyle-aware Adaptive Sampling Algorithm

Input: ft, ft−T , Πt−T , T ;
Output: T ′;

1: if ft−T = nil then
2: return Tmin;
3: end if
4: T ′ ← Tmin;
5: if ∃p = (c, r) ∈ P s.t. ∥lt − c∥ ≤ r then
6: Πt−T ←M(ft−T );
7: Πt ←M(ft);
8: if πmax

t−T = πmax
t & |pmax

t−T − pmax
t | < α ∗ pmax

t−T then
9: if 2 ∗ T ≤ Tmax then
10: T ′ ← 2 ∗ T ;
11: else
12: T ′ ← T ;
13: end if
14: end if
15: end if
16: return T ′;

4.5 Validation and performance evaluation

In this section, we present the experimental results collected from field tests to validate

and evaluate LIPS.

The field tests were conducted in March and April of 2014, with a group of vol-

unteers from 6 major cities in USA.

During the experiments, all the volunteers used Android-based Nexus 4 or Nexus

5 phones.

To protect their identities, we use a single capital letter as their names in the

following.

Sensors were first sampled every 5 minutes. In the last three days of experi-

ments, we started to apply the proposed lifestyle-aware adaptive sampling algorithm

to adaptively adjust the sampling rate, and in the meanwhile, we still collected sensor

samples every 5 minutes for comparisons.
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4.5.1 Validation and Evaluation of Lifestyle Learning

First of all, we present experimental results to validate the proposed PoI discovery al-

gorithm. We used the Google Maps to show the sensor samples and the corresponding

PoIs. Due to the space limitation, we chose to present results of two representative

volunteers: Ms. A, Mr. B, who are from two different cities. Since many volunteers

are friends or relatives of one of the authors, we first briefly describe their lifestyles

(according to our best knowledge) as ground truths and then show the PoI discovery

results.

Ms. A is a businesswoman living in the Great Boston area. Most of her activities

happen in the region shown in fig. 4-6(a). Her home is located in area 1. Across

the river is a grocery store, where she usually goes for grocery shopping. Area 2 is a

small commercial district, where her company and several restaurants are located. On

weekdays, she usually leaves home and goes to work in the morning. But occasionally,

she needs to meet customers in areas 3 and 4. She likes shopping very much. On

weekends, sometimes, she meets her friends and has breakfast together in area 5;

sometimes, she meets her friends in Harvard University in area 6. Then they go

shopping in areas 7 and 8. There is a large mall in area 7, and area 8 is the downtown

of Boston, where a lot of shops and restaurants are located. On weekdays, she usually

has lunch in the restaurants close to her company. On weekends, she usually goes to

some restaurants in the downtown area.

The periodically collected sensor samples and the PoIs discovered by our algorithm

are shown in Fig. 4-6(a). From Fig. 4-6(b), we observe that the following places are

discovered as PoIs: 1) Ms. A’s home and the grocery store near her home in area

1; 2) her workplace and the restaurants that she likes to go to in area 2. 3) the

customers’ sites in area 3 and 4; 4) Harvard University in area 6; and 5) the shopping

malls and restaurants in areas 7 and 8. We can also see that sensor samples related

to movements between PoIs are successfully filtered out by the proposed algorithm.
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Figure 4-6: PoI discovery for Ms. A
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Figure 4-7: PoIs discovery for Mr. B
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The second user Mr. B is an engineer who works and lives in the Great San

Francisco area. Most of his activities occur in the region shown in Fig. 4-7(a). Area 1

is a residential community, where he and a lot of his colleagues live. A grocery store

is located in this area, where he does grocery shopping almost every weekend. He and

his friends take turns hosting parties over weekends, so most of his social activities

occur in this area. He works in a company located in area 2, which is a high-tech

company and has several buildings forming a large campus. The company provides

its employees with free food and free facilities such as gyms. So Mr. B usually has

breakfast, lunch and dinner in the cafes located on campus. He also does exercises in

the gyms on campus. Sometimes he makes a little change to his life by having dinner

in the restaurants near his workplace. On weekends, he and his family go shopping

and have lunch in the commercial districts in areas 3–7, where shopping malls and

great restaurants are located. In addition, if the weather is good, he likes to hike in

area 8.

From Fig. 4-7(b), we observe that the following places are discovered as PoIs:

1) Mr. B’s home in area 1; 2) his workplace, cafes and gyms on campus, and the

restaurants he occasionally visits in area 2. 3) shops and restaurants in areas 3–7; and

4) hiking trails in area 8. Similarly, samples corresponding to movements between

PoIs are filtered out.

The third volunteer Mr. C is a student studying and living in Syracuse, NY, whose

activities occur in the area shown in Fig. 4-8(a). He lives in a suburban area 1. He

drives to one of the two parking lots of his university almost every weekday morning

in area 2. After parking his car, he either takes a bus or walks from the parking lot to

his office on campus, depending on the weather condition. At lunch time, he usually

walks to the restaurant area located at the northern part of his university and has

a quick lunch there. Areas 3 and 4 are the districts, where several grocery stores

are located. He does grocery shopping every Monday afternoon. Several fast food

86



L1 L2

L3

8

1

2

7

53

4
6

9

(a) Sensor samples

2
8

17

3

4

5

6

9

(b) PoIs

Figure 4-8: PoIs discovery for Mr. C
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restaurants are located in areas 5 and 6. He has dinner in these places sometimes.

After dinner, most of time, he drives back to his office on campus and continues his

work there till midnight then drives back to his home located in area 1. On weekends,

he likes to spend one morning, either hiking on trails in area 7 or jogging around lakes

in area 8. In addition, he sometimes visits an electronic store in area 9 for new and

cool electronics.

From Fig. 4-8(b), we can see the following places are identified as PoIs of user

C: 1) Mr. C’s home in area 1; 2) his office, two parking lots and several restaurants

where he usually has lunch in area 2; 3) the grocery stores and restaurants in areas

3–6; 4) a park in area 7 and a lake in area 8 where he likes to hike and jog respectively;

and 5) an electronic store he occasionally visits in area 9.

We are not able to show the PoI discovery results of all the volunteers due to

the space limitation. However, we found similar observations can be made from the

experimental results of the other volunteers, i.e., the places he/she usually visits can

be successfully discovered as PoIs and samples corresponding to movements between

them can be filtered out.

Next, we show the experimental results to justify the effectiveness of the proposed

activity prediction algorithm. In the experiments, we aimed to predict activities in

the next 1 to 2 hours. To evaluate the activity prediction algorithm, we chose to use

the widely used cross-validation method [34]. We split all the training data randomly

into 10 disjoint sets. In each test, 9 of these training sets were used for training, and

the rest data set was used to test the accuracy of prediction. Hence, a total of 10

tests were performed for each volunteer. We show the results in Fig. 4-9.

From the figure, we can see the activity prediction algorithm works well. Among all

the volunteers, it predicts with an average of accuracy of 72%, the lowest confidence

at 56% and the highest at 89%. Moreover, we find out the following factors may

affect the prediction accuracy: 1) If a mobile user has a very regular schedule, and
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his/her daily life follows a regular pattern, e.g., a college student, his/her activities

can be predicted with high accuracy. Users D, I, J and N fall into this category. 2)

If a mobile user has a quite flexible schedule in his/her daily life, it is hard to make

accurate predictions. For example, Mr. M is a senior Ph.D student without any

course work, so his schedule is quite flexible and his activities are relatively hard to

predict. 3) It is hard to predict the activities of a mobile user who travels often. For

example, Mr. L is an engineer, who often travels between cities for technical support.

The accuracy of prediction for his activities is not as good as that for those who stay

in a single city.

4.5.2 Evaluation of adaptive sampling

The proposed adaptive sampling algorithm was applied in the last three days of field

tests. The threshold α was set to a relatively small value, 5%, during experiments.

In this way, we can save sensing energy, while still preserving good performance of

lifestyle learning. Suppose that the number of samples collected by our adaptive

sampling algorithm and by periodical sampling (with the sampling period of 5min)

are n′ and n respectively. We chose to use the ratio n−n′

n
as the performance metric,

which we call energy saving ratio. The corresponding results are shown in Fig. 4-

10. From the figure, we can see that compared to periodic sampling, the proposed

adaptive sampling algorithm achieves an energy saving of 52% on average, with the

maximum saving at 63% and the minimum at 40%.
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Figure 4-9: Cross-validation for prediction accuracy

Figure 4-10: Energy savings achieved by adaptive sampling
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Chapter 5

Collaborative Sensing

5.1 Overview

As we have analyzed in Section 1.2, even though smartphones’ sensing applications are

very attractive, performing sensing tasks using a smartphone may consume significant

amount of energy. Moreover, most mobile crowd sensing applications are location-

dependent, which may require location information to be reported along with sensed

data. If energy-hungry GPS is turned on during the whole sensing procedure, the

battery may be drained very quickly. Hence, without carefully managing very limited

energy resources, a smartphone may end up with running out of its battery after

performing a few sensing tasks. There is a large space for energy savings on a mobile

phone. In this Chapter, we study how to minimize sensing energy consumption such

that smartphones can undertake sensing tasks, and in the meanwhile, they can still

fulfill their regular duties, such as phone calls, emails, etc. There is a large space

for energy savings on a smartphone. However, fundamental energy-efficient resource

management problems have not been carefully studied in the context of mobile crowd

sensing.

As presented in Section 1.2, there are two mobile phone sensing paradigms [65]:
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Participatory Sensing and Opportunistic Sensing. In this chapter, we focus on oppor-

tunistic sensing applications and aim to develop general (application-independent)

methods to control the sensing procedure with the objective of minimizing sensing

energy consumption. A commonly used method is to make every mobile phone sense

periodically (every x seconds). This method is obviously not efficient because if this

method is used, many redundant data reports may be produced for a target region

by a large number of users which happen to show up in that area. Redundancy

(i.e., the number of times a user senses) can be reduced and energy-efficiency can

be improved by using a coordinator to control sensing activities of users such that

those smartphones sense collaboratively to produce just enough data reports for the

application. To this end, we propose to use a cloud-assisted collaborative sensing

approach. Cloud computing has evolved as an important computing model, which

can be leveraged to assist smartphone sensing by using servers in a cloud to not only

handle data reports from smartphones but also collect mobility and location informa-

tion from smartphones, calculate the best sensing schedule and tell them when/where

to sense. Those sensors that are not needed for sensing can be turned off or work in

a low power mode.

Only few recent works addressed collaborative sensing with smartphones. In [45],

the authors presented analytical results on the rate of information reporting by uncon-

trolled mobile sensors needed to cover a given geographical area, and demonstrated

the feasibility of using existing software and standard protocols for information re-

porting and retrieval to support a large system of uncontrolled mobile sensors using

a testbed. In [72], the authors introduced mechanisms for automated mapping of

urban areas that provide a virtual sensor abstraction to applications. They also pro-

posed spatial and temporal coverage metrics for measuring the quality of acquired

data. In [68], the authors proposed a protocol, Aquiba, that exploits opportunistic

collaboration of pedestrians. Its performance was studied via simulations.
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Collaborative sensing has been well studied for mobile sensor networks. In [79],

Zhou et al. considered how to deploy mobile sensors into an existing sensor network to

enhance its connectivity and coverage, and presented a dynamic programming based

algorithm under the assumption that each sensor is equipped with GPS. Several

distributed algorithms were presented for a sensing coverage problem in [78], which

do not need any location and distance information. In [61], Saipulla et al. explored

the fundamental limits of sensor mobility on barrier coverage and presented a sensor

mobility scheme that constructs the maximum number of barriers with minimum

sensor moving distance.

The differences between our work and these related works are: 1) The optimization

problems considered in related works [45, 72] are mathematically different from the

problems considered here. 2) Closely related works [68, 72] presented heuristic algo-

rithms that cannot provide performance guarantees. We, however, present algorithms

to produce optimal solutions, which can be used to justify the use of collaborative

sensing in opportunistic sensing applications and show the potential energy savings

quantitatively. This is the major contribution of this chapter. 3) The algorithms

presented in [61, 78, 79] for mobile sensor networks (in which sensor mobility can be

controlled to achieve certain sensing coverage) cannot be applied here because the

mobility of smartphones is usually uncontrollable.

In this chapter, we study optimization problems related to energy-efficient col-

laborative sensing with smartphones. And our contributions are summarized in the

following list:

1) Assuming knowing each user’s moving trajectory in advance, we present a polynomial-

time algorithm to obtain minimum energy sensing schedules. Even though this as-

sumption may not be realistic, the obtained solutions can be used to show potential

energy savings that can be brought by using collaborative sensing in smartphone

sensing applications, and can also serve as a benchmark for performance evalua-
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tion. We also address individual energy consumption and fairness by presenting

an algorithm to find fair energy-efficient sensing schedules.

2) We present practical and effective heuristic algorithms to find energy-efficient sens-

ing schedules under realistic assumptions.

3) We present simulation results based on real location (collected from the Google

Map) and energy consumption (measured by the Monsosn power monitor [52]) data

to show that collaborative sensing significantly reduces energy consumption com-

pared to a traditional approach without collaborations, and the proposed heuristic

algorithm performs well in terms of both total energy consumption and fairness.

In the second part of this chapter, we aim to design scheduling algorithms and

a protocol for mobile crowd sensing without accurate locations (provided by GPS)

with the objective of achieving a defined coverage requirement with limited energy

consumption. Our contributions are summarized in the following:

1) We present a probabilistic model for sensing coverage without accurate location

information, based on which we formally define the Energy constrained Maximum

Coverage Sensing Scheduling (E-MCSS) problem for maximum coverage and the

Fair Maximum Coverage Sensing Scheduling (F-MCSS) problem for addressing

fairness on individual energy usages.

2) Assuming moving trajectories of mobile users are known in advance, we present a

(1− 1
e
)-approximation algorithm and a 1

2
-approximation algorithm to solve the E-

MCSS and F-MCSS problems in polynomial time, respectively. Even though this

assumption might not be realistic, the solutions given by these theoretically-sound

algorithms can serve as benchmarks for performance evaluation.

3) Under realistic assumptions, we present a GPS-less energy-efficient protocol for

sensing scheduling based on the proposed approximation algorithms.
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4) We developed an Android-based mobile crowd sensing system, on which we imple-

mented the proposed protocol. We present simulation results based on real location

data (collected from the Google Map) as well as experimental results from a field

test on Syracuse University’s campus to validate and justify effectiveness of the

proposed algorithms and protocol.

To the best of our knowledge, we are the first to present theoretically well-founded

and practically efficient mathematical model, algorithms and protocol for coverage

(without accurate locations) and energy-efficient sensing scheduling in the context of

mobile crowd sensing.

The rest of this chapter is organized as follows. With the assumption that the

user’s accurate location is available, We describe the system model and formally

define the problems in Section 5.2.1. The proposed algorithms are presented in Sec-

tion 5.2.2. We present the simulation results in Section 5.2.3. To address the GPS-less

collaborative sensing problem, we formulate the problem in Section 5.3.1, propose the

probabiliy based sensing model and present the approximate algorithms. The evalu-

ation of GPS-less sensing algorithm is presented in Section 5.3.4.

5.2 Collaborative Sensing

5.2.1 Problem Definition

In this section, we describe the system model, introduce necessary notations and then

formally define the problems.

First, we summarize the major notations in Table 5.1.

We consider a smartphone sensing system with multiple mobile users, each of

which carries a smartphone equipped with sensors. The mobility of each mobile user

cannot be controlled. However, mobile users’ movements are highly restricted by

roads, i.e., a vehicle or a person can only move along roads and turn at intersections.
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Table 5.1: Major notations

G(V,E) The VSG and its vertex and edge sets.
M The number of roads in the target region.
N The number of mobile users/phones
Si The sensing schedule of user i
T The deadline of the given sensing task.
wi The energy needed to sense once using user i’s phone.
Γi The moving trajectory of user i

The movements of a mobile user i can be characterized using a trajectory Γi which

is a set of 3-tuples (i, ti, loci) and each of them gives the location of user i at time ti.

The more 3-tuples there are in the trajectory, the more accurately it can characterize

the movements of mobile user i.

Again, we focus on the opportunistic sensing scenario in which sensors on each

smartphone automatically perform sensing tasks without user involvement. Each

sensor is assumed to have a sensing range of r, which basically means if a user sense

at a location locx and obtain a reading, then there is no need to sense again in any

location within the disk with the origin at locx and a radius of r since the readings

will be similar. Sensing target areas are roads in a given region, which are assumed to

be narrow chains. The width of a road is assumed to negligible because r is usually

larger or much larger. We consider regular roads which are roughly straight roads.

Those irregular roads can be treated as a sequence of regular roads. If a user is on a

road, it is assumed to cover a segment (b, c) with a length of 2r. We can be more or

less conservative on coverage by setting the value of r to a smaller or larger value. In

the following, we will use user, phone and sensor interchangeably.

Given a sensing application, multiple servers are set up in a cloud to coordinate

sensing activities. Servers are assumed to periodically exchange information to have

a consistent view of smartphones in the system. Each smartphone can exchange

information with one of the servers using its wireless interface. Our approach is to
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use servers to gather information from smartphones, determine when/where to sense

for each phone, send the sensing schedule to smartphones and then collect sensed

data reports from them.

Every 3-tuple in a trajectory can be imagined as a virtual sensor. If trajectories of

all users are given, then we will have a large network of virtual sensors by combining

all 3-tuples in trajectories. A sensing schedule S is a collection of virtual sensor sets,

i.e., S =
∪N

i=1 Si, where Si ⊆ Γi. |Si| gives the number of times user i (smartphone of

user i) senses. Note that performing a common sensing task may consume different

amount of energy on different phones. For example, energy consumption of a WiFi

scan on three popular Andorid-based smartphones can be found in Table 5.2.

Since energy efficiency is the primary design goal of this work, we want to minimize

total energy consumed in the whole sensing procedure. So we define the following

optimization problem.

Definition 4 (MECSS) Given a region, M roads in the region, N mobile users,

a deadline T and the moving trajectory Γi of each user i ∈ {1, · · · , N} before the

deadline, the Minimum Energy Collaborative Sensing Scheduling (MECSS)

problem seeks a sensing schedule Si ⊆ Γi for each user i, such that its total en-

ergy consumption
∑N

i=1wi|Si| (where wi is the energy needed to sense once with the

smartphone of user i) is minimized subject to the constraint that the roads in the given

region are fully covered before the deadline T .

However simply minimizing the total energy consumption may lead to unfair uti-

lizations of smartphones, some users’ phones are heavily used for sensing and other

users’ phones are lightly utilized or not utilized at all. A similar issue has been shown

by previous works [67] for wireless mesh and sensor networks: simply maximizing net-

work throughput leads to severe unfairness on users’ individual throughput. There-

fore, we try to improve fairness by only considering those sensing schedules with the

min-max number of user sensing times. We call such schedules min-max fair sensing

97



schedules. We also study the Fair Energy-efficient Collaborative Sensing Scheduling

(FECSS) problem which seeks a min-max fair sensing schedule Si ⊆ Γi for each user

i, such that its total energy consumption is minimized.

Assuming knowing the trajectory of each mobile user in advance, we present al-

gorithms to solve these sensing scheduling problems optimally, which are presented

in Section 5.2.2. It may be argued that these assumptions are not realistic since it is

hard to precisely predict how users move in the future and mobile users need to turn

on the GPS devices on their smartphones to obtain precise locations, which, however,

are energy-hungry [40] (a GPS device usually consumes much more energy than other

sensors). However, the optimal solutions can be used to show energy savings that can

potentially be achieved by collaborative sensing and they can serve as a benchmark

for performance evaluation, i.e., can be used to find out how far a sensing schedule

produced by a practical heuristic algorithm is away from the optimal. Therefore, it

makes sense to present the optimal algorithms. We also present two practical and sim-

ple heuristic algorithms in Section 5.2.2 to find energy-efficient sensing schedules for

mobile users, which do not need moving trajectories beforehand or precise locations.

5.2.2 Algorithms

In this section, we present optimal algorithms and practical heuristic algorithms for

collaborative sensing.

Optimal Algorithms

In order to solve the MECSS problem defined above, we first introduce a graph model,

Virtual Sensor Graph (VSG) G(V,E), to assist computation. As mentioned above,

the moving trajectory of each mobile user is assumed to be known and each 3-tuple

(i, ti, loci) in a trajectory can be viewed as a virtual sensor. The sensing scheduling

problem is actually to find a subset of virtual sensors to cover the roads in the target
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region. This graph is a multi-layer directed graph and each layer corresponds to a road

L in the target region. Every vertex corresponds to a virtual sensor vj (associated

with user i). Let (bj, cj) and (bj′ , cj′) be segments of L covered by virtual sensors

vj and vj′ (that are on L), respectively. There is a directed edge from vj to vj′ if

bj < bj′ ≤ cj < cj′ (i.e., their coverage areas overlap). Its capacity and cost are

set to 1 and wi′ (virtual sensor vj′ is associated with user i′), respectively. For a

virtual sensor (vertex) on multiple roads (e.g., virtual sensors at inter-sections are on

two or more roads.), we arbitrarily pick a corresponding layer (road) to place it in

G. Moreover, for each virtual sensor v (associated with user i) covering segments on

multiple roads, we have to create a pair of vertices (vin, vout) to represent it in G,

and there is a directed edge from vin to vout whose capacity and cost are set to ∞

and wi respectively. We call such virtual sensors cross-road virtual sensors and those

edges intra-vertex edges. There is a directed edge from vout to another vertex u or

from another vertex u to vin if the aforementioned condition is met. The capacities

and costs of all incoming edges associated with a cross-road virtual sensor are set to

1 and 0 respectively. However, the capacity and cost of an outgoing edge (to vertex

u associated with user h) associated with a cross-road virtual sensor are set to 1 and

wh respectively. Note that another vertex u here may be in the same layer or in a

different layer. Therefore, edges associated with cross-road virtual sensors may cross

layers.

In addition, we also add a virtual source sm for each layer m ∈ {1, · · · ,M}

and edges from sm to all the vertices whose corresponding virtual sensors cover the

western/southern boundary of the corresponding road with their capacities and costs

set to 1 and the energy cost of the user associated with its destination vertex, as

well as a virtual sink zm and edges from all the vertices whose corresponding virtual

sensors cover the eastern/northern boundary of the corresponding road to zm with

their capacities and costs set to 1 and 0 respectively. In addition, there are an ultimate
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virtual source s and sink z. There are also edges from s to virtual sources in all layers

with their capacities and costs set to 1 and 0, and edges from virtual sinks in all layers

to z with their capacities and costs set to 1 and 0 too. A simple example in Fig. 5-1 is

used to illustrate the graph construction. In this example, we have 6 virtual sensors

and two roads. Virtual sensors 1, 2, 3 are on road 1 and are assumed to be associated

with user 1; and virtual sensors 4, 5, 6 are on road 2 and they are assumed to be

associated with user 2, as illustrated by the first sub-figure. The corresponding 2-

layer VSG is given in the second sub-figure, in which the first number associated with

each edge is its capacity and the second number is its cost. In this example, vertex

v5 corresponds to a cross-road virtual sensor which can be used to cover both roads

1 and 2. Intuitively, such virtual sensors should be fully leveraged to reduce sensing

energy consumption. We present our optimal algorithm for the MECSS problem as

follows.

Algorithm 5 The optimal MECSS algorithm

1: Construct the VSG G(V,E);
2: Solve the LP relaxation of the ILP-MinE;
3: if No feasible solution then
4: return “There is no feasible solution!”;
5: else
6: return the corresponding sensing schedule;
7:

8: end if

Unknown decision variables:

1) fe (e ∈ E): the amount of flow on link e.

2) xe = {0, 1} (e ∈ E): If xe = 1, link e in G is selected; xe = 0, otherwise.

ILP-MinE:

min
∑
e∈E

wexe (5.1)
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Figure 5-1: Roads, virtual sensors and the corresponding VSG

Subject to:

∑
e∈Eout

s

fe = M, (5.2)

∑
e∈Eout

v

fe =
∑
e∈Ein

v

fe, ∀v ∈ V \ {s, z}; (5.3)

fe ≤ Ce, ∀e ∈ E; (5.4)

xe


≥ fe′ ,∀e ∈ Eintra,∀e′ ∈ Ein

e ;

= fe,∀e ∈ E − Eintra.

(5.5)

In this algorithm, the LP relaxation of an Integer Linear Programming (ILP),

ILP-MinE, needs to be solved to obtain optimal solutions. In the ILP, fe and xe

(e ∈ E) are both integer variables and Ein
v /Eout

v is the set of incoming/outgoing

edges of vertex v on G. Eintra is the set of intra-vertex edges and Ein
e is the set of
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incoming edges associated with the source vertex of edge e on G. Once we obtain

values for xe by solving the corresponding LP relaxation (which are guaranteed to be

0 or 1), then we can figure out which virtual sensors should be selected for sensing

(i.e., which user should sense at when and where). Specifically, if e = (u, v) is a

regular edge in G and xe = 1, then the virtual sensor corresponding to its destination

vertex v will be selected for sensing. If e is an intra-vertex edge and xe = 1, then

obviously the virtual sensor corresponding to e will be selected for sensing. We have

the following proposition.

Proposition 2 Algorithm 5 optimally solve the MECSS problem in polynomial time.

Proof 1 The importance of the SVG lies in the fact that any feasible integer s−z flow

with a total flow amount of M (the number of roads in the target region) gives a feasible

(in terms of coverage) sensing schedule. This is because our graph construction guar-

antees that every integer s−z flow in a layer (which may include edges from different

layers) corresponds to a sensing schedule that can fully cover the road corresponding

to that layer. For example, in Fig. 5-1, an integer flow (s, s1, v1, v2, v
in
5 , vout5 , v3, z1, z)

corresponds to a sensing schedule with virtual sensors 1, 2, 5 and 3. Note that we

introduce two virtual vertices in each layer that are used to deal with the case where

multiple virtual sensors may be able to cover the head of a road. Setting corresponding

edges’ capacities to 1 ensures that fully covering each road once instead of covering a

road more than once but leaving some other roads not fully covered.

In addition, the costs of most regular edges (except those associated with virtual

vertices) are set to the energy cost of users (associated with their destination vertices).

Then the selection of an edge e = (u, v) basically means the corresponding virtual

sensor (i.e., the virtual sensor corresponding to vertex v) is added to the sensing

schedule. For those vertices corresponding to cross-road virtual sensors which may

make contributions for covering of multiple roads, the costs of all the corresponding

incoming cross-layer edges are set to 0 and the cost of the corresponding intra-vertex
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edge is set to the energy cost of the corresponding user. This way of assigning link

costs along with Constraints (5.5) ensure that no matter how many roads can benefit

from the coverage contributions made by using this vertex (virtual sensor), it is only

counted once. The costs of those edges associated with virtual vertices are also assigned

properly (e.g., cost(e) := 1, where e = (si, v); while cost(e′) := 0, where e′ = (v′, zi))

such that by counting the total costs of selected edges, we can find out the total energy

consumption. Hence, due to the way how the costs of edges in a VSG is assigned,

we can claim that a minimum cost s − z flow with a flow amount of M actually

corresponds to a feasible (coverage-wise) sensing schedule with the minimum energy

consumption.

By replacing variables xe in the objective function with Constraints (5.5), we

can see that solving the ILP-MinE is equivalent to solving a series of ILP, each of

which has Constraints (5.2)–(5.4) and an objective function of min
∑

e∈E−Eintra wefe+∑
e∈Eintra wefe′ (where e′ is one of incoming edge of the intra-vertex edge e); and then

take the maximum of all objective values. Each such an ILP is a minimum-cost-flow-

like problem, whose coefficient matrix is totally unimodular [73].

It is known that solving the LP relaxation of such an ILP problem automatically

yields integral optimal solutions [73]. Furthermore, the ILP-MinE obviously includes

polynomial numbers of variables and constraints. Therefore, the LP relaxation of the

ILP-MinE can be solved by existing algorithms [4] in polynomial time, which can yield

integral optimal solutions. This completes the proof.

The FECSS problem can be solved by an algorithm similar to Algorithm 5. In-

stead of solving the ILP-MinE, if we solve two following ILPs sequentially, then we

can obtain a fair energy-efficient sensing schedule. Specifically, we first solve the

ILP-Maxmin and obtain the min-max number of sensing times β. Because of Con-

straints (5.7) and the objective function, we can guarantee that for any feasible so-

lution given by solving the ILP-Maxmin is min-max fair (according to our definition
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above). Next, we feed β to the ILP-FECSS as a parameter, which has the objective

function of minimizing the total energy consumption and Constraints (5.7). Here, Ei

is the set of edges associated with user i. Note that for a user with cross-road virtual

sensors, only the corresponding intra-vertex edges are counted. Therefore, solving

the ILP-Maxmin and ILP-FECSS in sequence can provide an optimal solution for the

FECSS problem. We also used solutions generated by this algorithm as a benchmark

for comparison in our simulation.

ILP-Maxmin:

min β (5.6)

Subject to: Constraints (5.2)–(5.5)

∑
e∈Ei

xe ≤ β, ∀i ∈ {1, · · · , N}; (5.7)

ILP-FECSS(β):

min
∑
e∈E

wexe

Subject to: Constraints (5.2)–(5.5) and (5.7)

Practical Heuristic Algorithms

In this section, we present two practical heuristic algorithms. First, we do not as-

sume the moving trajectory of each user is known; second, we do not assume that

users use their energy-hungry GPS devices all the time. However, without knowing

anything about mobile users, the only thing we can do is probably to let them sense
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periodically. Therefore, we do assume that users’ moving directions and speeds can

be detected and measured using some sensors (such as accelerometer and digital com-

pass) on smartphones and a method such as that introduced in [10]. Furthermore,

the GPS device is assumed to be turned on right after a user initiates a sensing task

to provide one or multiple reference locations for mobility prediction. It can certainly

be (automatically or manually) turned off after necessary information is collected. In

this way, a mobile user can keep track of where he/she is during the sensing proce-

dure. In addition, every time a mobile user enters a new road segment (which can

be detected by the smartphone by measuring the distance travelled and detecting

the direction change using an accelerometer and a digital compass), a short report

message will be automatically sent to a server by his/her smartphone. Note that in

this section, a road segment is defined by two intersections, which may be different

from the “road” (which may include a set of consecutive road segments) considered

in the last section.

Both heuristic algorithms are used by a server to calculate a sensing schedule

which will then be broadcast to mobile users. The first algorithm can be viewed as a

realistic way to apply the optimal algorithms presented above. The basic idea is to

sequentially use an algorithm presented above with partial trajectories that can be

predicted to find out how to sense for the next certain period of time. We call this

algorithm the prediction-based algorithm, which is presented as follows.

Algorithm 6 The prediction-based algorithm

1: Predict users’ moving trajectories (until the earliest time a user will enter a new
road segment) according to their current locations and mobility information;

2: Generate virtual sensors according to the predicted partial trajectories;
3: Based on these virtual sensors, construct a connected VSG and apply the optimal

MECSS or FECSS algorithm to calculate a new sensing schedule and broadcast
it to mobile users;

4: Update the target region by removing the road segments that have been covered;
5: Update the number of times each user has already sensed;
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In this algorithm, we do NOT predict how a user will do in an intersection (make

a turn, go straight, or even u-turn), which is hard. Instead, we apply an algorithm to

predict how the user will move towards the intersection he is facing, from which we

can obtain a partial trajectory (for each mobile user) that characterizes his movement

from current location to wherever he will reach at the earliest time a user (himself

or another one) will reach an intersection. Note that any prediction algorithm (e.g.,

an application-specific prediction algorithm) can be applied here. In the simulation,

we used a simple but practical method, which assumes that the user will move to-

wards the intersection he is facing without changing his direction or speed. The

VSG constructed based on partial trajectories may not be connected. We simply

connect disconnected components (if there are any) by connecting vertices on the

edge to produce a connected graph. In Step 2, every time the same algorithm, the

optimal MECSS or FECSS algorithm, is applied, however, the input changes over

time because the algorithm needs to take account of the portions of roads that have

been covered as well as the number of times each user has already sensed. In the

simulation, we used the optimal FECSS algorithm. Obviously, the prediction-based

algorithm does not always yield optimal solutions, however, we show that it works

fine on average cases via simulations.

This second algorithm uses a function of a couple of sensing-related factors to make

sensing decisions for mobile users. Hence, we call it the function-based algorithm,

which is formally presented as Algorithm 7.

First, this algorithm generates virtual sensors on the roads in the target region to

make sure all the roads are fully covered and tries to find a sensing schedule with a

minimum subset of virtual sensors (i.e., a minimum number of sensing times) to cover

all the roads in the target region. This can be easily done by applying the optimal

MECSS algorithm described above with wi(i ∈ {1, · · · , N}) set to 1.

Again, we assume that when a user enters a new road segment L, it will notify the
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Algorithm 7 The function-based algorithm

1: Generate virtual sensors according to the roads in the target region to make sure
all the roads are fully covered;

2: Select a minimum subset of virtual sensors that can cover all the roads in the
target region using the MECSS algorithm and store them in VS;

3: while True do
4: if Receive a report about a new road segment L then
5: if VS = ∅ OR time is up then return ;
6: else
7: Use a function to determine the number J of virtual sensors in V L

S that
need to be used;

8: Notify the user to use the first J virtual sensors and remove them from
V L
S ;

9: end if
10: end if
11: end while

server with a report message. Then the server needs to determine how to make this

user sense in this new segment. In the algorithm, V L
S ⊆ VS is the subset of virtual

sensors on L that are selected in the second step. The V L
S is updated every time after

some virtual sensors are used (i.e., some users used their sensors to sense at times

and locations specific by these virtual sensors).

Our function-based algorithm can rather be considered a general optimization

framework that uses a sensing-related function to determine how many times a user

should sense in the road segment he/she enters. Any function can be used here,

however, it may not lead to good performance. Here are some guidelines for designing

a “good” function: 1) The function value should decrease with the number of times

this user has already sensed for fairness purpose. 2) It should increase with the

decrease of time left to perform the sensing task. 3) If no (or almost no) time left,

J = |V S
L |, where J is the value returned by the function. We suggest to use the

following exponential function in the algorithm:

f(t, T, q, q, c) = ⌈e−c q
q

t
T |V L

S |⌉, (5.8)
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where t and T are the time left to complete the sensing task and the deadline re-

spectively; q and q are the number of times this user has already sensed and q is the

average number of sensing times among all users. c is a tunable parameter. This

function certainly satisfies the three requirements mentioned above and its values fall

in the range (0, |V L
S |]. Note that |V L

S | gives the number of virtual sensors left for use.

Furthermore, the value of c can be set in a certain way to achieve a good tradeoff

between coverage and fairness. Specifically, a smaller c can ensure coverage but may

lead to unfair sensing schedule (some users’ phones may be abused!); however, a larger

c leads to fair sensing but may result in loss of coverage. We performed simulations

to evaluate the performance of this function and to investigate what is the best value

for the constant c, which will be discussed in details later. Certainly, some other

application-specific factors may be brought into the function to (hopefully) improve

the performance further. But we try to design a general approach here, and we found

that this algorithm with the function in (5.8) performed very well from simulation

results.

5.2.3 Evaluation

In this section, we present and discuss simulation results to show the performance of

the proposed algorithms.

In the simulation, WiFi signal sensing was considered to be our application. We

selected three popular Android-based smartphones, Google Nexus S [55], Samsung

I9000 and S5830 [62], as our sensing devices. The energy consumed by these phones

for conducting a WiFi scan was measured by the Monsoon power monitor [52] (par-

ticularly designed for smartphones), which are summarized in the following table.

In the simulation, the smartphone of a user was randomly selected from these three

kinds of Android phones. The sensing range r was set to 7 meters. Since most of

current smartphone sensing projects were conducted in urban areas, we picked a typ-
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ical urban area to carry out simulation runs. As shown in Fig. 5-2 obtained from the

Google Map, the target region is located at Manhattan, NY, which spans 4 blocks

from west to east with a total length of 1.135km and 4 blocks from south to north

with a total width of 0.319 km, and includes the 6th,7th,8th Avenues and the 45th,

46th,47th Streets.

Table 5.2: Energy consumption of a WiFi scan

Phone Models Energy Consumption(µAh)
Google Nexus S 30.99
Samsung S5830 16.25
Samsung I9000 54.08

We used a mobility model similar to the well-known Manhattan model [3] to

generate mobile users’ moving trajectories. Specifically, each user was assumed to

enter the target region from a road at a random time, randomly pick a speed from

{2, 4} meters per second, move towards an intersection, and then move straight ahead

with a probability of 50% and turn left or right with equal probabilities (i.e., 25%).

The trajectory of each user was constructed with evenly paced sample points (6 meters

between two consecutive ones) and points on critical locations (such as intersections

and road heads.) The location data were collected from the Google Map using its

API.

Figure 5-2: The target region

We compared our algorithms, the prediction-based algorithm (labeled as “Prediction-

Based”), the function-based algorithm (labeled as “Function-Based”), the optimal

MECSS algorithm (labeled as “MinTotalEnergy”), the optimal FECSS algorithm
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(labeled as “FECSS”) against a baseline approach in which every user performs a

WiFi scan every 3 seconds. The total energy consumption, the variance of the num-

ber of sensing times, the maximum number of sensing times were used as performance

metrics to show the energy consumption as well as fairness. In the simulation sce-

nario, we increased the number of users from 25 to 50 with 5 as the step size. The

simulation results are presented in Figs. 5-3–5-6.
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Figure 5-3: The total energy consumption

From these simulation results, we can make the following observations.

1) From Fig. 5-3, we can see that in terms of total energy consumption, all the pro-

posed algorithms perform very well. Specifically, compared to the baseline approach,

the optimal MECSS algorithm, the optimal FECSS algorithm, the prediction-based

algorithm and the function-based algorithm significantly reduce energy consumption

by 91%, 80%, 80% and 82% respectively, on average. The optimal MECSS algo-

rithm is certainly the best in terms of this metric. The optimal FECSS algorithm

tries to minimize total energy consumption under the constraint of achieving the

min-max number of sensing times. Therefore, the total energy consumption given

by this algorithm is larger than the minimum value. In addition, the function-based
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Figure 5-4: The maximum number of sensing times
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Figure 5-5: The variance of the number of sensing times

algorithm perform very well: close to the optimal MECSS algorithm and better than

the prediction-based algorithm and the optimal FECSS algorithm (in terms of total

energy consumption).

2) In Fig. 5-4, we show the fairness of the sensing schedules given by each algorithm

in terms of the maximum number of sensing times. Since one of the constraints of the
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Figure 5-6: The number of sensing times VS. the sorted user ID

FECSS problem is to achieve the min-max number of sensing times. Therefore, we

first used the maximum number of sensing times as a metric to evaluate the fairness

performance. Clearly, the optimal FECSS algorithm is the best in terms of this metric

since it is guaranteed to produce a solution in which the maximum number of sensing

times is minimum among all possible solutions. This was verified by the results in

Fig. 5-4. None of the other four algorithms can provide any guarantee for this metric.

Not surprisingly, the baseline approach still performs worst. This is because the

number of sensing times given by the baseline approach depends on how long a user

stays in the target region, which can be arbitrarily large. An interesting observation

is that the function-based algorithm outperforms both the optimal MECSS algorithm

and the prediction-based algorithm.

3) In Fig. 5-5, we also used the variance of the number of sensing times as a metric

to evaluate the fairness performance of algorithms. For all algorithms presented

here, their performance in terms of variance matches that in terms of the maximum

number of sensing times. Specifically, the optimal FECSS algorithm performs best

as expected and the baseline approach is still the worst one. The function-based

112



algorithm performs well too. On average, the optimal MECSS algorithm, the optimal

FECSS algorithm, the prediction-based algorithm and the function-based algorithm

outperform the baseline approach by 89%, 98%, 72% and 93% respectively.

In addition, we also present a bar graph in Fig. 5-6 to show how the number of

sensing times is distributed over 25 users. In this figure, x-axis is the sorted user ID.

As can be clearly seen, the number of user sensing times is distributed quite evenly

over all the users if the optimal FECSS algorithm is used to determine the sensing

schedule. If the baseline approach is used, every user needs to sense a few times,

however, the distribution is not even at all.

4) From Fig. 5-3, we can also see that the total energy consumption given by a

proposed algorithm does not increase (decreases slowly in most cases) with the number

of users. As long as a sensing task is undertaken by mobile users in the target region

collaboratively, more users usually offer more flexibility for sensing scheduling, which

should better performance on energy consumption. As expected, the total energy

consumption given by the baseline approach increases sharply with the number of

users. This is because with this algorithm, each user senses individually without any

collaborations. Hence, increasing the number of users does not necessarily bring any

benefits. This observation well justifies the advantage of using collaborative sensing.

Similar observations can be made for the other two metrics from Figs. 5-4–5-5.

In short, we can make two conclusions from the discussions above: 1) Compared

to traditional smartphone sensing without collaborations, collaborative sensing sig-

nificantly reduces energy consumption. 2) The proposed function-based algorithm

perform well in terms of both total energy consumption and fairness.

Since the function-based algorithm seems a promising method for collaborative

sensing, we decided to study it further via simulation by investigating how the value

of c (the tunable parameter in the exponential function) affects fairness. In this

scenario, N = 50 and we used the same input as before. From the results in Figs. 5-
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7–5-8, we can see that the maximum number of sensing times and the variance given

by the algorithm decrease with the value of c as expected. However, we found that

if we increased it to a value larger than 2, we lost full coverage of some roads in the

target region in some cases, which is not acceptable.
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Figure 5-7: The value of c VS. the maximum number of sensing times
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5.3 GPS-less Collaborative Sensing

5.3.1 Problem Formulation

As shown in previous sections, cloud coordinated collaborative sensing could effi-

ciently save the smartphones’ power by remove the redundant data collection. More-

over, since most mobile crowd sensing applications are location-dependent and GPS

is well known as a energy-hungry device, there is still a large space for energy savings.

From this section, we aim to design scheduling algorithms and a protocol for mobile

crowd sensing without accurate locations (provided by GPS) with the objective of

achieving a defined coverage requirement with limited energy consumption.

Sensing scheduling is only considered for opportunistic sensing applications since

mobile users usually control sensing activities manually in participatory sensing ap-

plications.

The movement of a mobile user k can be characterized using a trajectory Γk that

is a set of 3-tuples (k, tk, lock). Each tuple gives the location of user k at time tk.

The more 3-tuples there are in the trajectory, the more accurately it can characterize

user’s movement. Usually a mobile user only carries one phone, therefore, we use

“smartphone” and ”user” interchangeably.

Ideally, a smartphone should send sensor readings along with the corresponding

locations obtained from its GPS to a sensing server. However, it is well-known that

GPS is very energy-hungry [40] (a GPS device usually consumes much more energy

than other sensors). Keeping GPS on during the whole sensing procedure is not

feasible since it may drain the battery quickly. Other approaches, such as Google’s

location application, can also be used to obtain location information from a remote

Google server by calling an Android system API, which usually consumes much less

power [6], but provides less accuracy compared to GPS. We consider a GPS-less

system in which each smartphone uses certain location application (such as Google)
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to obtain location information without turning on its GPS.

Every 3-tuple (k, tk, lock) in a trajectory can be imagined as a virtual sensor. If

trajectories of all users are given, then we can have a large network of virtual sensors

by combining all 3-tuples in trajectories. A sensing schedule S is a collection of virtual

sensor sets, i.e., S =
∪K

k=1 Sk, where Sk ⊆ Γk. Selecting a virtual sensor (k, tk, lock)

into the schedule essentially means that mobile phone k is scheduled to sense at the

location lock and time tk. |Sk| = |S
∩

Γk| gives the number of times smartphone of

user k senses.

Sensing targets are assumed to be a set V of points. If the accurate location of

each virtual sensor is known, then it is easy to figure out whether a target point vj ∈ V

can be covered by a virtual sensor si. However since a GPS-less location approach

usually cannot provide precise locations, we present a probabilistic model to estimate

the probability that a virtual sensor si covers a target point vj with location errors

(Pij) and the probability that a target point vj is covered by a given sensing schedule

(Pj), which will be discussed in the next section. Since coverage quality and energy

efficiency are the primary design goals, we consider a problem of maximizing sensing

coverage subject to sensing energy consumption constraints. We formally define the

optimization problem in the following.

Definition 5 (E-MCSS) Given a set V of J target points, K smartphone users, a

sensing deadline T and the moving trajectory Γk of each user 1 ≤ k ≤ K before the

deadline, the Energy constrained Maximum Coverage Sensing Scheduling

(E-MCSS) problem seeks a sensing schedule S =
∪K

k=1 Sk, where Sk ⊆ Γk, 1 ≤

k ≤ K, such that the total coverage probability
∑J

j=1 Pj is maximized subject to the

constraint that the total number of sensing times
∑K

k=1 |Sk| ≤ B before the deadline

T , where B is a given threshold (which we call the sensing budget).

However, bounding the total number of sensing times only may lead to unfair

utilizations of smartphones: some users’ phones are heavily used for sensing and
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other users’ phones are lightly utilized or not utilized at all. Therefore, we try to

improve fairness by considering those sensing schedules in which each user’s sensing

time is bounded. We call such schedules fair sensing schedules. We also study the

Fair Maximum Coverage Sensing Scheduling (F-MCSS) problem which seeks a fair

sensing schedule S =
∪K

k=1 Sk, where Sk ⊆ Γk and |Sk| ≤ Bk, 1 ≤ k ≤ K (Bk is the

sensing budget of mobile user k). We will discuss how to set Bk and B in practice in

Section 5.3.4.

A probabilistic model for sensing coverage with location errors is used to in our

problem formulation.

The Google’s location application provides a rough estimation for the location

of a smartphone, which is given by a 3-tuple, (x, y, R), where x and y are latitude

and longitude of the estimated location respectively and R is the accuracy radius

which can be obtained from the MaxMind Accuracy Radius database [48]. With 50%

probability, the phone is located inside the location disk with origin at (x, y) and

a radius of R. The actual location is assumed to follow a two dimensional normal

distribution with correlation ρxy = 0.

Suppose that a virtual sensor si has a location of (xi, yi, Ri) given by the Google’s

location application. Note that this location may not be accurate and it is called

reported location in the following. We present a method to calculate Pij, i.e., the

probability that a particular target point vj ∈ V can be covered by this virtual sensor

(i.e, if a smartphone senses at this location, what is the probability that this target

point can be covered). First, it is easy to calculate the probability that a mobile user

actually shows up at a specific location. If the sensing range is R′, the probability

that a target vi can be covered equals the probability that a virtual sensor is located

inside the corresponding target disk with origin at vi and a radius of R′, which is

given by the following equation:
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Pij =

∫ ϕ2

ϕ1

∫ r2

r1

P (r)rdrdϕ. (5.9)

Since the distance between the actual location and the reported location, r, follows a

2-dimensional normal distribution with σx = σy = σ, the probability that the actual

location is r away from the reported location can be given by the following equation:

P (r) =
1

2πσ2
exp{− r2

2σ2
}. (5.10)

As shown in Fig. 5-9, ϕ is the angle between the line with the reported and actual

locations and the line with the reported location and the target point. [r1, r2] and

[ϕ1, ϕ2] are the integration intervals for r and ϕ respectively. As mentioned above,

the probability that a virtual sensor si is actually inside the location disk with origin

at the reported location and a radius of Ri is 50%, therefore, we can obtain σ:

σ ≈ 1.5Ri. (5.11)

As shown in Equation (5.10), P (r) is independent of ϕ, so Equation (5.9) can be

simplified to:

Pij =

∫ r2

r1

P (r)(ϕ2(r)− ϕ1(r))rdr. (5.12)

We need to consider two cases for the distance dij between virtual sensor si and

the target point vj: 1) dij ≥ R′ and 2) dij < R′, which are shown in Fig. 5-9.

For case 1: dij ≥ R′, by using the law of cosine, we can have:

ϕ2(r)− ϕ1(r) = 2 cos−1(
r2 + d2ij −R′2

2rdij
). (5.13)

By replacing P (r) and (ϕ2(r)− ϕ1(r)) in Equation (5.12) with Equations (5.10) and

(5.13), we have:
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Figure 5-9: The sensing coverage model

Pij =

∫ dij+R′

dij−R′

1

πσ2
exp{− r2

2σ2
} cos−1(

r2 + d2ij −R′2

2rdij
)rdr. (5.14)

For case 2: dij < R′, we have:
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ϕ2(r)− ϕ1(r) =


2π, if 0 ≤ r ≤ R′ − dij;

2 cos−1(
r2+d2ij−R′2

2rdij
), if r > R′ − dij.

(5.15)

Similarly, we have:

Pij =
∫ R′−dij
0

1
σ2 exp{− r2

2σ2}rdr

+
∫ dij+R′

R′−dij

1
πσ2 exp{− r2

2σ2} cos−1(
r2+d2ij−R′2

2rdij
)rdr (5.16)

Because there does not exist the closed form integration for the functions in Equa-

tions (5.14) and (5.16), we use the numerical method to obtain approximate solutions.

Note that the number of integration steps were set to H = 100 in the simulation and

experiment.

For case 1: dij ≥ R′, based on Equation (5.14), we can have:

δ = 2R′

H
; (5.17)

r = (dij −R′ + hδ); (5.18)

Pij =
∑h=H

h=0 (
rδ
πσ2 exp{− r2

2σ2} cos−1(
d2ij+r2−R′2

2dijr
)). (5.19)

For case 2: dij < R′, based on Equation (5.16), we can have:

δ =
dij+R′

H
; (5.20)

r = hδ; (5.21)

Pij =
∑h=⌊

R′−dij
δ

⌋
h=0

rδ
σ2 exp{− r2

2σ2} (5.22)

+
∑h=H

h=⌈
R′−dij

δ
⌉

rδ
πσ2 exp{− r2

2σ2} cos−1(
d2ij+r2−R′2

2dijr
). (5.23)

So given a set of virtual sensor S, the probability that a target point j can be
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covered (by some virtual sensor(s) in S) is given as follows:

Pj = (1−
∏
si∈S

(1− Pij)). (5.24)

5.3.2 Approximation Algorithms

Assuming knowing the trajectory of each mobile user in advance, we present constant

factor approximation algorithms to solve the E-MCSS problem and the F-MCSS

problem, respectively. It may be argued that this assumption is not realistic since it

is hard to precisely predict how users will move in the future. However, the provably-

good solutions given by these algorithms can be used to show sensing coverage that

can potentially be achieved by collaborative sensing and to serve as benchmarks for

performance evaluation.

The E-MCSS problem can be formally formulated as follows:

max
J∑

j=1

(1−
∏
si∈S

(1− Pij)) (5.25)

Subject to:

|S| ≤ B. (5.26)

Basically, the problem is to maximize the total sensing coverage probability by

selecting a subset S of virtual sensors with a cardinality no more than the given

budget B. Mathematically, the E-MCSS problem has the same objective function as

that of the Budget Server Problem with a Uniform Cost (BSP-UC) studied in [74].

It has been shown in [74] that this objective function is a non-negative, monotone

and submodular function. In a well-known work [54], Nemhauser et al. proved that,
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for such a problem, a simple greedy algorithm guarantees a solution with value at

least (1− 1
e
) > 0.63 of the optimal. We present the greedy algorithm in the following,

which is a (1− 1
e
)-approximation algorithm for the E-MCSS problem.

Algorithm 8 The greedy algorithm for the E-MCSS problem

1: S0 = ∅;
2: for h = 1 · · ·B do
3: s := argmaxs′∈Γ\Sh−1

f(Sh−1

∪
{s′})− f(Sh−1);

4:

5: Sh := Sh−1

∪
{s};

6:

7: end for
8: return SB;

In this algorithm, f(·) is the objective function, i.e., f(S) =
∑J

j=1 (1−
∏

si∈S(1− Pij)).

This algorithm starts with an empty set and adds a virtual sensor that maximizes

the incremental objective value in each iteration. The running time of this algorithm

is O(B|Γ|), where Γ =
∪K

k=1 Γk is the ground set of virtual sensors.

Next, we consider the F-MCSS problem and present the problem formulation in

the following.

max
J∑

j=1

(1−
∏
si∈S

(1− Pij))

Subject to:

|S
∩

Γk| ≤ Bk, 1 ≤ k ≤ K. (5.27)

We construct Ω = {Sl : Sl ⊆ Γ, |Sl

∩
Γk| ≤ Bk, 1 ≤ k ≤ K}, which is a collection

of subsets of the ground set Γ. We assume ∅ ∈ Ω. Next, we show that (Γ,Ω) is a
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matroid.

Definition 6 (Matroid [21]) A pair (U,Z) consisting of a ground set U and a col-

lection Z of subsets of U is a matroid if:

1) If X ∈ Z and Y ⊂ X, then Y ∈ Z;

2) for all X,Y ∈ Z, if |X| > |Y | then there exists some x ∈ X \ Y such that

Y
∪
{x} ∈ Z.

Lemma 1 (Γ,Ω) is a matroid.

Suppose that Sl1 ∈ Ω. According to the definition of Ω, Sl1 satisfies the constraint

|Sl1

∩
Γk| ≤ Bk, 1 ≤ k ≤ K. And if Sl2 ⊂ Sl1 then we have |Sl2

∩
Γk| ≤ |Sl1

∩
Γk| ≤

Bk, 1 ≤ k ≤ K. So Sl2 ∈ Ω.

We prove that condition 2) is also satisfied by contradiction. Suppose that Sl1 ∈

Ω, Sl2 ∈ Ω, and |Sl1| > |Sl2 |, but there does not even exist any element x such that

x ∈ Sl1 \ Sl2 and Sl2

∪
{x} ∈ Ω. If this statement is not true, then Sl2

∪
{xk} >

Bk, ∀xk ∈ {Sl1 \ Sl2}
∩

Γk, 1 ≤ k ≤ K. This means for any k, if {Sl1 \ Sl2}
∩
Γk ̸= ∅,

then |Sl2

∩
Γk| = Bk. So |Sl1

∩
Γk| ≤ |Sl2

∩
Γk|,∀{Sl1 \ Sl2}

∩
Γk ̸= ∅, 1 ≤ k ≤ K.

And since {Sl1 \ Sl2} ⊂ Sl1 , and all the elements in Sl1

∩
Sl2 are shared by both Sl1

and Sl2 , |Sl1 | ≤ |Sl2 |, which is in contradiction to our assumption. This completes

our proof.

The F-MCSS problem can be re-formulated as follows:

max
S∈Ω

J∑
j=1

(1−
∏
si∈S

(1− Pij)). (5.28)

Therefore the F-MCSS problem belongs to a class of problems of maximizing a sub-

modular set function over a matroid [21]. We present a greedy algorithm to solve it

and we have the following theorem.

123



Algorithm 9 The greedy algorithm for the F-MCSS problem

1: S0 := ∅; h := 1;
2: while do∃s ∈ Γ \ Sh−1 s.t. Sh−1

∪
{s} ∈ Ω

3:

4: s := argmaxs′∈S\Sh−1
f(Sh−1

∪
{s′})− f(Sh−1);

5:

6: Sh := Sh−1

∪
{s};

7:

8: h := h+ 1;
9:

10: end while
11: return Sh;

Theorem 3 Algorithm 9 is a 1
2
-approximation algorithm for the F-MCSS problem

and has a time complexity of O(N2).

Proof 2 In [21], it is shown that a simple greedy algorithm gives a 1/2 approximation

for an optimization problem of maximizing a non-decreasing submodular set function

over a matroid. The idea of Algorithm 9 is the same as the greedy algorithm presented

in [21], therefore, according to Lemma 1, Algorithm 9 is a 1
2
-approximation algorithm

for the F-MCSS problem. The running time is O(|Γ|2 · p(|Γ|)), where p(|Γ|) is the

running time for testing whether Sh−1

∪
{s} ∈ Ω or not. In our case, this testing can

be easily done in constant time by maintaining a counter for each user and checking

if its value exceeds the given budget.

5.3.3 Scheduling Protocol

In this subsection, we present the protocol of GPS-less sensing scheduling, which

leverages the algorithms described above for sensing scheduling. As mentioned above,

both algorithms need to know the trajectories of all mobile phones in the whole sensing

period beforehand, which is not quite possible in practice. Therefore, we need to find

a practical way to apply the proposed sensing scheduling algorithms.

Fig. 5-10 illustrates how the proposed protocol works. Each smartphone peri-
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Figure 5-10: The proposed sensing scheduling protocol

odically reports its location (obtained from the Google’s location application) to a

sensing server. Note that the location updating period was set to 20 seconds in our

field test. The sensing server keeps track of recent locations for each smartphone

(currently, our system keeps 10 most recent locations for each phone). When a new

sensing request (that specifies what to sense and area of interest) arrives, the sensing

server will push the request to smartphones that happen to be in the area of interest

defined by the request and wait for confirmations from them. Then the sensing server

will apply a sensing scheduling algorithm to schedule sensing activities of a set of

smartphones that confirm their willingness to participate, and instruct them to sense

by sending them a schedule that specifies when to sense. Each phone will then use

proper sensors to sense, encapsulate sensed data in an HTTP message and forward

it to the sensing server. Any algorithm can be applied here for sensing scheduling.

Of course, we employ the two algorithms presented above in our system. However,

in order to use them, we need to predict the moving trajectory for each phone in the
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sensing period defined by the request, which is hard if the period is too long. In our

protocol, we divide the whole sensing period into timeslots with the same duration

(which was set to 200sec in the simulation and field test) and schedule sensing activ-

ities at the beginning of each timeslot. Specifically, during each timeslot, the sensing

server performs the following actions:

1) Uses a mobility prediction algorithm to predict the moving trajectory of each

smartphone.

2) Feeds the predicted trajectories to a scheduling algorithm to obtain a schedule and

informs each smartphone.

3) Collects sensed data from smartphones.

Historical location reported by a mobile phone
Landmark

Predicted trajectory point
Landmark selected for prediction

Predicted trajectory

Figure 5-11: The mobility prediction algorithm

Essentially, any mobility prediction algorithm can be applied here. We design a

simple and effective algorithm for prediction and use it in our system. For prediction,
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we assume that each mobile user only moves along a roadway and only turns in an

intersection. In our prediction algorithm, we use a set of evenly distributed landmarks

to characterize a roadway. Currently, the distance between a pair of consecutive land-

marks was set to one meter. The historical locations reported by smartphones (which

might not be on roadways because they are not accurate) are mapped to the closest

landmarks on the roadways. Then the prediction algorithm checks all the landmarks

corresponding to recent reported locations and selects most recent two which happen

to belong to the same roadway. In Fig. 5-11, the two solid circles in the center are

the two selected landmarks. Using these two landmarks, the algorithm calculates

the speed and direction for this mobile user. The future locations can thus be pre-

dicted by assuming the mobile user will not change his speed and direction within this

timeslot. Based on the prediction, the algorithm will then generate the future mov-

ing trajectory (as shown by stars in the figure), which stops if a predefined number

(which was set to 10 in our simulation and field test), or an intersection is reached.

The algorithm makes no attempt to predict the trajectory after an intersection, since

it cannot know to which direction the user will head.

5.3.4 Validation And Performance Evaluation

In this subsection, we present simulation results as well as experimental results to

validate and justify effectiveness of the proposed scheduling algorithms and protocol.

Simulation Results

In the simulation, the target area we chose is an area located in the center of Man-

hattan, NY, which spans 3 blocks from west to east with a total length of 1600m and

3 blocks from south to north with a total length of 800m, and includes the 5th, 6th,

7th, 8th Avenues and the 44th, 45th, 46th, 47th Streets. We used a mobility model

similar to the well-known Manhattan model [3] to generate mobile users’ moving tra-

127



20 25 30 35 40 45 50 55 60 65 70

0.4

0.5

0.6

0.7

0.8

0.9

1

The Number Of Users

Av
er

ag
e 

Co
ve

ra
ge

 P
ro

ba
bi

lit
y

 

 

Baseline
E−MCSS−Greedy
F−MCSS−Greedy
E−MCSS−Protocol
F−MCSS−Protocol

(a) Average coverage probability VS. the number of
users (b = 2)

20 25 30 35 40 45 50 55 60 65 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The Number Of Users

Av
er

ag
e 

Co
ve

ra
ge

 P
ro

ba
bi

lit
y

 

 

Baseline
E−MCSS−Greedy
F−MCSS−Greedy
E−MCSS−Protocol
F−MCSS−Protocol

(b) Average coverage probability VS. the number of
users (b = 4)

1 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Sorted User ID

Se
ns

in
g 

Ti
m

es

 

 

E−MCSS−Protocol
F−MCSS−Protocol

(c) Sensing times vs sorted user ID (b = 2)

Figure 5-12: Performance of the proposed algorithms and protocol

jectories. Specifically, each user is assumed to be at a random location in the target

region at the very beginning. Then it randomly selects a direction and moves with a

speed randomly selected from {2, 4} meters per second towards an intersection. Then

the user moves straight ahead with a probability of 50%, turns left or right with equal

probabilities (i.e., 25%). The trajectory of each user was constructed with points on

critical locations (such as intersections and road heads) and evenly spaced sample

points (1 meter between two consecutive ones) between them. All the location data

were collected from the Google Maps using its APIs. The deadline (the duration
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of the whole sensing period) was set to T = 1800s. The sensing range was set to

R′ = 20m. The target points were evenly distributed on the roadways in the target

area with a distance of 40m between a pair of consecutive points. Random errors

were introduced to simulate the inaccuracy of reported locations.

In the simulation, we evaluated the performance of the greedy algorithm for E-

MCSS (E-MCSS-Greedy), the greedy algorithm for F-MCSS (F-MCSS-Greedy), the

protocol using E-MCSS-Greedy (E-MCSS-Protocol) and the protocol using F-MCSS-

Greedy (F-MCSS-Protocol). We used the average coverage probability (i.e., the total

coverage probability divided by the number of target points) as the performance

metric and changed the number of mobile users from 20 to 70, with a step size of

5. In the protocol, the whole sensing period was divided into multiple timeslots with

the same duration, which was set to 200s in the simulation. T = 1800s, but the

first timeslot was used only for collecting user’s mobility information for prediction.

Therefore, there are 8 timeslots for sensing. For F-MCSS-Protocol, we set each user’s

sensing budget in each timeslot to b = 2 and b = 4 respectively in two scenarios. To

ensure fair comparisons, for F-MCSS-Greedy, each user’s total sensing budget was set

to Bi = b ∗ 8, i.e., 16 and 32 respectively. Accordingly, the total sensing budget was

set to B = Bi ∗K for E-MCSS-Greedy and the total sensing budget in each timeslot

for E-MCSS-Protocol was set to b∗K, where K is the number of users. Moreover, we

used the periodic sensing method (i.e., every smartphone periodically senses without

collaborations) as the baseline for comparison, in which each smartphone senses every

100s. Note that during the sensing period, some mobile users might leave the target

area at certain times, which were not used for sensing any longer after their departure

in the simulation.

We conducted simulation runs on 40 sets of randomly generated trajectories. The

simulation results are shown in Figs. 5-12(a)– 5-12(c). We can make the following

observations:
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1) As expected, all the proposed approaches outperform the baseline method and

E-MCSS-Greedy performs best in terms of coverage probability. On average (based

on Figs. 5-12(a) and 5-12(b)), in terms of the coverage probability, E-MCSS-Protocol

and F-MCSS-Protocol outperform the baseline method (for the case where b = 2) by

33.3% and 15.5% respectively. We can also see that the performance of these two

methods is comparable. In addition, we can view their performance from another

perspective. In order to achieve an average coverage probability of 80%, according

to Fig. 5-12(a), E-MCSS-Protocol needs about 30 users and F-MCSS-Protocol needs

about 50 users, while the baseline method needs about 65 users.

2) No matter which method is used, the average coverage probability always in-

creases with the number of users. In addition, by comparing Figs 5-12(a) and 5-12(b),

we can see that the higher the sensing budget (which leads to more energy consump-

tion), the better the coverage.

3) In Fig. 5-12(c), we show fairness of E-MCSS-Protocol and F-MCSS-Protocol

by plotting the number of sensing times of each user (the total number of users is

40) using a set of randomly generated trajectories. We can see that compared to

E-MCSS-Protocol, F-MCSS-Protocol offers more even distribution of the number of

sensing times among mobile users, which means better fairness. Note that the total

number of sensing times given by E-MCSS-Protocol is larger than that given by F-

MCSS-Protocol due to the early departure of some mobile users.

Experimental Results

The field test was performed on Syracuse University’s campus, in which 8 volunteers

participated. The application is to scan WiFi signal strengths on roadways. Popular

Android smartphones, including Motorola Droid, Motorola Razr, Google Nexus S,

Samsung Galaxy I9000 and Galaxy S2 were used as our sensing devices. Each smart-

phone used Google’s location application to obtain its locations and report them to
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Table 5.3: Experimental settings
Variables Description

K = 8 The number of users

T = 1800s The duration of the whole sensing period

T ′ = 200s The duration of a timeslot

Tloc = 20s Location reporting period

b = 2 The sensing budget for each user in a timeslot

Tp = 100s the time interval for the baseline method

the sensing server every Tloc = 20s. For the testing purpose, GPS was also turned on

to collect the actual locations where smartphones performed WiFi scans.

At the very beginning of our field test, each user was randomly located on a road-

way in the target area. Then he/she started to walk along the roadway in a random

direction at his/her regular walking speed and turned randomly in an intersection.

The settings of the field experiment are summarized in Table 5.3.

We tested the proposed protocol and system in the field experiment. The sensing

budgets were set in the same way as simulations. Note that in the first timeslot,

each smartphone simply reported its locations obtained from the Google’s location

application to the sensing server for mobility prediction without performing any WiFi

scans. We plot the users’ actual sensing locations (obtained from GPS) given by

the proposed protocol in Fig. 5-13. From the figure, we can see that the locations

that smartphones sense are widely distributed over the roadways. In this way, the

target points in the area are well covered, which verifies that the proposed system

and protocol work well in a real environment with random mobility and unreliable

wireless links.
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(a) E-MCSS-Protocol

(b) F-MCSS-Protocol

Figure 5-13: Actual sensing locations given by the proposed protocol
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we studied the topic of smartphone sensing and identified challenges

of building a unified sensing platform. First, this thesis designs and implements a

unified sensing platform for smartphone sensing.

In chapter 2, we overview the system design need of a unified and green platform

for smartphone sensing, which can support various sensing applications and employs

energy-efficient algorithms for sensing scheduling. The technical details of the design

are presented. By integrating the script interpreter into the unified platform, platform

can interpret and fulfill the sensing tasks at runtime. Modular design makes the

backend easy to be configured and adjusted. The design and implementation details

of both mobile frontend and cloud backend are presented. The proposed sensing

platform is general enough to support various sensing applications (requires different

set of sensors). Also the platform is easy to be extended to support newly developed

sensor technologies: only a provider module is needed to be developed and registered

in the platform. Multiple sensing applications could run on the sensing platform

concurrently. And sensors’ data could be shared among these applications to save
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energy.

Then, two sensing applications are built on top of the sensing platform: SOR(Sensing

base Objective Ranking application) and LIPS(LIfestyle learning via smartPhone

Sensing): 1) In chapter 3, we presented design, implementation and evaluation of

SOR. SOR is easy to use and its architecture is so scalable that various sensors can

be easily integrated into it. We presented an online scheduling algorithm for cov-

erage maximization, which has a constant approximation ratio of 1/2; moreover, we

presented a personalizable ranking algorithm, which ranks target places based on var-

ious sensor readings and user preferences. Both of them have been used in SOR for

scheduling and ranking respectively. We validated and evaluated SOR via both field

tests (using real hiking trails and coffee shops in Syracuse as target places) and sim-

ulation. Field-testing results showed that data collected and processed by SOR can

well capture characteristics of target places, and personalizable rankings produced by

SOR can well match user preferences. In addition, simulation results showed that the

proposed scheduling algorithm outperforms a baseline algorithm by 65% in terms of

average coverage probability. 2) In chapter 4, we presented design, implementation

and evaluation of LIPS application. First, we presented the workflow and architec-

ture of LIPS application. We proposed a hybrid scheme for lifestyle learning, which

consists of two parts: characterization and prediction. Specifically, we presented a

two-stage algorithm to characterize the lifestyle of a mobile user using PoIs, which

leverages the DBSCAN and MeanShift algorithms for coarse-grained and fine-grained

clustering in the first and second stages respectively. Based on discovered PoIs, we

developed a method to build a model to predict his/her future activities using SVM.

In addition, we presented a lifestyle-aware adaptive sampling algorithm for improving

energy efficiency. We implemented the proposed system and algorithms based on the

Android platform. We have validated and evaluated LIPS via extensive field tests

carried out in 6 major cities of USA. The experimental results showed that LIPS can
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1) well discovers PoIs of mobile users, 2) precisely predict their future activities with

an average accuracy of 72%, and 3) achieve a significant energy saving of 52% on

average (compared to periodic sampling).

This thesis also studies how to reduce sensing energy consumption for sensing ap-

plication. In chapter 5, we proposed to leverage cloud-assisted collaborative sensing

to reduce energy consumption for smartphone sensing applications. First, By assum-

ing the moving trajectory of each mobile user is known in advance, we presented a

polynomial-time algorithm to obtain minimum energy sensing schedules, which can

be used to show potential energy savings that can be brought by collaborative sens-

ing and can serve as a benchmark for performance evaluation. We also presented

an algorithm to achieve a good tradeoff between total energy consumption and fair-

ness. Under realistic assumptions, we presented two practical and effective heuristic

algorithms: the prediction-based algorithm and the function-based algorithm. It

has been shown by simulation results based on real energy consumption and loca-

tion data that compared to traditional sensing without collaborations, collaborative

sensing significantly reduces energy consumption, and the proposed function-based

algorithm performs well in terms of both total energy consumption and fairness. In

the second part of chapter 5, we presented a probabilistic model for sensing cover-

age without accurate location information, based on which we formally define the

E-MCSS problem and the F-MCSS problem. Under a strong assumption that the

moving trajectories of mobile users are known in advance, we presented a (1 − 1
e
)-

approximation algorithm and a 1
2
-approximation algorithm to solve the E-MCSS and

F-MCSS problems in polynomial time respectively. Under realistic assumptions, we

presented a GPS-less and energy-efficient protocol for sensing scheduling based on

the proposed approximation algorithms. It has been shown by simulation results

that the proposed protocol significantly outperforms a baseline method in terms of

coverage probability and F-MCSS-Protocol (the protocol using the greedy algorithm
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for F-MCSS) and achieve a good tradeoff between coverage and fairness (on individ-

ual smartphone usages). Experimental results from a field test were also presented

to validate the proposed protocol.

6.2 Future Research Directions

In this section, we point out future research directions:

Sensing Task Scheduling on a Smartphone: A sensing task will be assigned

to multiple smartphones. Correspondingly, a smartphone may be used to process

multiple sensing tasks. Hence, sensing task scheduling algorithms are also needed to

schedule multiple sensing tasks on a smartphone. The following optimization problem

needs to be addressed: given a set of sensing tasks (on a smartphone), each with

certain temporal requirement (i.e., must be completed at a particular time or during

a certain period), spatial requirement (i.e., must be performed at a particular location

or in a certain area), or both, find a schedule with minimum energy consumption for

performing these tasks such that the given requirements are met. To the best of our

knowledge, this problem has not been studied yet. One trivial solution is to treat

each sensing task as an independent task and handle them one by one. However,

this may not be energy-efficient because multiple sensing tasks may share one or

multiple sensing actions (e.g., request location information from GPS). The best

way may be to group multiple correlated tasks together by exploiting the temporal-

spatial correlations between them, schedule sensing actions associated with them and

determine when to conduct common sensing actions based on user mobility status

with the objective of minimizing energy consumption and satisfying the temporal

and spatial requirements.

Privacy-preserving Incentive Mechanisms: Incentive and privacy have been

addressed separately in the context of mobile sensing but has not been considered
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simultaneously. For example, in the incentive mechanisms designed in [75], privacy

issues were not considered at all. It is important to design incentive mechanisms that

can enhance user privacy. Having privacy protection will encourage more mobile users

to participate in sensing activities. Initial work was done in a very recent paper [39].

In that paper, the authors proposed two privacy-aware incentive schemes, which allow

each mobile user to earn credits by contributing data without leaking which data it

has contributed, and in the meanwhile ensure that dishonest users cannot abuse the

system to earn unlimited amount of credits. The first scheme considers scenarios

where a Trusted Third Party (TTP) is available. It relies on the TTP to protect user

privacy, and thus has very low computation and storage cost at each mobile user.

The second scheme removes the assumption of TTP and applies blind signature and

commitment techniques to protect user privacy. We believe this line of research can

make a significant impact on smartphone sensing.

A Reputation System of Mobile Users: It is very important to establish a

common reputation system of mobile users for various smartphone sensing applica-

tions. In the current incentive mechanisms [75], mobile users are selected purely based

on their bids. It would be interesting to study user selection schemes based on the

reputation of individual users. Moreover, users’ reputations can be used to enhance

the reliability of sensed data provided by mobile users. For example, mobile users’

reputations can be used as weights for generating the final sensing results. A mobile

user in an cloud may be involved in various applications. A unified and fair approach

needs to be developed to adjust the reputation score(s) of a mobile user based on

his/her performance in different applications in terms of various metrics (efficiency,

quality of sensed data, etc), which is very challenging but has not yet been studied.

Smartphone Sensing based Social Networking: Social networks have been

making a significant impact on people’s life. Marrying smartphone sensing with so-

cial networking can benefit both systems. On one hand, a popular social networking
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system, such as Facebook, Twitter and Weibo, serves as a perfect platform for shar-

ing data collected via smartphone sensing; on the other hand, mobile phone sensing

can substantially enrich social networking activities by providing various context in-

formation of mobile users, such as location, moving states, etc. The CenceMe [50]

represents the first system that combines the inference of the presence of individuals

(e.g., walking, in conversation, at the gym) via smartphone sensing with sharing of

this information through social networking systems such as Facebook and MySpace.

In [13], the authors designed and implemented a crowd-sourced sensing and collabo-

ration system over Twitter, and demonstrated their system using two applications: a

crowd-sourced weather radar, and a participatory noise-mapping application. In [58],

a smartphone sensing based platform, SociableSense, was developed to capture user

behavior in office environments, while providing users with a quantitative measure

of their sociability and that of colleagues. It will be very interesting to develop new

social networking applications based on smartphone sensing.
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